设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(6),1031-1047
PublishedOnlineJune2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.116117
Ê ‡©•§žmõ«•ž˜Ì•{
{{{JJJŒŒŒ
þ°ŒÆnÆ§þ°
ÂvFϵ2021c51F¶¹^Fϵ2021c62F¶uÙFϵ2021c610F
Á‡
©éÊ ‡©•§JÑžmõ«•ž˜Ì•{.T•{3˜m••þæ^Legendre-
Petrov-Galerkin•{, 3žm••þæ^ õ«•Legendre-tau •{, =: ržm«m©¤õ
‡«•,¿3z‡«•þæ^Legendre-tau•{.Óž,©‰ÑT•{3‚5¯KþØ©
Û,À·ļê¦XêÝDÕ, éš‚5•§¥š‚5‘æ^3Chebyshev-Gauss-
Lobatto:þŠ?1OŽ.•ÏL˜ꊎ~yŽ{k5.
'…c
Ê ‡©•§§ž˜Ì•{§Legendre-Petrov-Galerkin•{§Legendre-Tau•{§
Chebyshev-Gauss-LobattoŠ
Multi-DomainSpace-TimeSpectralMethod
inTimeforSolvingFifth-OrderPartial
DifferentialEquation
RongyuYu
CollegeofSciences,ShanghaiUniversity,Shanghai
Received:May1
st
,2021;accepted:Jun.2
nd
,2021;published:Jun.10
th
,2021
©ÙÚ^:{JŒ.Ê ‡©•§žmõ«•ž˜Ì•{[J].nØêÆ,2021,11(6):1031-1047.
DOI:10.12677/pm.2021.116117
{JŒ
Abstract
In thispaper,we propose themulti-domain space-time spectral method intime forthe
fifth-orderpartialdifferentialequation.Legendre-Petrov-Galerkinmethodisapplied
inspacedirection,andmulti-domain Legendre-taumethod isappliedintime direction,
thatis: dividingthetimeintervalintomultipledomainsandLegendre-taumethodis
appliedineachdomain. Atthesametime, theerroranalysisofthemethodonlinear
problemsisgiveninthispaper,andwechooseproperbasisfunctionstomakethe
coefficientmatrixsparse, thenonlineartermforthenonlinearequationiscomputed
byinterpolationthroughChebyshev-Gauss-Lobattopoints.Finally,somenumerical
examplesaregiventoverifytheeffectivenessofthealgorithm.
Keywords
Fifth-OrderPartialDifferentialEquation,Space-TimeSpectralMethod,
Legendre-Petrov-GalerkinMethod,Legendre-TauMethod,
Chebyshev-Gauss-LobattoInterpolation
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense (CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.có
3¢S¯K¥, Ê ‡©•§kX2•A^, ù•§Ñy3Ôn!åÆ!1Æ!9D !
Ä!6N$Ä!››±9)ÔXÚ •¡, ~X: 2ÂKorteweg-deVries(KdV) •§[1–8]. 3d
ƒc, IS˜‰ïóŠö®²éÊ ‡©•§?1ŒþïÄ, 3[9] ¥XuÚShuJÑ
Local-Discontious-Galerkin(LDG)•{5¦)ÊÅÄ•§, ¿‰ÑT•{-½5©Û±9
ÏL˜ꊎ~`²T•{°Ý. 3[10]¥Cheng ÚShu JÑDiscontious-Galerkin(DG)
k••{5¦)žm •6p•§, Óž‰Ñ-½5©ÛÚØO; êŠ(JL², ©¡
õ‘ªgê•k gž, T‚ª°Ýò¬ˆk+1 .3[11] ¥ëùÚo)é˜a|Ü
Ê•§…ܯKJÑ˜«wª©‚ª,¿…y²T‚ª3÷v˜½^‡ž´-½.
òXeÊ ‡©•§Š•.•§?1ïÄ:
DOI:10.12677/pm.2021.1161171032nØêÆ
{JŒ









∂
t
U+∂
5
x
U= f(x,t),x∈I
x
,t∈I
t
;
U(±1,t) = ∂
x
U(±1,t) = ∂
2
x
U(1,t) = 0,t∈I
t
;
U(x,−1) = U
0
(x),x∈I
x
.
(1.1)
Ù¥I
x
= (−1,1),I
t
= (−1,1),U= U(x,t).
éu¦)žm•6 ‡©•§, •§°()3žmÚ˜m••þv 1wž, XJ3ž
m••þæ^©‚ª, ¬N´—̰ݿ”. Óž, ž˜õ‘ªg ꘽ž, æ^žm ü«•
ž˜Ì•{?1¦)¤ØŒ. Ïd©éÊ ‡©•§JÑžmõ«•ž˜Ì•
{,±B~Ø.
©‰Ñ•§(1.1)žmõ«• ž˜Ì‚ª. ˜m••þæ^Legendre-Petrov-Galerkin •
{, žm••þæ^õ«•Legendre-tau •{, =:ržm«m©¤õ‡«•, ¿3z‡«• þæ
^Legendre-tau •{.
©e5SN•):1)0©Ž{‚ª9nةۥI‡^˜ÎÒPÒÚÚn;
2) ‰ÑÊ ‡©•§'užm õ« •ž˜Ì•{lÑ‚ª, ¿£ãŽ{¢–; 3) éÊ
‚5 ‡©•§lÑ‚ª?1Ø©Û;4) ÏL˜ꊎ~y©Ž{k5.
2.ý•£9PÒ
!̇0©Ž{‚ª9nةۥI‡^˜ÎÒPÒÚÚn.
2.1.ÎÒPÒ
-Ω=I
t
⊗I
x
. σ•šKê, PH
σ
(I
x
) •˜„½ÂSobolev ˜m, …‰ê†Œ‰ê©O
P•k·k
I
x
,σ
Ú|·|
I
x
,σ
.•Äàg>.^‡, és≥1, ½Â[12]:
H
s
0
(I
x
) = {v∈H
s
(I
x
) |v(±1) = v
0
(±) = ···= v
(s−1)
(±1) = 0}.
˜m••lÑ:
éu?¿êN,P
N
(I
x
)L««mI
x
þ¤kgêØ‡LNgõ‘ª¤˜m.
½Â:
H
2,3
0
(I
x
) = {v∈H
2
0
(I
x
)∩H
3
(I
x
) |∂
2
x
(1) = 0}, H
2,2
0
(I
x
) = H
2
0
(I
x
)∩H
2
(I
x
).
du˜m••"é¡5,·‚ÀÁ&¼ê˜mØÓuu¼ê˜m:
V
N
= P
N
(I
x
)∩H
2,3
0
(I
x
),V
∗
N
= P
N
(I
x
)∩H
2,2
0
(I
x
).
L
j
(x)•gêØ‡LjLegendreõ‘ª, é0 ≤j≤N−5,½Â[12]:
DOI:10.12677/pm.2021.1161171033nØêÆ
{JŒ
γ
j
(x) = L
j
(x)+a
(j)
1
L
j+1
(x)+a
(j)
2
L
j+2
(x)+a
(j)
3
L
j+3
(x)+a
(j)
4
L
j+4
(x)+a
(j)
5
L
j+5
(x),
Ù¥
a
(j)
1
= −
2j+3
2j+7
,a
(j)
2
= −
2(2j+5)
2j+7
,a
(j)
3
=
2(2j+3)
2j+9
,a
(j)
4
=
2j+3
2j+7
,a
(j)
5
= −
(2j+3)(2j+5)
(2j+7)(2j+9)
.
3ùp·‚-γ
j
(x)•V
N
þļê,KéN≥5, k
V
N
= span{γ
0
(x),γ
1
(x),···,γ
N−5
(x)}.
L
n
(x)•gêØ‡LnLegendre õ‘ª,é0 ≤n≤N−5, ½Â:
ψ
n
(x) = c
n+1
(L
n
(x)−L
n+2
(x))−c
n+3
(L
n+2
(x)−L
n+4
(x)).
Ù¥c
n
=
1
2n+1
,3ùp·‚-ψ
n
(x)•V
∗
N−1
þļê,KéN≥5, k
V
∗
N−1
= span{ψ
0
(x),ψ
1
(x),···,ψ
N−5
(x)}.
½ÂÝKŽfP
α,β
N
:L
2
˜ω
α,β
(I
x
) →P
N
(I
x
),PP
N
:= P
0,0
N
,…÷v
(P
α,β
N
u−u,v)
I
x
,˜ω
α,β
= 0, ∀v∈P
N
(I
x
).
•;•3nةۥÑyÊê, ·‚ I‡Ú\XeÝKŽf. ½ÂP
∗
N
: H
2,3
0
→V
N
÷v
(∂
3
x
(P
∗
N
u−u),∂
2
x
v)
I
x
= 0,∀v∈V
∗
N−1
.(2.1)
ΥP
∗
N
u•3…•˜, ¦
P
∗
N
u=
e
P
N
u: =
∂
−3
x
P
N−3
∂
3
x
u,(2.2)
Ù¥∂
−1
x
v(x) = −
Z
1
x
v(y)dy,∂
−m
x
v(x) = (∂
−1
x
)
m
.
d½Â•,
e
P
N
u(1) = ∂
x
e
P
N
u(1) = ∂
2
x
e
P
N
u(1) = 0,…k
e
P
N
u(−1) = −(x+1)∂
−2
x
P
N−3
∂
3
x
u(x) |
1
−1
+
Z
1
−1
(x+1)∂
2
x
u(x)dx
= (x+1)∂
x
u(x) |
1
−1
−
Z
1
−1
∂
x
u(x)dx= 0.
∂
x
e
P
N
u(−1) = −(x+1)∂
−1
x
P
N−3
∂
3
x
u(x) |
1
−1
+
Z
1
−1
(x+1)∂
3
x
u(x)dx
= (x+1)∂
2
x
u(x) |
1
−1
−
Z
1
−1
∂
2
x
u(x)dx= 0.
DOI:10.12677/pm.2021.1161171034nØêÆ
{JŒ

e
P
N
u∈V
N
,…∀v∈V
∗
N−1
,k
(∂
3
x
(
e
P
N
u−u),∂
2
x
v)
I
x
= (P
N−3
∂
3
x
u−∂
3
x
u,∂
2
x
v)
I
x
= 0,
Óž,ŽfP
∗
N
•÷v
(∂
2
x
P
∗
N
u(x))(−1) = ∂
−1
x
P
N−3
∂
3
x
u(−1) = ∂
2
x
u(−1).(2.3)
e5`²žm••lÑ:
éu‰½êK,·‚ò«mI
t
=(−1,1)©)¤K‡f«m:I
k
=(b
k−1
,b
k
],h
k
=
b
k
−b
k−1
,k= 1,2,···,K,
−1 = b
0
<b
1
<···<b
K
= 1.
-Ω = I
k
⊗I
x
,ω
k
α,β
= (b
k
−t)
α
(t−b
k−1
)
β
|
I
k
,˜ω
α,β
= (1−x)
α
(1+x)
β
•Ω
k
þ¼ê. P
(·,·)
Ω
k
,ω
k
,˜ω
Úk·k
Ω
k
,ω
k
,˜ω
©O•L
2
ω
k
,˜ω
(Ω
k
)SÈÚ‰ê. ϕ•šKê, PH
ϕ
(I
k
)•˜„½Â
Sobolev ˜m,…‰ê†Œ‰ê©OP•k·k
I
k
,ϕ
Ú|·|
I
k
,ϕ
.Ú\©¡Sobolev ˜m:
e
H
ϕ
(I
t
) = {v: v
k
≡v|
I
k
∈H
ϕ
(I
k
),1 ≤k≤K},
ÙþŒ‰ê½Â•:
|v|
e
H
ϕ
(I
t
)
= (
K
X
k=1
|v
k
|
2
ϕ,I
k
)
1
2
.
éu?¿êM
k
, ·‚À
e
H
1
(I
t
) ˜‡f˜mX
M
k
K
Š•žm••þÁ&¼ê˜m, §
dI
k
þ¤kgêØ‡LM
k
©¡õ‘ª|¤. À˜mY
M
k
−1
K
Š•žm••þu¼ê˜m,
=
X
M
k
K
= Y
M
k
K
∩
e
H
1
(I
t
),Y
M
k
K
= {v: v|
I
k
∈P
M
k
(I
k
),1 ≤k≤K},
Ù¥P
M
k
(I
k
)L««mI
k
þ¤kgêØ‡LM
k
gõ‘ª¤˜m.
ÓžÚ\•N:
v(t) =¯v(
¯
t),t=
1
2
(h
k
¯
t+b
k−1
+b
k
),t∈I
k
,
¯
t∈I
t
.
dþªŒ•,∂
s
¯
t
v= (
h
k
2
)
s
∂
s
t
v,s= 1,2,···.
L
i
(
¯
t)•gêØ‡LiLegendre õ‘ª,c
i
=
1
2i+1
,é1 ≤k≤K, ½Â:













ϕ
M
k
0
(t) = c
0
(L
0
(
¯
t)+L
1
(
¯
t));
ϕ
M
k
i
(t) = c
i
(L
i−1
(
¯
t)−L
i+1
(
¯
t)),1 ≤i≤M
k
−1;
˜ϕ
M
k
i
(t) = L
i
(
¯
t),0 ≤i≤M
k
−1.
DOI:10.12677/pm.2021.1161171035nØêÆ
{JŒ
é0 ≤i≤M
k
−1,©O-ϕ
M
k
i
(t),˜ϕ
M
k
i
(t)•X
M
k
K
,Y
M
k
−1
K
þļê,KéM
k
≥1,1 ≤k≤
K, k







X
M
k
K
= span{ϕ
M
k
0
(t),ϕ
M
k
1
(t),···,ϕ
M
k
M
k
−1
(t)},
Y
M
k
−1
K
= span{˜ϕ
M
k
0
(t),˜ϕ
M
k
1
(t),···,˜ϕ
M
k
M
k
−1
(t)}.
½ÂÝKŽfP
L
M
k
:L
2
(I
k
) →P
M
k
(I
k
)
÷v
(P
L
M
k
u−u,v)
I
k
= 0,∀v∈P
M
k
(I
k
)
.
½ÂÝKŽfP
1
M
k
:H
1
(I
k
) →P
M
k
(I
k
)
÷v
P
1
M
k
u= u(b
k−1
)+
Z
t
b
k−1
P
L
M
k
−1
∂
t
u(s)ds.
½ÂÝKŽfP
1
M
:dP
k
1,M
k
:H
1
(I
k
) →P
M
k
(I
k
))¤, Pu(t) |
I
k
= u
k
(t),…÷v
P
1
M
u(t) |
I
k
≡P
k
1,M
k
u
k
(t) := P
1
M
k
¯u
k
(
¯
t).(2.4)
½ÂChebyshev-GaussŠŽf:
Π
C
N
:C(
¯
I
x
) →P
N
,
Π
C
N,M
k
:C(
¯
Ω
k
) →P
N
×P
M
k
,
÷v
Π
C
N
u(x
j
) = u(x
j
),Π
C
N,M
k
u(x
j
,t
k
) = u(x
j
,t
k
),
Ù¥x
j
•I
x
þChebyshev-Gauss-Lobatto(CGL):, (x
j
,t
k
)•Ω
k
þCGL :.
P:
W
k
= V
N
⊗X
M
k
K
,
f
W
k
= V
∗
N−1
⊗Y
M
k
−1
K
.
2.2.nةۥI‡^Ún
Ún1.(„[13]:Lemma3.3)eu∈H
ϕ
(I
k
),…ϕ≥1,é1 ≤k≤K,Kk
kP
k
1,M
k
u−uk
I
k
≤Ch
k
M
−ϕ
k
k∂
ϕ
t
uk
I
k
,ω
k
ϕ−1,ϕ−1
.(2.5)
Ún2.(„[14]:Lemma3.1)eα!β>−1,…u∈H
r
(I
x
),Kk
DOI:10.12677/pm.2021.1161171036nØêÆ
{JŒ
k∂
s
x
(P
α,β
N
u−u) k
I
x
,˜ω
α+s,β+s
≤CN
s−r
k∂
r
x
(P
α,β
N
u−u) k
I
x
,˜ω
α+r,β+r
≤CN
s−r
k∂
r
x
uk
I
x
,˜ω
α+r,β+r
,0 ≤s≤r.
(2.6)
Ún3.eu∈H
2,3
0
(I
x
)∩H
σ
(I
x
),…σ≥3,Kk
k∂
l
x
(P
∗
N
u−u) k
I
x
,˜ω
l−3,l−3
≤CN
l−σ
k∂
σ
x
uk
I
x
,˜ω
σ−3,σ−3
,0 ≤l≤3.(2.7)
y:(1) l= 3 ž,PI•ðŽf,d(2.2)ªÚ(2.6)ªŒ±á=
k∂
3
x
(P
∗
N
u−u) k
I
x
=k(P
N−3
−I)∂
3
x
uk
I
x
≤CN
3−σ
k∂
σ−3
x
(P
N−3
−I)∂
3
x
uk
I
x
,˜ω
σ−3,σ−3
= CN
3−σ
k∂
σ
x
(P
∗
N
−I)uk
I
x
,˜ω
σ−3,σ−3
≤CN
3−σ
k∂
r
x
uk
I
x
,˜ω
σ−3,σ−3
.
(2)l= 2 ž,-g= ∂
2
x
(P
∗
N
u−u),d(2.3)ª•, g∈H
1
0
(I
x
).ÏLeHardy’s Øª[14],
kg˜ω
−1,−1
∈L
2
(I
x
):
Z
1
−1
v
2
(x)(1−x
2
)
β−2
dx≤sup{
1
1−β
,
1
(1−β)
2
}
Z
1
−1
(∂
x
v)
2
(x)(1−x
2
)
β
dx,
Ù¥v∈H
1
0
(I
x
),β<1,d(2.6)ª
k∂
2
x
(P
∗
N
u−u) k
2
˜ω
−1,−1
= (∂
2
x
(P
∗
N
u−u),∂
x
∂
−1
x
[g˜ω
−1,−1
])
=|((P
N−3
−I)∂
3
x
u,∂
−1
x
[g˜ω
−1,−1
]) |
=|((P
N−3
−I)∂
3
x
u,(I−P
N−3
)∂
−1
x
[g˜ω
−1,−1
]) |
≤k(P
N−3
−I)∂
3
x
ukk(I−P
N−3
)∂
−1
x
[g˜ω
−1,−1
] k
≤CN
3−σ
k∂
σ−3
x
(P
N−3
−I)∂
3
x
uk
˜ω
σ−3,σ−3
N
−1
kg˜ω
−1,−1
k
˜ω
1,1
= CN
2−σ
k∂
σ
x
(P
∗
N
−I)uk
˜ω
σ−3,σ−3
kgk
˜ω
−1,−1
≤CN
2−σ
k∂
σ
x
uk
˜ω
σ−3,σ−3
kgk
˜ω
−1,−1
,
Ïd,l= 2 ž,(2.7)ª•¤á.
(3) l=1 ž, ÓnŒ-g=∂
x
(P
∗
N
u−u), g∈H
2
0
(I
x
). 2g$^þãHardy’s Øª, k
g˜ω
−2,−2
∈L
2
(I
x
),d(2.6)ª
DOI:10.12677/pm.2021.1161171037nØêÆ
{JŒ
k∂
x
(P
∗
N
u−u) k
2
˜ω
−2,−2
= (∂
x
(P
∗
N
u−u),∂
2
x
∂
−2
x
[g˜ω
−2,−2
])
=|((P
N−3
−I)∂
3
x
u,
∂
−2
x
[g˜ω
−2,−2
]) |
=|((P
N−3
−I)∂
3
x
u,(I−P
N−3
)∂
−2
x
[g˜ω
−2,−2
]) |
≤k(P
N−3
−I)∂
3
x
ukk(I−P
N−3
)∂
−2
x
[g˜ω
−2,−2
] k
≤CN
3−σ
k∂
σ−3
x
(P
N−3
−I)∂
3
x
uk
˜ω
σ−3,σ−3
N
−2
kg˜ω
−2,−2
k
˜ω
2,2
= CN
1−σ
k∂
σ
x
(P
∗
N
−I)uk
˜ω
σ−3,σ−3
kgk
˜ω
−2,−2
≤CN
1−σ
k∂
σ
x
uk
˜ω
σ−3,σ−3
kgk
˜ω
−2,−2
,
Ïd,l= 1 ž,(2.7)ª•¤á.
(4)l=0ž,ÓnŒ-g=P
∗
N
u−u,g∈H
3
0
(I
x
).2g$^þãHardy’sØª,k
g˜ω
−3,−3
∈L
2
(I
x
),d(2.6)ª
kP
∗
N
u−uk
2
˜ω
−3,−3
= (P
∗
N
u−u,∂
3
x
∂
−3
x
[g˜ω
−1,−1
])
=|((P
N−3
−I)∂
3
x
u,(I−P
N−3
)∂
−3
x
[g˜ω
−3,−3
]) |
≤CN
3−σ
k∂
σ−3
x
(P
N−3
−5thbfI)∂
3
x
uk
˜ω
σ−3,σ−3
N
−3
kg˜ω
−3,−3
k
˜ω
3,3
= CN
−σ
k∂
σ
x
(P
∗
N
−I)uk
˜ω
σ−3,σ−3
kgk
˜ω
−3,−3
≤CN
−σ
k∂
σ
x
uk
˜ω
σ−3,σ−3
kgk
˜ω
−3,−3
,
Ïd,l= 0 ž,(2.7)ªE¤á.d,l•šêž,Œd˜mм(Ø. nþ,é(2.7)ªy
²dÜ¤.
3.Ê ‡©•§lÑ‚ª
!̇QãÊ ‡©•§'užmõ«•ž˜Ì•{lÑ‚ª.˜m••æ^
Legendre-Petrov-Galerkin•{, žm••æ^õ«•Legendre-tau•{. À·ļê¦
XêÝDÕ,Jp¦)„Ý.
é1 ≤k≤K, e¡•Ä•§(1.1)3Ω
k
þž˜Ì‚ª:•3U
k
L
= U
k
L
(x,t) ∈W
k
,¦





(∂
t
U
k
L
,v)
Ω
k
+(∂
3
x
U
k
L
,∂
2
x
v)
Ω
k
= (f,v)
Ω
k
, ∀v∈
f
W
k
,
U
k
L
(x,−1) = P
∗
N
U
0
(x).
(3.1)
W
k
L
= U
k
L
−P
∗
N
U
0
,K(3.1)ªŒ¤: •3W
k
L
∈W
k
,¦





(∂
t
W
k
L
,v)
Ω
k
+(∂
3
x
W
k
L
,∂
2
x
v)
Ω
k
= (f−∂
5
x
P
∗
N
U
0
(x),v)
Ω
k
, ∀v∈
f
W
k
,
W
k
L
(x,−1) = 0.
(3.2)
DOI:10.12677/pm.2021.1161171038nØêÆ
{JŒ
-W
k
L
=
M
k
−1
X
i=0
N−5
X
j=0
˜w
k
ij
ϕ
M
k
i
γ
j
,v=˜ϕ
M
k
m
ψ
n
,m= 0,1,···,M
k
−1,n= 0,1,···,N−5.(3.3)
òW
k
L
,v“\(3.2)ª, PW
k
= (˜w
k
ij
)
M
k
×(N−4)
,k
A
k
W
k
F
1
+B
k
W
k
F
2
= F
k
3
,(3.4)
Ù¥
A
k
= (a
k
im
)
M
k
×M
k
,a
k
im
= (ϕ
M
k
i
0
,˜ϕ
M
k
m
)
I
k
,
B
k
= (b
k
im
)
M
k
×M
k
,b
k
im
= (ϕ
M
k
i
,˜ϕ
M
k
m
)
I
k
,
F
1
= (f
1
jn
)
(N−4)×(N−4)
,f
1
jn
= (γ
j
,ψ
n
)
I
x
,
F
2
= (f
2
jn
)
(N−4)×(N−4)
,f
2
jn
= (γ
000
j
,ψ
00
n
)
I
x
,
F
k
3
= (f
k
mn
)
M
k
×(N−4)
,f
k
mn
= (f−∂
5
x
P
∗
N
U
0
(x),˜ϕ
M
k
m
ψ
n
)
Ω
k
.
••BOŽ, ©•Äžm•• þõ« •œ¹õ‘ªgêþ†ü«•œ¹õ‘ªgêƒ
Ó,…«måy©, =:M
k
= M,h
k
=
2
K
,k= 1,···,K.
qϕ





a
k
im
=
R
b
k
b
k−1
ϕ
M
k
i
0
(t)˜ϕ
M
k
m
(t)dt=
R
1
−1
ϕ
M
k
i
0
(
¯
t)˜ϕ
M
k
m
(
¯
t)d
¯
t,
b
k
im
=
R
b
k
b
k−1
ϕ
M
k
i
(t)˜ϕ
M
k
m
(t)dt=
1
K
R
1
−1
ϕ
M
k
i
(
¯
t)˜ϕ
M
k
m
(
¯
t)d
¯
t.
(3.5)
k











A
k
= A,A = (a
im
)
M×M
,a
im
= (ϕ
M
k
i
0
,˜ϕ
M
k
m
)
I
t
,
B
k
=
1
K
B,B = (b
im
)
M×M
,b
im
= (ϕ
M
k
i
,˜ϕ
M
k
m
)
I
t
,
F
k
3
=
1
K
F
3
,F
3
= (f
mn
)
M×(N−4)
,f
mn
= (f−∂
5
x
P
∗
N
U
0
(x),˜ϕ
M
k
m
ψ
n
)
Ω
.
(3.6)
ò(3.6)ª“\(3.4)ª,Kk
AW
k
F
1
+
1
K
BW
k
F
2
=
1
K
F
3
.(3.7)
e¡•Äk= 1(1˜‡«m)¦)‚ª, Kk
AW
1
F
1
+
1
K
BW
1
F
2
=
1
K
F
3
.(3.8)
|^ÜþÈÎÒ⊗,(3.8)ªŒU¤
(F
T
1
⊗A+
1
K
F
T
2
⊗B)w
1
=
1
K
f
3
,(3.9)
DOI:10.12677/pm.2021.1161171039nØêÆ
{JŒ
Ù¥w
1
,f
3
©O•W
1
,F
3
•þ/ª.
d(3.9)ªŒ±•§(1.1)31˜‡«mþêŠ):U
1
L
(x,t)=W
1
L
(x,t) + P
∗
N
U
0
(x),X
U
1
L
(x,−1)Š•1‡«mЊ, “\(3.7) ªŒ±•§(1.1)31‡«mþêŠ), ···,
Xd?1e·‚Œ±•§(1.1)3z‡«mþêŠ).
4.Ø©Û
!̇élÑ‚ª(3.1)?1Ø©Û.
-U!U
k
L
©O••§(1.1)!•§(3.1)),du°()Ué•§(1.1)f/ªE¤á,é
1 ≤k≤K, keØ•§¤á:
(∂
t
(U−U
k
L
),v)
Ω
k
+(∂
3
x
(U−U
k
L
),∂
2
x
v)
Ω
k
= 0, ∀v∈
f
W
k
.(4.1)
Pˆu
k
= P
∗
N
P
k
1,M
k
U,˜u
k
= U
k
L
−ˆu
k
,´•˜u
k
(x,−1) = 0.(4.2)
ò(4.2)ª“\(4.1)ª,
(∂
t
˜u
k
,v)
Ω
k
+(∂
3
x
˜u
k
,∂
2
x
v)
Ω
k
= (∂
t
(U−ˆu
k
),v)
Ω
k
+(∂
3
x
(U−ˆu
k
),∂
2
x
v)
Ω
k
.(4.3)
du(2.1)ª!(2.4)ª,þªmàŒ±{z¤
(∂
t
(U−ˆu
k
),v)
Ω
k
+(∂
3
x
(U−ˆu
k
),∂
2
x
v)
Ω
k
= (∂
t
(U−P
∗
N
P
k
1,M
k
U),v)
Ω
k
+(∂
3
x
(U−P
∗
N
P
k
1,M
k
U),∂
2
x
v)
Ω
k
= (∂
t
(U−P
∗
N
U),v)
Ω
k
+(∂
3
x
(U−P
k
1,M
k
U),∂
2
x
v)
Ω
k
.
(4.4)
-v= ω
k
0,−1
˜ω
0,−1
˜u
k
,“\(4.3)ª†à, …d(3.5)ª•,k
(∂
t
˜u
k
,v)
Ω
k
=
1
K
(∂
t
˜u
k
,˜u
k
)
Ω,ω
0,−1
,˜ω
0,−1
=
1
2K
k˜u
k
k
2
Ω,ω
0,−2
,˜ω
0,−1
+
1
4K
k˜u
k
(x,1) k
2
I
x
,˜ω
0,−1
.(4.5)
(∂
3
x
˜u
k
,∂
2
x
v)
Ω
k
=
1
K
2
(3∂
2
x
v+(1+x)∂
3
x
v,∂
2
x
v)
Ω,ω
0,1
=
5
2K
2
k∂
2
x
vk
2
Ω,ω
0,1
+
1
K
2
k∂
2
x
v(1,t) k
2
I
t
,ω
0,1
.
(4.6)
òv= ω
k
0,−1
˜ω
0,−1
˜u
k
“\(4.3)ªmà,…d(3.5)ªÚd–]Øª
|(∂
t
(U−P
∗
N
U),v)
Ω
k
|≤
1
K
k∂
t
(U−P
∗
N
U) k
Ω,ω
0,−1
,˜ω
0,−1
k˜u
k
k
Ω,ω
0,−1
,˜ω
0,−1
.(4.7)
|(∂
3
x
(U−P
k
1,M
k
U),∂
2
x
v)
Ω
k
|≤
5
K
2
k∂
3
x
(U−P
k
1,M
k
U) k
Ω,ω
0,−1
,˜ω
0,−1
k˜u
k
k
Ω,ω
0,−1
,˜ω
0,−1
.(4.8)
ò(4.4)ª!(4.5)ª!(4.6ª)!(4.7)ª!(4.8)ª“\(4.3)ª,k
DOI:10.12677/pm.2021.1161171040nØêÆ
{JŒ
1
2
k˜u
k
k
2
Ω,ω
0,−2
,˜ω
0,−1
+
1
4
k˜u
k
(x,1) k
2
I
x
,˜ω
0,−1
+
5
2K
k∂
2
x
vk
2
Ω,ω
0,1
+
1
K
k∂
2
x
v(1,t) k
2
I
t
,ω
0,1
≤k∂
t
(U−P
∗
N
U) k
Ω,ω
0,−1
,˜ω
0,−1
k˜u
k
k
Ω,ω
0,−1
,˜ω
0,−1
+
5
K
k∂
3
x
(U−P
k
1,M
k
U) k
Ω,ω
0,−1
,˜ω
0,−1
k˜u
k
k
Ω,ω
0,−1
,˜ω
0,−1
.(4.9)
|^½È©Ä5Ÿ,(4.9)ªŒn¤
k˜u
k
k
Ω,ω
0,−2
,˜ω
0,−1
≤4 k∂
t
(U−P
∗
N
U) k
Ω,ω
0,−1
,˜ω
0,−1
+
20
K
k∂
3
x
(U−P
k
1,M
k
U) k
Ω,ω
0,−1
,˜ω
0,−1
.(4.10)
qdÚn1!Ún3Ú(3.5)ª•,(4.10)ªŒz¤
k˜u
k
k
Ω,ω
0,−2
,˜ω
0,−1
≤CN
−σ
k∂
σ
x
∂
t
Uk
Ω,ω
0,−1
,˜ω
σ−3,σ−3
+C
M
−ϕ
K
1
2
k∂
ϕ
t
∂
3
x
Uk
Ω,ω
ϕ−1,ϕ−1
,˜ω
0,−1
.(4.11)
Ïd,dL
2
(Ω)‰ênØª5ŸŒá=Xe'ulÑ‚ª(3.1)Ø©Û½n.
½n1.U!U
k
L
©O••§(1.1)!•§(3.1)),σ≥3,ϕ≥1,U∈L
2
(I
x
;H
ϕ
(I
t
))∩L
2
(I
t
;H
σ
(I
x
)∩
H
2,3
0
(I
x
)),Ké1 ≤k≤K,•3~êC,¦
kU−U
k
L
k
Ω,ω
0,−2
,˜ω
0,−1
≤CN
−σ
kUk
A
σ,ϕ
1
(Ω)
+C
M
−ϕ
K
1
2
kUk
B
ϕ
1
(Ω)
.
(4.12)
Ù¥
kUk
A
σ,ϕ
1
(Ω)
= k∂
σ
x
Uk
Ω,ω
0,−2
,˜ω
σ−3,σ−3
+ k∂
σ
x
∂
t
Uk
Ω,ω
0,−1
,˜ω
σ−3,σ−3
+
M
−ϕ
K
1
2
k∂
σ
x
∂
ϕ
t
Uk
Ω,ω
ϕ−1,ϕ−1
,˜ω
σ−3,σ−3
,
kUk
B
ϕ
1
(Ω)
=k∂
ϕ
t
Uk
Ω,ω
ϕ−1,ϕ−1
,˜ω
0,−1
+ k∂
ϕ
t
∂
3
x
Uk
Ω,ω
ϕ−1,ϕ−1
,˜ω
0,−1
.
y:
kU−U
k
L
k
Ω,ω
0,−2
,˜ω
0,−1
=kU−(ˆu
k
+ ˜u
k
) k
Ω,ω
0,−2
,˜ω
0,−1
≤kU−ˆu
k
k
Ω,ω
0,−2
,˜ω
0,−1
+ k˜u
k
k
Ω,ω
0,−2
,˜ω
0,−1
=kU−P
∗
N
P
k
1,M
k
Uk
Ω,ω
0,−2
,˜ω
0,−1
+ k˜u
k
k
Ω,ω
0,−2
,˜ω
0,−1
.(4.13)
DOI:10.12677/pm.2021.1161171041nØêÆ
{JŒ
q
kU−P
∗
N
P
k
1,M
k
Uk
Ω,ω
0,−2
,˜ω
0,−1
=k(I−P
∗
N
)U−(I−P
∗
N
)(I−P
k
1,M
k
)U+(I−P
k
1,M
k
)Uk
Ω,ω
0,−2
,˜ω
0,−1
≤k(I−P
∗
N
)Uk
Ω,ω
0,−2
,˜ω
0,−1
+ k(I−P
∗
N
)(I−P
k
1,M
k
)Uk
Ω,ω
0,−2
,˜ω
0,−1
+ k(I−P
k
1,M
k
)Uk
Ω,ω
0,−2
,˜ω
0,−1
.(4.14)
dÚn1!Ún3Ú(3.5)ª•,(4.14)ªŒn¤
kU−P
∗
N
P
k
1,M
k
Uk
Ω,ω
0,−2
,˜ω
0,−1
≤CN
−σ
k∂
σ
x
Uk
Ω,ω
0,−2
,˜ω
σ−3,σ−3
+CN
−σ
M
−ϕ
K
1
2
k∂
σ
x
∂
ϕ
t
Uk
Ω,ω
ϕ−1,ϕ−1
,˜ω
σ−3,σ−3
+C
M
−ϕ
K
1
2
k∂
ϕ
t
Uk
Ω,ω
ϕ−1,ϕ−1
,˜ω
0,−1
.(4.15)
(Ü(4.11)ªÚ(4.15)ª,(4.13)ªŒn¤
kU−U
k
L
k
Ω,ω
0,−2
,˜ω
0,−1
≤CN
−σ
kUk
A
σ,ϕ
1
(Ω)
+C
M
−ϕ
K
1
2
kUk
B
ϕ
1
(Ω)
.
nþ,½n1(ؤá.
5.êŠ(J
!̇ÏL˜ꊎ ~5yžmõ«•ž˜Ì•{é¦)Ê ‡©•§k5, ê
ŠŽ~mà‘Úš‚5‘æ^CGL Š?n,¿¦^¯„Fp“C†(FFT)?1OŽ.
~1.•ÄXeÊ•§:









∂
t
U+∂
3
x
U+∂
5
x
U= f(x,t),x∈I
x
,t∈I
t
;
U(±1,t) = ∂
x
U(±1,t) = ∂
2
x
U(1,t) = 0,t∈I
t
;
U(x,−1) = U
0
(x),x∈I
x
.
(5.1)
Ù¥I
x
= (−1,1),I
t
= (−1,1),U= U(x,t).
-
U(x,t) = (x−1)tcos
2
(
πx
2
),x∈(−1,1),t∈(−1,1]
••§(5.1)°(),K•§ÐŠU
0
(x),mà‘f©O•:
U
0
(x) = −(x−1)cos
2
(
πx
2
),
DOI:10.12677/pm.2021.1161171042nØêÆ
{JŒ
f=
x−1
2
+(
x−1
2
+
5
2
π
4
t−
3
2
π
2
t)cos(πx)+
x−1
2
π
3
t(1−π
2
)sin(πx).
dꊎ~¢(Jdã1-ã3‰Ñ.
ã¥L
∞
-error½ÂXe:
kU−U
L
k
L
∞
= max
i,j
|U(x
j
,t
i
)−U
L
(x
j
,t
i
) |,
kU−U
k
L
k
L
∞
= max
i,k
|U(x
j
,t
k
)−U
L
(x
j
,t
k
) |,
Ù¥(x
j
,t
i
)!(x
j
,t
k
) ©O•Ω ÚΩ
k
þCGL :,i=0,1,···,M−1,k=0,1,···,M
k
−1,j=
0,1,···,N−5. ML«žm••ü«•õ‘ªgê, M
k
L«žm••f«•õ‘ªgê, N
L«˜m••õ‘ªgê.
Figure1.Example1Convergenceofsingledomainintime
ã1.~1žmü«•Âñ5
Figure2.Example1Convergenceoffourdomainsintime
ã2.~1žmo«•Âñ5
~2.•ÄXeÊ•§:
DOI:10.12677/pm.2021.1161171043nØêÆ
{JŒ
Figure3.Example1Convergenceofsixdomainsintime
ã3.~1žm8«•Âñ5









∂
t
U+∂
2
x
U+∂
5
x
U+UU
x
= f(x,t),x∈I
x
,t∈I
t
;
U(±1,t) = ∂
x
U(±1,t) = ∂
2
x
U(1,t) = 0,t∈I
t
;
U(x,−1) = U
0
(x),x∈I
x
.
(5.2)
Ù¥I
x
= (−1,1),I
t
= (−1,1),U= U(x,t).
´••§(5.2)žmõ«•ž˜Ì‚ª'…3u?nš‚5‘UU
x
,džŒæ^š‚5‘3
CGL:þŠéÙ?1OŽ,T•{(ÜChebyshev˜{¯„C†OŽ`:†Legendre
•{ûÐ-½5.•§(5.2)Ù¦‘?n•ª†•§(1.1)ƒÓ.
3é•§(5.2)žmõ«•ž˜Ì‚ª?1êŠOŽž,·‚æ^S“{?1¦),=:S“
gê•l,S“Ø•ε,•gé•§(5.2)žmõ«•ž˜Ì‚ª?1S“,cügS“Ø
•Œ5uεž,ªŽS“.
Figure4.Example2Convergenceofsingledomainintime
ã4.~2žmü«•Âñ5
-
DOI:10.12677/pm.2021.1161171044nØêÆ
{JŒ
U(x,t) = (x−1)sin
2
(πx)e
−t
,x∈(−1,1),t∈(−1,1]
••§(5.2)°(),K•§ÐŠU
0
(x),mà‘f©O•:
U
0
(x) = (x−1)sin
2
(πx)e,
f=2π
2
(x−20π
2
−1)e
−t
cos(2πx)+(x−1)e
−t
sin
2
(πx)(e
−t
sin
2
(πx)+π(x−1)e
−t
sin(2πx)−1)
+2π(8π
3
x−8π+1)e
−t
sin(2πx).
S“#NØ•ε= 10
−12
,S“gê•l= 40.dꊎ~¢(Jdã4-ã6‰Ñ.
Figure5.Example2Convergenceoffourdomainsintime
ã5.~2žmo«•Âñ5
Figure6.Example2Convergenceofsixdomainsintime
ã6.~2žm8«•Âñ5
ã1!ã4©OL«~1!~2 æ^žmü«•ž˜Ì•{?1OŽ¢(J.ã2!ã3!ã
5!ã6©OL«~1!~2 æ^žmõ«•ž˜Ì•{?1OŽ¢(J, ØJuy~1!~2
žmõ«•ž˜Ì‚ª3žm†˜mþþ÷vÌÂñ. dM= 8,N=64,K= 6 ž,~1!~
DOI:10.12677/pm.2021.1161171045nØêÆ
{JŒ
2 žm8«•Øþ'žmü«••, ÙØш10
−14
þ?. 8Œ±æ^žmõ«•
ž˜Ì•{5¦)da•§,~Ø.
6.(åŠ
©JÑÊ ‡©•§žmõ«•ž˜Ì•{.T•{3˜m••þæ^Legendre-
Petrov-Galerkin •{, 3žm••þæ^õ«•Legendre-tau •{. Óž, ©‰ÑT•{3
‚5¯KþØ©Û, éš‚5•§¥š‚5‘æ^3Chebyshev-Gauss-Lobatto:þŠ
?1OŽ. •, ©Ù"—‰Ñ˜ꊎ~, ꊎ~OŽ(JL²©Ž{é¦)Ê‚5
‡©•§!˜Êš‚5¯KÑ´k.
Ä7‘8
I[g,䮀7(11971016)"
ë•©z
[1]Xu,Y.andShu,C.W.(2005)LocalDiscontinuousGalerkinMethodsfortheKuramoto-
SivashinskyEquationsandtheIto-TypeCoupledKdVEquations.ComputerMethodsinAp-
pliedMechanicsandEngineering,195,3430-3447.https://doi.org/10.1016/j.cma.2005.06.021
[2]’r,ÇJ•.˜a2ÂKdV•§wª©)[J].A^êÆÆ,2007,30(2):368-376.
[3]Khanal,N.,Sharma,R.,Wu,J.andYuan,J.M.(2009)ADual-Petrov-GalerkinMethod
forExtendedFifth-OrderKorteweg-deVriesTypeEquations.ConferencePublications,2009,
442-450.
[4]Darvishi,M.andKhani,F.(2009)NumericalandExplicitSolutionsoftheFifth-Order
Korteweg-deVriesEquations.Chaos,SolitonsandFractals,39,2484-2490.
https://doi.org/10.1016/j.chaos.2007.07.034
[5]Edson, P. and Eben, M. (2013) Discrete Singular Convolution Method for Numerical Solutions
of Fifth OrderKorteweg-De VriesEquations. JournalofAppliedMathematicsPhysics, 1, 5-15.
https://doi.org/10.4236/jamp.2013.17002
[6]Chen,W.,Li,J.,Miao,C.andWu,J.(2009)LowRegularitySolutionsofTwoFifth-Order
KDVTypeEquations.Journald’AnalyseMathematique,107,221-238.
https://doi.org/10.1007/s11854-009-0009-0
[7]Kenig,C.E.andPilod,D.(2015)Well-PosednessfortheFifth-OrderKdVEquationinthe
EnergySpace.TransactionsoftheAmericanMathematicalSociety,367,2551-2612.
https://doi.org/10.1090/S0002-9947-2014-05982-5
[8]Gao,X.andZheng,X.(2016)UniqueContinuationPropertyforaClassofFifth-Order
Korteweg-de-VriesEquations.ChineseJournalofEngineeringMathematics,33,541-550.
DOI:10.12677/pm.2021.1161171046nØêÆ
{JŒ
[9]Xu,Y.andShu,C.W.(2004)LocalDiscontinuousGalerkinMethodsforThreeClassesof
NonlinearWaveEquations.JournalofComputationalMathematics,22,250-274.
[10]Cheng,Y.andShu,C.W.(2008)ADiscontinuousGalerkinFiniteElementMethodforTime
Dependent Partial Differential Equationswith HigherOrder Derivatives.MathematicsofCom-
putation,77,699-730.https://doi.org/10.1090/S0025-5718-07-02045-5
[11]ëù,o).˜a|ÜÊš‚5 ‡©•§˜«w ª©‚ª[J].‰ ÆEâ†ó§,
2008,8(3):750-752.
[12]Shen,J. (2003)ANew Dual-Petrov-Galerkin Methodfor ThirdandHigher Odd-OrderDiffer-
entialEquations:ApplicationtotheKDVEquation.SIAMJournalonNumericalAnalysis,
41,1595-1619.https://doi.org/10.1137/S0036142902410271
[13]Ma,H.P.andSun,W.W.(2000)ALegendre-Petrov-GalerkinandChebyshevCollocation
MethodforThird-OrderDifferentialEquations.SIAMJournalonNumericalAnalysis,38,
1425-1438.https://doi.org/10.1137/S0036142999361505
[14]Tang, J.and Ma,H. (2002)Singleand Multi-IntervalLegendre τ-Methodsin TimeforParabol-
icEquations.AdvancesinComputationalMathematics,17,349-367.
https://doi.org/10.1023/A:1016273820035
DOI:10.12677/pm.2021.1161171047nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.