设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(6),1084-1102
PublishedOnlineJune2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.116123
˜aSëêÅðƒ|.f)•35
ëëëäää™™™
1
§§§>>>111ƒƒƒ
1∗
§§§uuu[[[
2
1
þ°ŒÆáÄÏ|ó§ïÄ,þ°
2
þ°ŒÆnÆ,þ°
ÂvFϵ2021c57F¶¹^Fϵ2021c68F¶uÙFϵ2021c616F
Á‡
©òÄuSëêÅðœ/eAlber-Zhu.ÐmïÄ,T.Sëêüzdòzo
Ô.•§››,Œ^u£ã‡*ºÝeŒ5C/N¥¬.$Ä,ù‡L§˜‡;.~f´
(,3(L§¥¬Úu——z9¬â)•Ä‡*|„(Cz.du3.¡þvku)
f†,Ïd.¡©mØÓ«•NÈ´Åð,*ÑL§=dNgdUü$5°Ä.©
•Ä{z.,=Ñ5A,¿ò•§1•˜‘˜mü‡šòz•§,Ù¥TSëê
>.^‡•Neumann >.^‡ÚÃ6^‡ƒ(Ü.$^Galerkin •{y²T.3z
Ð>НKf)•35.¦+¤•Ä¯K´Sëêü˜•§,du™•êSFÝ‘
•3§§E•3k(J.
'…c
¬.$ħƒ|.§Ô•§§f)•35
ExistenceofWeakSolutionsforaClassof
Phase-FieldModelswithConservationof
OrderParameter
YananZhao
1
,XingzhiBian
1∗
,LeiYu
2
∗ÏÕŠö"
©ÙÚ^:ëä™,>1ƒ,u[.˜aSëêÅðƒ|.f)•35[J].nØêÆ,2021,11(6):1084-1102.
DOI:10.12677/pm.2021.116123
ëä™
1
MaterialsGenomeInstitute,ShanghaiUniversity,Shanghai
2
CollegeofScience,ShanghaiUniversity,Shanghai
Received:May7
th
,2021;accepted:Jun.8
th
,2021;published:Jun.16
th
,2021
Abstract
Inthispaper, ourresearch willbebasedontheAlber-Zhumodelwhichorderparam-
eterisconserved.Theevolutionequationinthismodelisafourthorder,nonlinear
degeneratepartialdifferentialequationofparabolictype.Thismodelisaphase-
fieldmodelwhichdescribestheinterfacemotionbyinterfacediffusioninelastically
deformedsolids.Forexample,thebasicphenomenaoccurringduringthisprocess,
calledsintering,aredensificationandgraingrowth.Sincenoatomexchangeoccurs
attheinterface,thevolumesofthedifferentregionsseparatedbytheinterfaceare
conserved.Weignoretheelasticeffectandreducetheoriginalinitialboundaryvalue
problemtoasinglenon-degenerateequationof1dimensionalsituation,andprovethe
existenceoftheweaksolutionofthereducedinitialboundaryvalueproblemofthis
model,wheretheboundaryconditionsoftheorderparametersareacombinationof
theNeumannboundaryconditionsandtheno-flowconditions.TheGalerkinmethod
is usedtoprove theexistenceofweak solutionsforthereducedinitialboundary value
problemofthismodel.Althoughtheproblemconsideredisasingleequationoforder
parameters,itisinherentlydifficultduetothepresencewhichisthegradientofun-
knownfunctionS.Hence,weneedtomollifythegradientterm,whichcausesalotof
difficultiesonthetheoreticalanalysisandnumericalsimulation.
Keywords
MotionofGrainBoundaries,Phase-FieldModel,ParabolicEquation,
ExistenceofWeakSolutions
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
DOI:10.12677/pm.2021.1161231085nØêÆ
ëä™
1.0
CahnÚHilliard31958cïáSëþÅðƒ|.[1],ù«.®á‰Æ[2•A
^[2].NõÆöéCahn-Hilliard.•35[3],)•˜5[4],)K5[5]ÚìC5[6]?
1ïÄ.Ø3á‰Æ+•,Cahn-Hilliard.3Ù¦+••kA^,X:«+Ä[7],¬5)
•[8],[ÿ[9],[10],zÆ[11]Úã”?n[12,13].Allen-Cahn.[14,15]´á‰Æ¥S
ëþØÅð,˜«..@31979c,•£ã¬N¥‡ƒ >.$Ä,AllenÚCahnïáù
‡ .,¿…2•A^u?nˆ«¯K,~X㔩Û[16,17],²þ-Ç-6þ[18],Ú¬N)
•[19].
32007c,AlberÚÁ¤˜åJÑ#ƒ|.,¡•Alber-Zhu.[20,21],Alber-Zhu
.^˜‡š1wFÝ‘ «OuAllen-Cahn.ÚCahn-Hilliard..éuAlber-Zhu.,kÆö
®²lˆ‡•¡?1nØÚêŠïÄ.éušÅðAlber-Zhu.:3žm‰ŒSÛf)
•35[21],)K5[22],1Å)[23],Ê5)[24,25],êŠ[[26].éuÅð.:AlberÚ
Á¤3[27]¥Äg¦)d.¡*ÑÚå.¡$ÄÍÜ.f)•35.Ù¥'u•35
y²,3[28]•˜„5(Ø.ùü«y²Ñ´ÄuS“{½ÛÜ)òÿ{.
2..ïá
SëêÅðœ/eAlber-Zhu.[27]´˜«Œ^u£ãŒ5C/N¥f÷.¡*Ñ
$Ä.¡ƒ|..Äk,•ïáù‡.,Ú\˜ÎÒ.ΩL«¢NŸ:,¿…Ω⊂R
3
´˜‡m8.SëêS(t,x)∈RL«ØÓƒ.XJSëêŠC0½1,@o3tž•§Ÿ
:x∈Ω,?uƒ1½ƒ2.S
3
L«é¡3×3Ý8Ü,Ù¥˜‡™•þT(t,x) ∈S
3
“L…Ü
AåÜþ,u(t,x) ∈R
3
L« £.
™•¼ê(u,T,S)L÷v±eO·•§:
−div
x
T(t,x)=b(t,x),(2.1)
T(t,x)=D(ε(∇
x
u)−¯εS)(t,x),(2.2)
S
t
(t,x)=cdiv
x
(∇
x
(ψ
S
(ε(∇
x
u),S)−ν∆
x
S)|∇
x
S|)(t,x),(2.3)
Ù¥(t,x) ∈(0,∞)×Ω.•§Ð>Š^‡´:
u(t,x)=0,(t,x) ∈[0,∞)×∂Ω,(2.4)
∂
∂n
S(t,x)=0,(t,x) ∈[0,∞)×∂Ω,(2.5)
∂
∂n
(ψ
S
(ε,S)−ν∆
x
S)|∇
x
S|(t,x)=0,(t,x) ∈[0,∞)×∂Ω,(2.6)
S(0,x)=S
0
(x),x∈
¯
Ω.(2.7)
Ù¥,b: [0,∞)×Ω→R
3
‰NÈå,∇
x
uL«u˜ê´3×3Ý,(∇
x
u)
T
L« £FÝ
=˜Ý,…
DOI:10.12677/pm.2021.1161231086nØêÆ
ëä™
ε(∇
x
u) =
1
2

∇
x
u+(∇
x
u)
T

´ACÜþ.¯ε∈S
3
´˜‡‰½Ý,D:S
3
→S
3
´˜‡‚5,é¡,½N,“L
5Üþ.3gdU¥
ψ(ε,S) =
1
2

D(ε−¯εS)

·(ε−¯εS)+
ˆ
ψ(S),(2.8)
-
ˆ
ψ∈C
2
(R,[0,∞))L«V³²¼ê,Ù3S= 0ÚS= 1?•Š.©˜‡AÏV³²
¼ê:
ˆ
ψ(S) =

S(1−S)

2
.(2.9)
ü‡ÝIþÈ•A·B=
P
a
ij
b
ij
.ψ
S
´'uS ê,c>0´˜‡~ê,ν˜‡v
~ê.ЊêâS
0
: Ω →R´‰½.
ùÒ¤Ð>НKïá.þã.´˜‡•¹5AÍÜXÚ.3©¥,ÑN
5A,=T= 0,·‚k
ψ
S
= −
1
2

D(¯ε)·(ε−¯εS)+D(ε−¯εS)·(¯ε)

+
ˆ
ψ
S
= −D(ε−¯εS)·(¯ε)+
ˆ
ψ
S
=
ˆ
ψ
S
.
òù‡Ð>НK{z•˜‘¯K(äNí„[27]).T.'uSëê•§ ´òz,Ù
Ìܹk ™•¼êSFÝ,©·‚òFÝ‘ ?11?n,ïÄ1šòz•§.·‚
^šòz•§“OòzÔ•§(2.3)5LãCq¯K
S
t
= c((ψ
S
−νS
xx
)
x
|S
x
|
κ
)
x
+cr|S
x
|
κ
,(2.10)
Ù¥
|y|
κ
:=
p
|y|
2
+κ
2
,(2.11)
~êκ∈(0,1],·‚N´
|y|≤|y|
κ
≤|y|+κ≤|y|+1.(2.12)
T{zAlber-Zhu.Œ±U•±e/ª:
S
t
= c((ψ
S
−νS
xx
)
x
|S
x
|
κ
)
x
+cr|S
x
|
κ
,(2.13)
DOI:10.12677/pm.2021.1161231087nØêÆ
ëä™
>.^‡ÚЩ^‡´µ
S
x
=0,(t,x) ∈[0,T
e
]×∂Ω,(2.14)
(
ˆ
ψ
S
−νS
xx
)
x
|S
x
|
κ
=0,(t,x) ∈[0,T
e
]×∂Ω,(2.15)
S(0,x)=S
0
(x),x∈Ω.(2.16)
Ω = (a,d)´k.m«m…~êa<d.PQ
T
:= (0,T
e
)×Ω,…T
e
´˜‡~ê,½Â
(υ,ϕ)
Z
=
Z
Z
υ(y)ϕ(y)dy,
Z= Ω½öZ= Q
T
e
.
½Â2.1r∈L
∞
(0,T
e
)…S
0
∈L
2
(Ω).¡¼êS(x,t)•Ð>НK(2.13)–(2.16)˜‡f),
÷v
S∈L
∞
(0,T
e
;H
1
(Ω))∩L
2
(0,T
e
;H
3
(Ω)),(2.17)
…éu?¿ÿÁ¼êϕ∈C
∞
0
((−∞,T
e
)×R),÷v
(S,ϕ
t
)
Q
T
e
+c(νS
xxx
|S
x
|
κ
,ϕ
x
)
Q
T
e
= c((
ˆ
ψ
S
)
x
|S
x
|
κ
,ϕ
x
)
Q
T
e
−c(r|S
x
|
κ
,ϕ)
Q
T
e
−(S
0
,ϕ(0))
Ω
.(2.18)
½n2.1bS
0
∈H
1
(Ω),¯K(2.13)–(2.16)•3f)S÷vµ
S∈L
∞
(0,T
e
;H
1
(Ω))∩L
2
(0,T
e
;H
3
(Ω)),(2.19)
S
t
∈L
4
3
(0,T
e
;W
−1,
4
3
(Ω)).(2.20)
3.ECq)
•y²¯K(2.13)–(2.16)f)•35,3!¥,|^Galerkin•{ET Ð>НK
˜‡Cq),¿y²ù‡Cq)ÛÜf)•3.
Äk,ù˜‡Sω
1
,···,ω
m
,···,§÷v:ω
i
∈C
∞
(∀i),¿…ω
1
,···,ω
m
,´‚5Ã'.
é?¿m,Sáu˜mH
1
(Ω).3ùp,ω
i
´e•§):



−
d
2
ω
i
dx
2
=λ
i
ω
i
,
dω
i
dx


∂Ω
=0,
Ù¥ω
1
= 1.•įKCq):S
m
= S
m
(t),§k±e/ª:
S
m
(t) =
m
X
i=0
g
im
(t)ω
i
.(3.1)
DOI:10.12677/pm.2021.1161231088nØêÆ
ëä™
3ùp,g
im
´de~‡©•§|¤û½:
(S
m
t
,ω
j
) = ((c(
ˆ
ψ
S
m
(S
m
)−νS
m
xx
)
x
|S
m
x
|
κ
)
x
+cr|S
m
x
|
κ
,ω
j
),1 ≤j≤m,(3.2)
=
((S
m
)
0
,ω
j
) = c(((
ˆ
ψ
00
(S
m
)S
m
x
−νS
m
xxx
)|S
m
x
|
κ
)
x
,ω
j
)+c(r|S
m
x
|
κ
,ω
j
),1 ≤j≤m,(3.3)
Šâ©ÜÈ©úª,
(((
ˆ
ψ
00
(S
m
)S
m
x
−νS
m
xxx
)|S
m
x
|
κ
)
x
,ω
j
) = −((
ˆ
ψ
00
(S
m
)S
m
x
−νS
m
xxx
)|S
m
x
|
κ
,ω
jx
),1 ≤j≤m.(3.4)
r(3.4)“\(3.3)¥,Œ±
((S
m
)
0
,ω
j
)+c((
ˆ
ψ
00
(S
m
)S
m
x
−νS
m
xxx
)|S
m
x
|
κ
,ω
jx
)−c(r|S
m
x
|
κ
,ω
j
) = 0,1 ≤j≤m.(3.5)
y3,I‡`²•§(3.5)´˜‡~‡©•§|.
d(S
m
)
0
=
m
P
i=1
g
0
im
(t)ω
i
¿…{ω
i
}3˜mL
2
(Ω)¥´IO,¤±

(S
m
)
0
,ω
j

= (
m
X
i=1
g
0
im
(t)ω
i
,ω
j
)
=
Z
Ω
m
X
i=1
g
0
im
(t)ω
i
(x)ω
j
(x)dx
=
m
X
i=1
g
0
im
(t)
Z
Ω
ω
i
(x)ω
j
(x)dx= g
0
jm
(t),1 ≤j≤m,
(3.6)
•†Cþžmtk'.Ón,‡©•§|(3.5)•†Cþtk'.
|^V³²¼ê(2.9)Œ±:
((
ˆ
ψ
00
(S
m
)S
m
x
−νS
m
xxx
)|S
m
x
|
κ
,ω
j,x
)
=(((12(S
m
)
2
−12S
m
+2)S
m
x
−νS
m
xxx
)|S
m
x
|
κ
,ω
j,x
)
=12((S
m
)
2
S
m
x
|S
m
x
|
κ
,ω
j,x
)−12(S
m
S
m
x
|S
m
x
|
κ
,ω
j,x
)
+2(S
m
x
|S
m
x
|
κ
,ω
j,x
)−ν(S
m
xxx
|S
m
x
|
κ
,ω
j,x
),1 ≤j≤m.
(3.7)
DOI:10.12677/pm.2021.1161231089nØêÆ
ëä™
du3Ω¥,−
d
2
ω
i
dx
2
= λ
i
ω
i
ν(S
m
xxx
|S
m
x
|
κ
,ω
j,x
)
=ν
Z
Ω
m
X
i=1
g
im
ω
i,xxx





m
X
h=1
g
hm
ω
h,x





κ
ω
j,x
dx
=−ν
Z
Ω
m
X
i=1
g
im
λ
i
ω
i,x





m
X
h=1
g
hm
ω
h,x





κ
ω
j,x
dx
=−ν
m
X
i=1
g
im
λ
i
Z
Ω





m
X
h=1
g
hm
ω
h,x





κ
ω
i,x
ω
j,x
dx,1 ≤j≤m,
(3.8)
ò(3.8)“\(3.7)¥,Œ±
((
ˆ
ψ
00
(S
m
)S
m
x
−νS
m
xxx
)|S
m
x
|
κ
,ω
j,x
)
=12
m
X
i=1
g
im
m
X
k=1
g
km
m
X
l=1
g
lm
Z
Ω





m
X
h=1
g
hm
ω
h,x





κ
ω
i
ω
k
ω
l,x
ω
j,x
dx
−12
m
X
k=1
g
km
m
X
l=1
g
lm
Z
Ω





m
X
h=1
g
hm
ω
h,x





κ
ω
k
ω
l,x
ω
j,x
dx
+2
m
X
l=1
g
lm
Z
Ω





m
X
h=1
g
hm
ω
h,x





κ
ω
l,x
ω
j,x
dx
+ν
m
X
i=1
g
im
λ
i
Z
Ω





m
X
h=1
g
hm
ω
h,x





κ
ω
i,x
ω
j,x
dx,1 ≤j≤m,
(3.9)
…
c(r|S
m
x
|
κ
,ω
j
) = cr
Z
Ω





m
X
=1
g
hm
ω
h,x





κ
ω
j
dx,1 ≤j≤m.
(3.10)
‡©•§|(3.5)÷vЩ^‡:
S
m
(0) = S
m
0
=
m
X
i=1
α
im
ω
j
→S
0
∈H
1
per
(Ω),m→∞,(3.11)
ùp,α
im
= g
im
(0).
•ò(3.6)–(3.10)“\(3.5),K~‡©•§|ŒU•'u{g
jm
}
m
j=1
~‡©•§|,Xe
¤«:



d
dt
g
jm
=F
j
(g
1m
,...,g
mm
,t),
g
jm
(0)=(S
0
,ω
j
),
(3.12)
DOI:10.12677/pm.2021.1161231090nØêÆ
ëä™
Ù¥
F
j
(g
1m
,...,g
mm
,t)
=−12
m
X
i=1
g
im
m
X
k=1
g
km
m
X
l=1
g
lm
Z
Ω





m
X
h=1
g
hm
ω
h,x





κ
ω
i
ω
k
ω
l,x
ω
j,x
dx
+12
m
X
k=1
g
km
m
X
l=1
g
lm
Z
Ω





m
X
h=1
g
hm
ω
h,x





κ
ω
k
ω
l,x
ω
j,x
dx
−2
m
X
l=1
g
lm
Z
Ω





m
X
h=1
g
hm
ω
h,x





κ
ω
l,x
ω
j,x
dx
−ν
m
X
i=1
g
im
λ
i
Z
Ω





m
X
h=1
g
hm
ω
h,x





κ
ω
i,x
ω
j,x
dx
+cr
Z
Ω





m
X
h=1
g
hm
ω
h,x





κ
ω
j
dx,
(3.13)
Ù¥j= 1,...,m.w,,(3.12)–(3.13)´˜‡š‚5‘F'u™•¼ê÷vÛÜLipschitzëY
š‚5~‡©•§|,Šâ~‡©•§|ÛÜ)•35½n,Œ•T)•3u[0,t
m
].Šâ±þ(Ø,
Œ±éu?¿‰½m,S
m
•Cq¯K(3.5)˜‡ÛÜ).3e ˜!¥,òí'uS
m
k'
kO,y²t
m
Œ±í2?¿‰½~êT
e
.
4.˜—kO
3ù˜!¥,·‚—åuí'u)S
m
˜kO.
Ún4.1é?Ût∈[0,T
e
]
S
m
∈L
∞
(0,T
e
;L
2
(Ω)),(4.1)
S
m
x
∈L
3
(0,T
e
;L
3
(Ω)),(4.2)
R
Q
T
e
(S
m
)
2
|S
m
x
|
3
dxdτ≤C,(4.3)
R
Q
T
e
(S
m
xx
)
2
|S
m
x
|dxdτ≤C,(4.4)
κ
R
Q
T
e
|S
m
xx
|
2
dxdτ≤C.(4.5)
y².é(3.5)1j‡•§¦±g
jm
(t),,éj¦Ú,ùŒ±µ
((S
m
)
0
,S
m
)+c((
ˆ
ψ
00
(S
m
)S
m
x
−νS
m
xxx
)|S
m
x
|
κ
),S
m
x
)−c(r|S
m
x
|
κ
,S
m
) = 0.(4.6)
Ù¥

(S
m
)
0
,S
m

=
1
2
d
dt
kS
m
k
2
L
2
(Ω)
.(4.7)
DOI:10.12677/pm.2021.1161231091nØêÆ
ëä™
ÏLéx?1©ÜÈ©,Œ±
(S
m
xxx
|S
m
x
|
κ
,S
m
x
) = −(S
m
xx
,S
m
xx
|S
m
x
|
κ
)−(S
m
xx
,S
m
xx
(S
m
x
)
2
(|S
m
x
|
κ
)
−1
).(4.8)
ò(4.7)Ú(4.8)“\(4.6)¥,
1
2
d
dt
kS
m
k
2
L
2
(Ω)
+c(
ˆ
ψ
00
(S
m
)S
m
x
|S
m
x
|
κ
,S
m
x
)+cν(S
m
xx
,S
m
xx
|S
m
x
|
κ
)
+cν(S
m
xx
,S
m
xx
(S
m
x
)
2
(|S
m
x
|
κ
)
−1
)−c(r|S
m
x
|
κ
,S
m
) = 0,
(4.9)
ùp
ˆ
ψ
00
(S
m
) = 12(S
m
)
2
−12S
m
+2.(4.10)
ò(4.10)“\(4.9),Œ
1
2
d
dt
kS
m
k
2
L
2
(Ω)
+c
Z
Ω
(12(S
m
)
2
−12S
m
+2)|S
m
x
|
3
κ
dx
+cν
Z
Ω
(S
m
xx
)
2
|S
m
x
|
κ
dx+cν
Z
Ω
(S
m
xx
)
2
(S
m
x
)
2
(|S
m
x
|
κ
)
−1
dx−cr
Z
Ω
|S
m
x
|
κ
S
m
dx= 0,
(4.11)
Œò(4.11)U•
1
2
d
dt
kS
m
k
2
L
2
(Ω)
+12c
Z
Ω
(S
m
)
2
|S
m
x
|
2
|S
m
x
|
κ
dx+2c
Z
Ω
|S
m
x
|
2
|S
m
x
|
κ
dx
+cν
Z
Ω
(S
m
xx
)
2
|S
m
x
|
κ
dx+cν
Z
Ω
(S
m
xx
)
2
(S
m
x
)
2
(|S
m
x
|
κ
)
−1
dx
=12c
Z
Ω
S
m
|S
m
x
|
2
|S
m
x
|
κ
dx+cr
Z
Ω
|S
m
x
|
κ
S
m
dx
= : I
1
+I
2
.
(4.12)
(Ü(2.11),A^YoungØª,5?nI
1
Ü©,
I
1
= 12c
Z
Ω
S
m
|S
m
x
|
2
|S
m
x
|
κ
dx≤12c
Z
Ω
S
m
|S
m
x
|
3
κ
dx≤12c
Z
Ω
(ε(S
m
)
2
+C
ε
)|S
m
x
|
3
κ
dx
≤ε
Z
Ω
(S
m
)
2
|S
m
x
|
3
κ
dx+C
Z
Ω
|S
m
x
|
3
κ
dx≤ε
Z
Ω
(S
m
)
2
(|S
m
x
|
3
+C)dx+C
Z
Ω
(|S
m
x
|
3
+C)dx
≤ε
Z
Ω
(S
m
)
2
|S
m
x
|
3
dx+ε
Z
Ω
(S
m
)
2
dx+C
Z
Ω
|S
m
x
|
3
dx+C,
(4.13)
2d©ÜÈ©,
Z
Ω
|S
m
x
|
3
dx=
Z
Ω
(S
m
x
|S
m
x
|)S
m
x
dx= −2
Z
Ω
S
m
|S
m
x
|S
m
xx
dx.
(4.14)
DOI:10.12677/pm.2021.1161231092nØêÆ
ëä™
|^YoungØªŒ
Z
Ω
|S
m
x
|
3
dx=
Z
Ω
(S
m
x
|S
m
x
|)S
m
x
dx= −2
Z
Ω
S
m
|S
m
x
|S
m
xx
dx
≤2
Z
Ω
|S
m
||S
m
x
||S
m
xx
|dx= 2
Z
Ω
|S
m
||S
m
x
|
1
2
·|S
m
x
|
1
2
|S
m
xx
|dx
≤C
ξ
Z
Ω
|S
m
|
2
|S
m
x
|dx+ξ
Z
Ω
|S
m
x
||S
m
xx
|
2
dx
≤C
ξ
Z
Ω
|S
m
|
2
(η|S
m
x
|
3
+C
η
)dx+ξ
Z
Ω
|S
m
x
||S
m
xx
|
2
dx
≤η
Z
Ω
|S
m
|
2
|S
m
x
|
3
dx+C
Z
Ω
|S
m
|
2
dx+ξ
Z
Ω
|S
m
x
||S
m
xx
|
2
dx.
(4.15)
e5?nI
2
Ü©,
I
2
= cr
Z
Ω
|S
m
x
|
κ
S
m
dx= cr
Z
Ω
|S
m
x
|
κ
(S
m
)
2
3
(S
m
)
1
3
dx
≤crγ
Z
Ω
|S
m
x
|
3
κ
|S
m
|
2
dx+crC
γ
Z
Ω
(S
m
)
1
2
dx
≤crγ
Z
Ω
|S
m
x
|
3
κ
|S
m
|
2
dx+crC
γ
Z
Ω
(ζ|S
m
|
2
+C
ζ
)dx
≤γ
Z
Ω
|S
m
x
|
3
κ
|S
m
|
2
dx+ζ
Z
Ω
|S
m
|
2
dx+rC
≤γ
Z
Ω
(|S
m
x
|
3
+C)|S
m
|
2
dx+ζ
Z
Ω
|S
m
|
2
dx+rC
≤γ
Z
Ω
|S
m
x
|
3
|S
m
|
2
dx+(γ+ζ)
Z
Ω
|S
m
|
2
dx+rC,
(4.16)
ÏL(4.13)–(4.16),Œ±
1
2
d
dt
kS
m
k
2
L
2
(Ω)
+12c
Z
Ω
(S
m
)
2
|S
m
x
|
2
|S
m
x
|
κ
dx+2c
Z
Ω
|S
m
x
|
2
|S
m
x
|
κ
dx
+cν
Z
Ω
(S
m
xx
)
2
|S
m
x
|
κ
dx+cν
Z
Ω
(S
m
xx
)
2
(S
m
x
)
2
(|S
m
x
|
κ
)
−1
dx
≤(ε+η+γ)
Z
Ω
(S
m
)
2
|S
m
x
|
3
dx+(ε+C+γ+ζ)
Z
Ω
|S
m
|
2
dx+ξ
Z
Ω
|S
m
x
||S
m
xx
|
2
dx+rC,
(4.17)
-ε,ξ,η,γ,ζv,¦
(ε+η+γ) ≤c,
(ε+C+γ+ζ) ≤2C,
ξ≤
cν
2
.
(4.18)
DOI:10.12677/pm.2021.1161231093nØêÆ
ëä™
,ÏL(4.17)Ú(4.18),
1
2
d
dt
kS
m
k
2
L
2
(Ω)
+11c
Z
Ω
(S
m
)
2
|S
m
x
|
2
|S
m
x
|
κ
dx+2c
Z
Ω
|S
m
x
|
2
|S
m
x
|
κ
dx
+
cν
2
Z
Ω
(S
m
xx
)
2
|S
m
x
|
κ
dx+cν
Z
Ω
(S
m
xx
)
2
(S
m
x
)
2
(|S
m
x
|
κ
)
−1
dx
≤2C
Z
Ω
|S
m
|
2
dx+Cr.
(4.19)
é(4.19)'užmt‰È©,ÏLA^GronwallØª,Œ
1
2
kS
m
k
2
L
2
(Ω)
+11c
Z
t
o
Z
Ω
(S
m
)
2
|S
m
x
|
2
|S
m
x
|
κ
dxdτ+2c
Z
t
o
Z
Ω
|S
m
x
|
2
|S
m
x
|
κ
dxdτ
+
cν
2
Z
t
o
Z
Ω
(S
m
xx
)
2
|S
m
x
|
κ
dxdτ+cν
Z
t
o
Z
Ω
(S
m
xx
)
2
(S
m
x
)
2
(|S
m
x
|
κ
)
−1
dxdτ
≤C
t
+C
t
kS
m
(0)k
2
L
2
≤C
T
e
.
(4.20)
ÏL(4.20),(2.11)Ú(2.12),ŒÚn4.1(Ø.
Ún4.2é?¿t∈[0,T
e
]
S
m
x
∈L
∞
(0,T
e
;L
2
(Ω)),(4.21)
S
m
∈L
∞
(0,T
e
;H
1
(Ω)),(4.22)
R
Q
t
(S
m
xxx
)
2
|S
m
x
|
κ
dxdτ≤C,(4.23)
κ
R
Q
T
e
|S
m
xxx
|
2
dxdτ≤C.(4.24)
y².ò(3.3)1j‡•§¦±λ
j
g
jm
(t),,éjl0m¦Ú
((S
m
)
0
,−S
m
xx
)−c(((
ˆ
ψ
00
(S
m
)S
m
x
−νS
m
xxx
)|S
m
x
|
κ
)
x
,−S
m
xx
)−c(r|S
m
x
|
κ
,−S
m
xx
) = 0,(4.25)
=
((S
m
)
0
,−S
m
xx
)−c((
ˆ
ψ
00
(S
m
)S
m
x
−νS
m
xxx
)|S
m
x
|
κ
,S
m
xxx
)+c(r|S
m
x
|
κ
,S
m
xx
) = 0.(4.26)
dut∈[0,T
e
],Œ±

(S
m
)
0
,−S
m
xx

=
1
2
d
dt
kS
m
x
k
2
L
2
(Ω)
,(4.27)
…
ˆ
ψ
00
(S
m
) = 12(S
m
)
2
−12S
m
+2.(4.28)
DOI:10.12677/pm.2021.1161231094nØêÆ
ëä™
r(4.27)“\(4.26),Œ±
1
2
d
dt
kS
m
x
k
2
L
2
(Ω)
+cν
Z
Ω
(S
m
xxx
)
2
|S
m
x
|
κ
dx
=c
Z
Ω
ˆ
ψ
00
(S
m
)S
m
x
S
m
xxx
|S
m
x
|
κ
dx−cr
Z
Ω
|S
m
x
|
κ
S
m
xx
dx
=0,
(4.29)
,,ÏL(4.28)Œ±
1
2
d
dt
kS
m
x
k
2
L
2
(Ω)
+cν
Z
Ω
(S
m
xxx
)
2
|S
m
x
|
κ
dx
=12c
Z
Ω
(S
m
)
2
S
m
x
S
m
xxx
|S
m
x
|
κ
dx−12c
Z
Ω
S
m
S
m
x
S
m
xxx
|S
m
x
|
κ
dx
+2c
Z
Ω
S
m
x
S
m
xxx
|S
m
x
|
κ
dx−cr
Z
Ω
|S
m
x
|
κ
S
m
xx
dx
≤12c
Z
Ω
(S
m
)
2
S
m
x
S
m
xxx
|S
m
x
|
κ
dx+12c
Z
Ω
|S
m
||S
m
x
|
2
κ
|S
m
xxx
|dx
+2c
Z
Ω
S
m
x
S
m
xxx
|S
m
x
|
κ
dx+cr
Z
Ω
|S
m
x
|
κ
|S
m
xx
|dx
=:I
3
+I
4
+I
5
+I
6
.
(4.30)
(Ü(2.11),|^YoungØª,Œ
I
3
= 12c
Z
Ω
(S
m
)
2
S
m
x
S
m
xxx
|S
m
x
|
κ
dx
= 12c
Z
Ω
(S
m
)
2
S
m
x
|S
m
x
|
1
2
κ
·|S
m
x
|
1
2
κ
S
m
xxx
dx
≤C
Z
Ω
(S
m
)
4
|S
m
x
|
3
κ
dx+ε
Z
Ω
|S
m
x
|
κ
|S
m
xxx
|
2
dx.
(4.31)
d®•Sobolevi\½nÚÚn4.1(Ø,
Z
Ω
(S
m
)
4
|S
m
x
|
3
κ
dx≤
Z
Ω
(S
m
)
2
|S
m
x
|
3
κ
dx·kS
m
k
2
L
∞
≤
Z
Ω
(S
m
)
2
|S
m
x
|
3
κ
dx(kS
m
x
k
2
L
2
+kS
m
k
2
L
2
) ≤
Z
Ω
(S
m
)
2
|S
m
x
|
3
κ
dx(kS
m
x
k
2
L
2
+C)
≤kS
m
x
k
2
L
2
Z
Ω
(S
m
)
2
|S
m
x
|
3
κ
dx+C
Z
Ω
(S
m
)
2
|S
m
x
|
3
κ
dx.
≤kS
m
x
k
2
L
2
Z
Ω
(S
m
)
2
(|S
m
x
|
3
+C)dx+C
Z
Ω
(S
m
)
2
(|S
m
x
|
3
+C)dx.
≤kS
m
x
k
2
L
2
Z
Ω
(S
m
)
2
|S
m
x
|
3
dx+CkS
m
x
k
2
L
2
Z
Ω
(S
m
)
2
dx+C
Z
Ω
(S
m
)
2
|S
m
x
|
3
dx+C
Z
Ω
(S
m
)
2
dx,
(4.32)
DOI:10.12677/pm.2021.1161231095nØêÆ
ëä™
|^YoungØª
I
4
= 12c
Z
Ω
|S
m
||S
m
x
|
2
κ
|S
m
xxx
|dx= 12c
Z
Ω
|S
m
||S
m
x
|
3
2
κ
·|S
m
x
|
1
2
κ
|S
m
xxx
|dx
≤C
Z
Ω
(S
m
)
2
|S
m
x
|
3
κ
dx+ξ
Z
Ω
|S
m
x
|
κ
|S
m
xxx
|
2
dx,
≤C
Z
Ω
(S
m
)
2
|S
m
x
|
3
dx+C
Z
Ω
(S
m
)
2
dx+ξ
Z
Ω
|S
m
x
|
κ
|S
m
xxx
|
2
dx,
(4.33)
I
5
= 2c
Z
Ω
S
m
x
S
m
xxx
|S
m
x
|
κ
dx= 2c
Z
Ω
|S
m
x
||S
m
x
|
1
2
κ
·|S
m
x
|
1
2
κ
|S
m
xxx
|dx
≤C
Z
Ω
|S
m
x
|
3
κ
dx+η
Z
Ω
|S
m
x
|
κ
|S
m
xxx
|
2
dx
≤C
Z
Ω
|S
m
x
|
3
dx+η
Z
Ω
|S
m
x
|
κ
|S
m
xxx
|
2
dx+C,
(4.34)
…
I
6
= cr
Z
Ω
|S
m
x
|
κ
|S
m
xx
|dx= cr
Z
Ω
|S
m
x
|
1
2
κ
|S
m
x
|
1
2
κ
|S
m
xx
|dx
≤crC
γ
Z
Ω
|S
m
x
|
κ
dx+crγ
Z
Ω
|S
m
x
|
κ
|S
m
xx
|
2
dx
≤crC
γ
Z
Ω
(µ|S
m
x
|
2
κ
+C
µ
)dx+crγ
Z
Ω
|S
m
x
|
κ
|S
m
xx
|
2
dx
≤crµC
γ
Z
Ω
|S
m
x
|
2
κ
dx+crC
γ
Z
Ω
C
µ
dx+crγ
Z
Ω
|S
m
x
|
κ
|S
m
xx
|
2
dx
≤µ
Z
Ω
|S
m
x
|
2
κ
dx+γ
Z
Ω
|S
m
x
|
κ
|S
m
xx
|
2
dx+rC
≤µ
Z
Ω
(|S
m
x
|
2
+C)dx+γ
Z
Ω
|S
m
x
|
κ
|S
m
xx
|
2
dx+rC.
≤µ
Z
Ω
|S
m
x
|
2
dx+γ
Z
Ω
|S
m
x
|
κ
|S
m
xx
|
2
dx+rC.
(4.35)
(Ü(4.31)–(4.35),Œ
1
2
d
dt
kS
m
x
k
2
L
2
(Ω)
+cν
Z
Ω
(S
m
xxx
)
2
|S
m
x
|
κ
dx
≤(ε+ξ+η)
Z
Ω
|S
m
x
|
κ
|S
m
xxx
|
2
dx+CkS
m
x
k
2
L
2
Z
Ω
(S
m
)
2
|S
m
x
|
3
dx
+C
Z
Ω
(S
m
)
2
|S
m
x
|
3
dx+C
Z
Ω
|S
m
x
|
3
dx+CkS
m
x
k
2
L
2
Z
Ω
(S
m
)
2
dx+C
Z
Ω
(S
m
)
2
dx
+µ
Z
Ω
|S
m
x
|
2
dx+γ
Z
Ω
|S
m
x
|
κ
|S
m
xx
|
2
dx+rC.
(4.36)
DOI:10.12677/pm.2021.1161231096nØêÆ
ëä™
-ε,ξ,η,µ,γv,¿…0 <ε+ξ+η<
cν
2
,(ÜÚn4.1,·‚k
1
2
d
dt
kS
m
x
k
2
L
2
(Ω)
+
cν
2
Z
Ω
(S
m
xxx
)
2
|S
m
x
|
κ
dx
≤CkS
m
x
k
2
L
2
Z
Ω
(S
m
)
2
|S
m
x
|
3
dx+C
Z
Ω
(S
m
)
2
|S
m
x
|
3
dx
+C
Z
Ω
|S
m
x
|
3
dx+CkS
m
x
k
2
L
2
Z
Ω
(S
m
)
2
dx+C
Z
Ω
(S
m
)
2
dx+rC.
(4.37)
,,Šâ‡©/ªGronwallØª,±9(4.1)–(4.24),Œ±
1
2
kS
m
x
(t)k
2
L
2
(Ω)
≤C+CkS
m
x
(0)k
2
L
2
(Ω)
≤C
T
e
.
(4.38)
é(4.37)'užmtÈ©,Šâ(4.38),±9Ún4.1Œ±
1
2
kS
m
x
k
2
L
2
(Ω)
+
cν
2
Z
t
0
Z
Ω
(S
m
xxx
)
2
|S
m
x
|
κ
dxdτ≤C
T
e
.
(4.39)
–dÚn4.2y²..
Ún4.3é?¿t∈[0,T
e
],
Z
t
0
Z
Ω
(|S
m
x
|
κ
|S
m
xxx
|)
4
3
dxdτ≤C,(4.40)
k|S
m
x
|
κ
S
m
xxx
k
L
4
3
(Q
T
e
)
≤C,(4.41)
k((
ˆ
ψ
S
m
)
x
|S
m
x
|
κ
k
L
3
2
(Q
T
e
)
≤C.(4.42)
y².ÏLH¨olderØª,éu1 ≤p<2,q=
2
p
,…
1
q
+
1
q
0
= 1,
Z
t
0
Z
Ω
(|S
m
x
|
κ
|S
m
xxx
|)
p
dxdτ
=
Z
t
0
Z
Ω
|S
m
x
|
p
2
κ
(|S
m
x
|
p
2
κ
|S
m
xxx
|
p
)dxdτ
≤

Z
t
0
Z
Ω
|S
m
x
|
pq
0
2
κ
dxdτ

1
q
0

Z
t
0
Z
Ω
|S
m
x
|
pq
2
κ
|S
m
xxx
|
pq
dxdτ

1
q
≤

Z
t
0
Z
Ω
|S
m
x
|
p
2−p
κ
dxdτ

2−p
2

Z
t
0
Z
Ω
|S
m
x
|
κ
|S
m
xxx
|
pq
dxdτ

p
2
.
(4.43)
Øª(4.43)¿›Xé
p
2−p
≤2,=p≤
4
3
,Øªm>´k.,p=
4
3
ž,Œ
Z
t
0
Z
Ω
(|S
m
x
|
κ
|S
m
xxx
|)
4
3
dxdτ
≤

Z
t
0
Z
Ω
|S
m
x
|
2
κ
dxdτ

1
3

Z
t
0
Z
Ω
|S
m
x
|
κ
|S
m
xxx
|
2
dxdτ

2
3
.
(4.44)
DOI:10.12677/pm.2021.1161231097nØêÆ
ëä™
dÚn4.1ÚÚn4.2(ØŒ(4.40),(4.41)y.
ÏLH¨olderØª,-p=
3
2
,±9dÚn4.1ÚÚn4.2(ØŒ±Ñ
Z
t
0
Z
Ω
((
ˆ
ψ
S
m
)
x
|S
m
x
|
κ
)
p
dxdτ
=
Z
t
0
Z
Ω
((
ˆ
ψ
00
S
m
x
|S
m
x
|
κ
)
p
dxdτ
≤C
Z
t
0
Z
Ω
(|S
m
x
|
κ
)
2p
dxdτ≤C.
(4.45)
nþÚn4.3y²¤.
Ún4.4•3˜‡~êC,¦
kS
m
t
k
L
4
3
(0,T
e
;W
−1,
4
3
(Ω))
≤C.(4.46)
y².(ÜÚn4.1ÚÚn4.3(Ø,·‚Œ±,é?¿ϕ∈C
∞
0
(Q
T
e
),
|(S
m
t
,ϕ)
Q
T
e
|=|−c((
ˆ
ψ
S
m
−νS
m
xx
)
x
|S
m
x
|
κ
,ϕ
x
)
Q
T
e
+c(r|S
m
x
|,ϕ)
Q
T
e
|
≤ck(
ˆ
ψ
S
m
−νS
m
xx
)
x
|S
m
x
|
κ
k
L
4
3
(Q
T
e
)
kϕ
x
k
L
4
(Q
T
e
)
+c¯rk|S
m
x
|k
L
4
3
(Q
T
e
)
kϕk
L
4
(Q
T
e
)
≤Ckϕk
L
4
(0,T
e
;W
1,4
0
(Ω))
.(4.47)
Ún4.4y.
5.4•L§
3þ˜Ü©¥,ïá˜XkO.3!¥,|^þ˜!¥ïákO5ïÄS
S
m
m→∞žÂñ5.!òy²•3ÂñuÐ>НKf)fS.
Ún5.1(Aubin−Lions)[29]B
0
ÚB
1
´g‡,bB´˜‡Banach˜m,¦B
0
;i\
B¥,Bi\B
1
¥.éu1 ≤p
0
,p
1
≤+∞,½Â
W= {f|f∈L
p
0
(0,T;B
0
),f
0
=
df
dt
∈L
p
1
(0,T;B
1
)}.
(i)XJp
0
<+∞,KW;i\L
p
0
(0,T;B)¥.
(ii)XJp
0
= +∞Úp
1
>1,KW;i\C([0,T];B)¥.
ù‡Úny²,ë•[30]¥157•.±e´!̇(J.
DOI:10.12677/pm.2021.1161231098nØêÆ
ëä™
½n2.1y²:3ù˜Ü©,·‚y²m→∞ž,S´¯K(2.13) –(2.16)f).dO(4.22),
(4.24),(4.46)9f;5½n,·‚Œ•3fSS
m
n
,ùp„^S
m
L«,÷vµ
S
m
*S,f∗ÂñuL
∞
(0,T
e
;H
1
(Ω)),(5.1)
S
m
*S,fÂñuL
2
(0,T
e
;H
3
(Ω)),(5.2)
S
m
t
*S
t
,fÂñuL
4
3
(0,T
e
;W
−1,
4
3
(Ω)).(5.3)
Ïd,d(5.1),(5.2)ŒíÑ(2.19),…(5.3)Œy(Ø(2.20)¤á.•,·‚ïÄ(2.18)Âñ5.
ŠâAubin−LionsÚn,·‚µ
p
0
= 2,p
1
=
4
3
,
B
0
= H
2
(Ω),B= C
1+α
(
¯
Ω),B
1
= W
−1,
4
3
(Ω),
K•3SS
m
,¦
kS
m
−Sk
L
2
(0,T
e
;C
1+α
(
¯
Ω))
→0,m→∞.(5.4)
d(5.4)·‚N´ѵ
kS
m
x
−S
x
k
L
2
(0,T
e
;C
α
(
¯
Ω))
→0,m→∞.(5.5)
k|S
x
|
m
κ
−|S
x
|
κ
k
L
2
(0,T
e
;L
2
(Ω))
→0,m→∞.(5.6)
l,·‚ŒÏL(5.2),(5.6)
|S
m
x
|
κ
S
m
xxx
*|S
x
|
κ
S
xxx
,fÂñuL
1
(Q
T
e
).(5.7)
d,ÏL(4.22),(5.4)Ú(5.5)ØJ
(
ˆ
ψ
S
m
)
x
=
ˆ
ψ
00
(S
m
)S
m
x
*
ˆ
ψ
00
(S)S
x
,fÂñuL
2
(Q
T
e
).(5.8)
=
(
ˆ
ψ
S
m
)
x
|S
m
x
|
κ
*(
ˆ
ψ
S
)
x
|S
x
|
κ
,fÂñuL
1
(Q
T
e
).(5.9)
ÏL(5.6)–(5.9)Œé?¿ϕ∈C
∞
0
((−∞,T
e
)×R)¤á
(S
m
,ϕ
t
)
Q
T
e
→(S,ϕ
t
)
Q
T
e
,(5.10)
c(r|S
m
x
|
κ
,ϕ)
Q
T
e
→c(r|S
x
|
κ
,ϕ)
Q
T
e
,(5.11)
(|S
m
x
|
κ
S
m
xxx
,ϕ
x
)
Q
T
e
→(|S
x
|
κ
S
xxx
,ϕ
x
)
Q
T
e
,(5.12)
((
ˆ
ψ
S
m
)
x
|S
m
x
|
κ
,ϕ
x
)
Q
T
e
→((
ˆ
ψ
S
)
x
|S
x
|
κ
,ϕ
x
)
Q
T
e
.(5.13)
DOI:10.12677/pm.2021.1161231099nØêÆ
ëä™
=S÷vf/ª(2.18).ù¿›XS´¯K(2.13)–(2.16)˜‡f),½n2.1y.
6.o(
©ïÄ´˜aSëêÅðƒ|.f)•35,3Alber-ZhuSëêÅð.Ä:
þ,Ñ5A,z•˜‘˜mšòzü‡•§.$^Galerkin•{ETÐ>НK˜‡
Cq)¿y²ÙÛÜf)•3,ÏL˜—kO9IO4•L§,Tz¯KNf)
•35.
ë•©z
[1]Cahn,J.W.andHilliard,J.E.(1958)FreeEnergyofAnonuniformSystem.I.InterfacialFree
Energy.TheJournalofChemicalPhysics,28,258-267.https://doi.org/10.1063/1.1744102
[2]Chen,L.-Q.(2002)Phase-FieldModelsforMicrostructureEvolution.AnnualReviewofMa-
terialsResearch,32,113-140.https://doi.org/10.1146/annurev.matsci.32.112001.132041
[3]Heida,M.(2015)ExistenceofSolutionsforTwoTypesofGeneralizedVersionsoftheCahn-
HilliardEquation.ApplicationsofMathematics,60,51-90.
https://doi.org/10.1007/s10492-015-0085-7
[4]Akagi,G.,Schimperna,G.andSegatti,A.(2016)FractionalCahn-Hilliard,Allen-Cahnand
PorousMediumEquations.JournalofDifferentialEquations,261,2935-2985.
[5]Wise,S.,Kim,J.andLowengrub,J.(2007)SolvingtheRegularized,StronglyAnisotropic
Cahn-HilliardEquationbyanAdaptiveNonlinearMultigridMethod.JournalofComputa-
tionalPhysics,226,414-446.https://doi.org/10.1016/j.jcp.2007.04.020
[6]Miranville,A.(2013)AsymptoticBehaviourofaGeneralizedCahn-HilliardEquationwitha
ProliferationTerm.ApplicableAnalysis,92,1308-1321.
https://doi.org/10.1080/00036811.2012.671301
[7]Cohen, D.and Murray,J.M. (1981) A Generalized Diffusion Model for Growth and Dispersion
inaPopulation.JournalofMathematicalBiology,12,237-248.
https://doi.org/10.1007/BF00276132
[8]Khain,E.andSander,L.M.(2008)AGeneralizedCahn-HilliardEquationforBiologicalAp-
plications.PhysicalReviewE,77,ArticleID:051129.
https://doi.org/10.1103/PhysRevE.77.051129
[9]Klapper,I.andDockery,J.(2006)RoleofCohesionintheMaterialDescriptionofBiofilms.
PhysicalReviewE,74,0319021-0319028.https://doi.org/10.1103/PhysRevE.74.031902
[10]Oron,A.,Davis,S.H.andBankoff,S.G.(1997)Long-ScaleEvolutionofThinLiquidFilms.
ReviewsofModernPhysics,69,931-980.https://doi.org/10.1103/RevModPhys.69.931
DOI:10.12677/pm.2021.1161231100nØêÆ
ëä™
[11]Verdasca,J.,Borckmans,P.andDewel,G.(1995)ChemicallyFrozenPhaseSeparationinan
AdsorbedLayer.PhysicalReviewE,52,4616-4619.
https://doi.org/10.1103/PhysRevE.52.R4616
[12]Cherfils, L.,Fakih,H.andMiranville,A.(2015)Finite-DimensionalAttractorsfortheBertozzi-
Esedoglu-Gillette-Cahn-Hilliard Equation in Image Inpainting. InverseProblemsandImaging,
9,105-125.https://doi.org/10.3934/ipi.2015.9.105
[13]Dolcetta,I.C.andVita,S.F.(2002)Area-PreservingCurve-ShorteningFlows:FromPhase
SeparationtoImageProcessing.InterfacesFreeBound,4,325-343.
https://doi.org/10.4171/IFB/64
[14]Allen,S.M.andCahn,J.W.(1979)AMicroscopicTheoryforAntiphaseBoundaryMotion
andItsApplicationtoAntiphaseDomainCoarsening.ActaMetallurgica,27,1085-1095.
https://doi.org/10.1016/0001-6160(79)90196-2
[15]Allen,S.M.andCahn,J.W.(2013)AMicroscopicTheoryforDomainWallMotionandIts
ExperimentalVerificationinFe-AlAlloyDOMAINgrowthKinetics.In:Carter,W.C.and
Johnson,W.C.,Eds.,TheSelectedWorksofJohnW.Cahn,TheMinerals,Metals andMate-
rialsSociety,Pittsburgh,PA,373-376.https://doi.org/10.1002/9781118788295.ch37
[16]Benes,M.,Chalupecky,V.andMikula,K.(2004)GeometricalImageSegmentationbythe
Allen-CahnEquation.AppliedNumericalMathematics,51,187-205.
https://doi.org/10.1016/j.apnum.2004.05.001
[17]Dobrosotskaya,J.A.andBertozzi,A.L.(2008)AWavelet-LaplaceVariationalTechniquefor
ImageDeconvolutionandInpainting.IEEETransactionsonImageProcessing,17,657-663.
https://doi.org/10.1109/TIP.2008.919367
[18]Feng, X.B.andProhl, A.(2003)NumericalAnalysis oftheAllen-CahnEquationand Approx-
imationforMeanCurvatureFlows.NumerischeMathematik,94,33-65.
https://doi.org/10.1007/s00211-002-0413-1
[19]Wheeler, A.A.,Boettinger, W.J.andMcFadden, G.B.(2007) Phase-FieldModelforIsothermal
PhaseTransitionsinBinaryAlloys.PhysicalReviewA,45,7424-7439.
https://doi.org/10.1103/PhysRevA.45.7424
[20]Alber,H.D.andZhu,P.(2007)EvolutionofPhaseBoundariesbyconfigurationalforces.
ArchiveforRationalMechanicsandAnalysis,185,235-286.
https://doi.org/10.1007/s00205-007-0054-8
[21]Alber,H.D.andZhu,P.(2005)SolutionstoaModelwithNonuniformlyParabolicTermsfor
PhaseEvolutionDrivenbyConfigurationalForces.SIAMJournalonAppliedMathematics,
66,680-699.https://doi.org/10.1137/050629951
[22]Zhu, P.(2012) RegularityofSolutionstoaModelfor Solid-SolidPhaseTransitionsDrivenby
ConfigurationalForces.JournalofMathematicalAnalysisandApplications,389,1159-1172.
https://doi.org/10.1016/j.jmaa.2011.12.052
DOI:10.12677/pm.2021.1161231101nØêÆ
ëä™
[23]Kawashima,S.andZhu,P.(2011)TravelingWavesforModelsofPhaseTransitionsofSolids
DrivenbyConfigurationalForces.DiscreteandContinuousDynamicalSystems,15,309-323.
https://doi.org/10.3934/dcdsb.2011.15.309
[24]Han,X.andBian,X.(2020)ViscositySolutionstoaNewPhase-FieldModelwithNeumann
BoundaryConditionforSolid-SolidPhaseTransitions.JournalofMathematicalAnalysisand
Applications,486,ArticleID:123900.https://doi.org/10.1016/j.jmaa.2020.123900
[25]Zhu,P.(2011)SolvabilityviaViscositySolutionsforaModelofPhaseTransitionsDrivenby
ConfigurationalForces.JournalofDifferentialEquations,251,2833-2852.
https://doi.org/10.1016/j.jde.2011.05.035
[26]Kazaryan, A., Wang,Y. and Dregia, S.A. (2012) Generalized Phase-Field Model for Computer
SimulationofGrainGrowthinAnisotropicSystems.PhysicalReviewB,61,14275-14278.
https://doi.org/10.1103/PhysRevB.61.14275
[27]Alber,H.D.andZhu,P.(2008)Solutions toaModel forInterfaceMotionbyInterfaceDiffusion.
ProceedingsoftheRoyalSocietyofEdinburgh,138,923-955.
https://doi.org/10.1017/S0308210507000170
[28]Bian, X. and Luan,L. (2020) GlobalSolutions to a Model with Dirichlet Boundary Conditions
forInterfacemotionbyInterfaceDiffusion.JournalofMathematicalPhysics,61,ArticleID:
041503.https://doi.org/10.1063/1.5144328
[29]Simon,J.(1990) NonhomogeneousViscous IncompressibleFluids:ExistenceofVelocity,Den-
sity,andPressure.CommunicationsinNonlinearScienceandNumerical,21,1093-1117.
https://doi.org/10.1137/0521061
[30]Lions,J.(1969)QuelquesMethodesdeResolutiondesProblemesauxLimitesNonLineaires.
DunodGauthier-Villars,Paris.
DOI:10.12677/pm.2021.1161231102nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.