设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(6),1103-1111
PublishedOnlineJune2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.116124
Œ+L-nŽ
oooÊÊÊÊÊÊ
=²nóŒÆnÆ§[‹=²
ÂvFϵ2021c58F¶¹^Fϵ2021c69F¶uÙFϵ2021c616F
Á‡
S´Œ+, L´‚, ùŸ©ÙïÄŒ+SL-nŽ, 3dÄ:þ, ·‚ïÄL-nŽ
3ÊÏŒ+±9AaA ÏŒ+þ5Ÿ.½Âü‡L-f8“◦”$Ž.‰ÑL-nŽÚ
AaAÏL-nŽVg±9¦‚d½Â.y²Œ+Sz‡L-V>nŽÑ´L-
SnŽ,z‡L-†£m¤nŽÑ´L-[nŽ,z‡L-VnŽÑ´L-2ÂVn
Ž,z‡L-[nŽÑ´L-VnŽ.
'…c
Œ+§L-f8§L-nŽ
L-FuzzyIdealsofSemigroups
QianqianLi
Scho olofScience,LanzhouUniversityofTechnology,LanzhouGansu
Received:May8
th
,2021;accepted:Jun.9
th
,2021;published:Jun.16
th
,2021
©ÙÚ^:oÊÊ.Œ+L-nŽ[J].nØêÆ,2021,11(6):1103-1111.
DOI:10.12677/pm.2021.116124
oÊÊ
Abstract
LetSbeasemigroupandLbeacompletelattice.Inthispaper,westudyL-fuzzy
ideals onasemigroup.On this basis,we studyproperties ofL-fuzzyidealsonordinary
semigroups andseveraltypes specialsemigroups arediscussed.Thisarticledefines the
“◦”oftwoL-fuzzysubsets.TheconceptsofL-fuzzyidealsandseveral specialL-fuzzy
idealsandtheirequivalentdefinitionsaregiven.ItisprovedthateveryL-fuzzyideal
ofthesemigroupSisaL-fuzzyinteriorideal,andeveryL-fuzzyleft(right)idealisa
L-fuzzyquasi-ideal.Every L-fuzzybi-idealisaL-fuzzygeneralizedbi-ideal,andevery
L-fuzzyquasi-idealisaL-fuzzybi-ideal.
Keywords
Semigroup,L-FuzzySubset,L-FuzzyIdeal
Copyright
c
2021byauthor(s)andHansPublishersInc.
ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.0
Œ+nŽ•Ð´1971cRosenfeld[1]Ú\,ƒKuroki[2–4]k?˜ÚïĤJ.
©z[2]¥Šö‰ÑŒ+nŽÚVnŽ˜5Ÿ,¿^nŽÚVnŽ•x
Œ+£†¤û!£†¤üÚfŒ+Œ‚.©z[4]¥Šö3Œ+¥Ú\Œƒ5Vg,§´
Œ+¥Œƒ5í2,¿^Œƒ5•xŒ+´üŒ+Œ‚.1993cKurokiqÚ\[
nŽVg[5].1992c,McleanÚKummer[6]5¿Œ+SnކŒ+S‚'Xƒm
éX,Óž5¿S?˜nŽ´SnŽA¼ê·‚5|Ü%C.2002c,
Xie[7]Ú\Œ+SnŽ*Ü5Ÿ!rnŽ*Ü5Ÿ.©z[8–12]?˜ÚïÄn
Žƒ'(Ø.
ùщ·‚JøéÐïÄg´,•·‚óЉéÐÁ=.
S´Œ+,f´Sf8,XJé?¿x,y∈S,kf(xy)≥f(y)(f(x)),@o¡f´S
†£m¤nŽ.XJfQ´S†nŽq´SmnŽ,@o¡f´SV>nŽ,{
DOI:10.12677/pm.2021.1161241104nØêÆ
oÊÊ
¡nŽ.XJé?¿x,a,y∈Skf(xay)≥f(a),@o¡f´SSnŽ.XJé?¿
x,y,z∈S,kf(xyz)≥min{f(x),f(z)},@o¡f´SVnŽ.
2.Œ+L-nŽ
[0,1]´S8,´AÏ‚.b(X,≤)´ S8,…éX¥?¿˜‡š˜f8Yþ•3þ(
.Úe(.,@o¡(X,≤)•‚.í2“”VgÒ´‡r[0,1]«mC¤‚.©Ñy
Lþ•‚,0,1©O•L•Ú•Œ.
½Â2.1 X´š˜8Ü,¡Nf:X→L•XL-f8.
f,g´Œ+SþL-f8,½Âf,gƒm$ŽXe:
(f∩g)(x)=f(x)∧g(x)(∀x∈S);
(f∪g)(x)=f(x)∨g(x)(∀x∈S);
f⊆g⇔f(x)≤g(x)(∀x∈S).
(f◦g)(x)=







_
x=y z
{f(y)∧g(z)}(∃y,z∈S)x=yz;
0Ù¦.
½Â2.2S´Œ+,f´SL-f8.XJ∀x,y∈S,kf(xy)≥f(x)∧f(y),@o¡f´SL-
fŒ+.
½Â2.3S´Œ+,f´SL-f8.XJ(∀x,y∈S)f(xy)≥f(y)(f(x)),@o¡f´S
L-†£m¤nŽ.XJfQ´SL-†nŽq´SL-mn Ž,@o¡f´SL-
V>nŽ,{¡L-nŽ.
·‚5¿Œ+SŒ±Š•§gL-f8,=?¿x∈SÑkS(x)=1.u´·‚
±e(Ø.
½n2.4 S´Œ+,f´SþL-f8.Ke(ؤáµ
(1)f´SL-fŒ+⇔f◦f⊆f;
(2)f´SL-†nŽ⇔S◦f⊆f;
(3)f´SL-mnŽ⇔f◦S⊆f;
(4)f´SL-nŽ⇔S◦f⊆f…f◦S⊆f.
y²µ (1)7‡5,bf´SL-fŒ+,a∈S.e(f◦f)(a)=0,K(Øw,¤á.ÄK,
•3x,y∈S¦a=xy.u´
(f◦f)(a)=
_
a=xy
(f(x)∧f(y))≤
_
a=xy
f(xy)=f(a).
=f◦f⊆f.
DOI:10.12677/pm.2021.1161241105nØêÆ
oÊÊ
¿©5,x,y,a∈S,a=xy.e(f◦f)(x)≤f(x),K
f(xy)=f(a)≥(f◦f)(a)=
_
a=bc
(f(b)∧f(c))≥f(x)∧f(y)
¤±f´SL-fŒ+.
(2)7‡5,bf´SL-†nŽ,?¿a∈S.e(S◦f)(a)=0K(Jw,¤á.ÄK•
3x,y∈S¦a=xy.u´
(S◦f)(a)=
_
a=xy
(S(x)∧f(y))≤
_
a=xy
(1∧f(xy))=f(a).
=S◦f⊆f.
¿©5,x,y,a∈S,a=xy.e(S◦f)(x)≤f(x),K
f(xy)=f(a)≥(S◦f)(a)=
_
a=bc
(S(b)∧f(c))≥S(x)∧f(y)=f(y).
¤±f´SL-†nŽ.Šâ(2)y²,(3)Ú(4)aqŒy.
½n2.5 S´Œ+.Ke(ؤáµ
(1)ef,g´SL-fŒ+,Kf∩g•´SL-fŒ+;
(2)f,g´SL-†£m!V>¤nŽ,Kf∩g•´SL-†£m!V>¤nŽ.
y²µ(1)bf,g´SL-fŒ+,?¿a,b∈S.K(f∩g)(ab)=f(ab)∧g(ab)≥
(f(a)∧f(b))∧(g(a)∧g(b)),…
(f(a)∧f(b))∧(g(a)∧g(b))=(f(a)∧g(a))∧(f(b)∧g(b))
≥(f∩g)(a)∧(f∩g)(b).
nþ¤ã,(f∩g)(ab)≥(f∩g)(a)∧(f∩g)(b),=f∩g´SL-fŒ+.(2)Œ±aqy²,
ùpØ2Kã.
·K2.6 S´Œ+,f´SL-m£†¤nŽ.Kf∪(S◦f)(f∪(f◦S))´SL-V>
nŽ.
y²µbf´SL-mnŽ,K
S◦(f∪(S◦f))=(S◦f)∪(S◦(S◦f))=(S◦f)∪(S◦S)◦f
⊆(S◦f)∪(S◦f)=S◦f⊆f∪(S◦f).
Ïdf∪(S◦f)´SL-†nŽ.(f∪(S◦f))◦S=(f◦S)∪(S◦f◦S)⊆(f◦S)∪(S◦f)⊆
f∪(S◦f).¤±f∪(S◦f)´SL-V>nŽ.
DOI:10.12677/pm.2021.1161241106nØêÆ
oÊÊ
3.Œ+L-VnŽ
½Â3.1 S´Œ+,f´SL-fŒ+.XJ?¿x,y,z∈Skf(xyz)≥f(x)∧f(z),@o
¡f´SL-VnŽ.
½n3.2 S´Œ+,f´SL-fŒ+,Kf´SL-VnŽ…=f◦S◦f⊆f.
y²µ7‡5,bf´SL-VnŽ,?¿a∈S.e(f◦S◦f)(a)=0K(Øw,¤á,
ÄK∃x,y,p,q∈S¦a=xy,x=pq.duf´SL-fŒ+,¤±f(pqy)≥f(p)∧f(q).Ïd,
(f◦S◦f)(a)=
_
a=xy
((f◦S)(x)∧f(y))=
_
a=xy
(
_
x=pq
((f(p)∧S(q))∧f(y)))
=
_
a=xy
(
_
x=pq
((f(p)∧1)∧f(y)))=
_
a=pq y
(f(p)∧f(y))
≤
_
a=pq y
f(pqy)=f(a).
=f◦S◦f⊆f.
¿©5,x,y,z∈S,a=xyz.e(f◦S◦f)(x)≤f(x)Kk
f(xyz)=f(a)≥(f◦S◦f)(a)=
_
a=bc
((f◦S)(b)∧f(c))
≥
_
x=pq
((f(p)∧S(q))∧f(z)))
≥f(x)∧(y)∧f(z)=f(x)∧1∧f(z)=f(x)∧f(z).
=f´SL-VnŽ.y..
·K3.3S´Œ+,f´SL-f8,g´SL-VnŽ.Kf◦gÚg◦fÑ´SL-
VnŽ.
y²µdug´SL-VnŽ,Šâþ¡½n,Œ±í
(f◦g)◦(g◦f)=f◦g◦(f◦g)
⊆f◦g◦S◦g⊆f◦g.
¤±f◦g´SL-fŒ+.Ïd
(f◦g)◦S◦(f◦g)=f◦g◦(S◦f)◦g
⊆f◦(g◦S◦g)⊆f◦g
f◦g´SL-VnŽ.ÓnŒyg◦f´SL-VnŽ.
·K3.4 S´Œ+,f,g´SL-VnŽ.Kf∩g´SL-VnŽ.
DOI:10.12677/pm.2021.1161241107nØêÆ
oÊÊ
y²µw,,f∩g´L-fŒ+.∀a,b,x∈S,K(f∩g)(axb)=f(axb)∧g(axb).f(axb)∧
g(axb)≥(f(a)∧f(b))∧(g(a)∧g(b)).qÏ•
(f(a)∧f(b))∧(g(a)∧g(b))=f(a)∧g(a)∧f(b)∧g(b)
=(f∩g)(a)∧(f∩g)(b)
¤±(f∩g)(axb)≥(f∩g)(a)∧(f∩g)(b),=f∩g´SL-VnŽ.
4.L-SnŽ
½Â4.1S´Œ+,f´SL-fŒ+.XJ?¿x,y,z∈S,(xyz)≥f(y),@o¡f´S
L-SnŽ.
½n4.2 S´Œ+,f´SL-fŒ+.Kf´SL-SnŽ…=S◦f◦S⊆f.
y²µ7‡5,bf´SL-SnŽ,?¿x∈S.e(S◦f◦S)(x)=0≤f(x),(
Øw,¤á.ÄK,•3y,z,u,v∈S¦x=yz,y=uv.duf´S2ÂSnŽ,¤
±f(uvz)≥f(v).u´
(S◦f◦S)(x)=
_
x=y z
{(S◦f)(y)∧S(z)}
=
_
x=y z
{
_
y=uv
(S(u)∧f(v))∧S(z)}
≤
_
x=y z
{
_
y=uv
(1∧f(v))∧1}≤f(x).
¤±S◦f◦S⊆f.
¿©5,S◦f◦S⊆f,x,a,y∈S.=f(xay)≥(S◦f◦S)(xay).
(S◦f◦S)(x)=
_
xay =pq
{(S◦f)(p)∧S(q)}
≥(S◦f(xa))∧S(y)=(S◦f)(xa)∧1
=
_
xa=pq
{S(p)∧f(q)}≥S(x)∧f(a)=f(a).
¤±,f(xay)≥f(a),=f´SL-SnŽ.
w,Œ+Sz‡L-V>nŽÑ´SL-SnŽ.´SL-SnŽØ˜½
´SL-V>nŽ.e¡´L-SnŽØ´L-V>nŽ˜‡~f.
DOI:10.12677/pm.2021.1161241108nØêÆ
oÊÊ
~4.3µS={a,b,c,d}´Œ+.§¦{$ŽXe:
abcd
aaaaa
baaaa
caaba
daabb
f´SL-f8,f(a)=a,f(b)=b,f(c)=c,f(d)=d,…a,b,c,d∈Lka≥c≥b≥d.
¯¢þ∀x,y,z∈S,Ñkf(xyz)=f(a)=a≥f(y).Ïdf´SL-SnŽ.´,f(dc)=
f(b)=b≤c=f(c),¤±fØ´SL-†nŽ,=fØ´SL-V>nŽ.
½n4.4 S´KŒ+,f´SL-f8.KeQãd:
(1)f´SL-nŽ,
(2)f´SL-SnŽ.
y²µ(1)⇒(2)´w,,e¡y²(2)⇒(1).
bf´SL-SnŽ,∀a,b∈S.duS´KŒ+,¤±∃x,y∈S,¦a=axa,b=
byb,u´
f(ab)=f(axab)=f((ax)ab)≥f(a),
f(ab)=f(abyb)=f((ab(yb))≥f(b).
Ïd,f´SL-nŽ.
5.L-[nŽ
½Â5.1 S´Œ+,f´SL-f8.e(f◦S)∩(S◦f)⊆f,K¡f´SL-[nŽ.
w,,S?¿˜‡L-†nŽ£S◦f⊆f¤,L-mnŽ£f◦S⊆f¤Ñ´SL-[
nŽ.…,S?¿˜‡L-[nŽÑ´SL-VnŽ£f◦S◦f⊆f¤.´(؇L5
™7¤á,e¡´ü‡äN~f.
~5.2µS={0,a,b,c}´Œ+.§¦{$ŽXe:
0abc
00000
a0ab0
b0000
c0c00
½ÂSL-f8Xe:f(0)=f(a)=a,f(b)=f(c)=b,…a,b∈Lka≥b..Kf´SL-
[nŽ,Ø´SL-†£m¤nŽ.
DOI:10.12677/pm.2021.1161241109nØêÆ
oÊÊ
~5.3µS={0,a,b,c}´Œ+.§¦{$ŽXe:
0abc
00000
a0000
b000a
c00ab
½ÂSL-f8Xe:f(0)=f(b)=b,f(a)=f(c)=a,…a,b∈Lkb≥a..Kf´SL-
VnŽ,Ø´SL-[nŽ.
·K5.4 Œ+Sz‡L-[nŽÑ´SL-fŒ+.
y²µf´SL-[nŽ.df⊆SŒf◦f⊆S◦f…f◦f⊆f◦S.Ïd
f◦f⊆(S◦f)∩(f◦S)⊆f.
=f´SL-fŒ+.
·K5.5 S´Œ+,f,g©O´SL-m!†nŽ.Kf∩g´SL-[nŽ.
y²µbf,g©O´SL-m!†nŽ.¤±f◦S⊆f,S◦g⊆g.u´k
((f∩g)◦S)∩(S◦(f∩g))⊆(f◦S)∩(S◦g)
⊆f∩g.
¤±f∩g´SL-[nŽ.
·K5.6S´Œ+,f,g´SL-f8.ef,gÙ¥˜‡´L-[nŽ,Kf◦g´SL-
VnŽ.
y²µØ”f´SL-[nŽ,Kf◦S◦f⊆f.Ïd
(f◦g)◦(f◦g)=(f◦g◦f)◦g⊆(f◦S◦f)◦g⊆f◦g.
f◦g´SL-fŒ+.…
(f◦g)◦S◦(f◦g)=(f◦(g◦S)◦f)◦g⊆(f◦(S◦S)◦f)◦g
⊆(f◦S◦f)◦g⊆f◦g.
¤±f◦g´SL-VnŽ.
ë•©z
[1]Rosenfeld,A.(1971)FuzzyGroups.JournalofMathematicalAnalysisandApplications,35,
512-517.https://doi.org/10.1016/0022-247X(71)90199-5
[2]Kuroki,N.(1979)FuzzyBi-IdealsinSemigroups.CommentariiMathematiciUniversitatis
DOI:10.12677/pm.2021.1161241110nØêÆ
oÊÊ
SanctiPauli,28,17-21.
[3]Kuroki,N.(1981)OnFuzzyIdealsandFuzzyBi-IdealsinSemigroups.FuzzySetsandSystems,
5,203-215.https://doi.org/10.1016/0165-0114(81)90018-X
[4]Kuroki,N.(1982)FuzzySemiprimeIdealsinSemigroups.FuzzySetsandSystems,8,71-79.
https://doi.org/10.1016/0165-0114(82)90031-8
[5]Kuroki,N.(1993)FuzzySemiprimeQuasi-IdealsinSemigroups.InformationSciences,75,
201-211.https://doi.org/10.1016/0020-0255(93)90054-P
[6]Mclean,R.G.andKummer,H.(1992)FuzzyIdealsinSemigroups.FuzzySetsandSystems,
48,137-140.https://doi.org/10.1016/0165-0114(92)90258-6
[7]Xie,X.Y.(2002)FuzzyIdealsExtensionsinSemigroups.KyungpookMathematicalJournal,
42,39-49.
[8]Xie,X.Y.(2001)FuzzyIdealsExtensionsofSemigroups.SoochowJournalofMathematics,27,
125-138.
[9]Dz¥.Œ+5nŽ[J].ʵŒÆÆ(g,‰Æ‡),1999,13(3):48-51.
[10]‰1,Û¯_.Œ+†nŽ[J].wÅ˜ÆÆ,2010,12(3):80-82.
[11]Éï²,êÆ .Œ+SnŽ(=©)[J].êÆïƵØ,2008,28(1):103-110.
[12]ÁU¬.Œ+nŽ9)¤nŽ[J].XÚ†êÆ,2010,24(5):42-45.
DOI:10.12677/pm.2021.1161241111nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.