设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2021,11(6),1103-1111
PublishedOnlineJune2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.116124
Œ
+
L
-
n
Ž
ooo
ÊÊÊÊÊÊ
=
²
n
ó
Œ
Æ
n
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2021
c
5
8
F
¶
¹
^
F
Ï
µ
2021
c
6
9
F
¶
u
Ù
F
Ï
µ
2021
c
6
16
F
Á
‡
S
´
Œ
+
,
L
´
‚
,
ù
Ÿ
©
Ù
ï
Ä
Œ
+
S
L
-
n
Ž
,
3
d
Ä
:
þ
,
·
‚
ï
Ä
L
-
n
Ž
3
Ê
Ï
Œ
+
±
9A
a
A
Ï
Œ
+þ
5
Ÿ
.
½
Â
ü
‡
L
-
f
8
“
◦
”
$
Ž
.
‰
Ñ
L
-
n
Ž
Ú
A
a
A
Ï
L
-
n
Ž
V
g
±
9
¦
‚
d
½
Â
.
y
²
Œ
+
S
z
‡
L
-
V
>
n
Ž
Ñ
´
L
-
S
n
Ž
,
z
‡
L
-
†
£
m
¤
n
Ž
Ñ
´
L
-
[
n
Ž
,
z
‡
L
-
V
n
Ž
Ñ
´
L
-
2
Â
V
n
Ž
,
z
‡
L
-
[
n
Ž
Ñ
´
L
-
V
n
Ž
.
'
…
c
Œ
+
§
L
-
f
8
§
L
-
n
Ž
L
-FuzzyIdealsofSemigroups
QianqianLi
Scho olofScience,LanzhouUniversityofTechnology,LanzhouGansu
Received:May8
th
,2021;accepted:Jun.9
th
,2021;published:Jun.16
th
,2021
©
Ù
Ú
^
:
o
ÊÊ
.
Œ
+
L
-
n
Ž
[J].
n
Ø
ê
Æ
,2021,11(6):1103-1111.
DOI:10.12677/pm.2021.116124
o
ÊÊ
Abstract
Let
S
beasemigroupand
L
beacompletelattice.Inthispaper,westudy
L
-fuzzy
ideals onasemigroup.On this basis,we studyproperties of
L
-fuzzyidealsonordinary
semigroups andseveraltypes specialsemigroups arediscussed.Thisarticledefines the
“
◦
”oftwo
L
-fuzzysubsets.Theconceptsof
L
-fuzzyidealsandseveral special
L
-fuzzy
idealsandtheirequivalentdefinitionsaregiven.Itisprovedthatevery
L
-fuzzyideal
ofthesemigroup
S
isa
L
-fuzzyinteriorideal,andevery
L
-fuzzyleft(right)idealisa
L
-fuzzyquasi-ideal.Every
L
-fuzzybi-idealisa
L
-fuzzygeneralizedbi-ideal,andevery
L
-fuzzyquasi-idealisa
L
-fuzzybi-ideal.
Keywords
Semigroup,
L
-FuzzySubset,
L
-FuzzyIdeal
Copyright
c
2021byauthor(s)andHansPublishersInc.
ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
0
Œ
+
n
Ž
•
Ð
´
1971
c
Rosenfeld[1]
Ú
\
,
ƒ
Kuroki[2–4]
k
?
˜
Ú
ï
Ä
¤
J
.
©
z
[2]
¥
Š
ö
‰
Ñ
Œ
+
n
Ž
Ú
V
n
Ž
˜
5
Ÿ
,
¿
^
n
Ž
Ú
V
n
Ž
•
x
Œ
+
£
†
¤
û
!
£
†
¤
ü
Ú
f
Œ
+
Œ
‚
.
©
z
[4]
¥
Š
ö3
Œ
+
¥
Ú
\
Œ
ƒ
5
V
g
,
§
´
Œ
+
¥
Œ
ƒ
5
í
2
,
¿
^
Œ
ƒ
5
•
x
Œ
+
´
ü
Œ
+
Œ
‚
.1993
c
Kuroki
q
Ú
\
[
n
Ž
V
g
[5].1992
c
,Mclean
Ú
Kummer[6]
5
¿
Œ
+
S
n
Ž
†
Œ
+
S
‚
'
X
ƒ
m
é
X
,
Ó
ž
5
¿
S
?
˜
n
Ž
´
S
n
Ž
A
¼
ê
·
‚
5
|
Ü
%
C
.2002
c
,
Xie[7]
Ú
\
Œ
+
S
n
Ž
*
Ü
5
Ÿ
!
r
n
Ž
*
Ü
5
Ÿ
.
©
z
[8–12]
?
˜
Ú
ï
Ä
n
Ž
ƒ
'
(
Ø
.
ù
Ñ
‰
·
‚
J
ø
éÐ
ï
Ä
g
´
,
•·
‚
ó
Š‰
éÐ
Á
=
.
S
´
Œ
+
,
f
´
S
f
8
,
X
J
é
?
¿
x,y
∈
S
,
k
f
(
xy
)
≥
f
(
y
)(
f
(
x
)),
@
o
¡
f
´
S
†
£
m
¤
n
Ž
.
X
J
f
Q
´
S
†
n
Ž
q
´
S
m
n
Ž
,
@
o
¡
f
´
S
V
>
n
Ž
,
{
DOI:10.12677/pm.2021.1161241104
n
Ø
ê
Æ
o
ÊÊ
¡
n
Ž
.
X
J
é
?
¿
x,a,y
∈
S
k
f
(
xay
)
≥
f
(
a
),
@
o
¡
f
´
S
S
n
Ž
.
X
J
é
?
¿
x,y,z
∈
S
,
k
f
(
xyz
)
≥
min
{
f
(
x
)
,f
(
z
)
}
,
@
o
¡
f
´
S
V
n
Ž
.
2.
Œ
+
L
-
n
Ž
[0
,
1]
´
S
8
,
´
A
Ï
‚
.
b
(
X,
≤
)
´
S
8
,
…
é
X
¥
?
¿˜
‡
š
˜
f
8
Y
þ
•
3
þ(
.
Ú
e
(
.
,
@
o
¡
(
X,
≤
)
•
‚
.
í
2
“
”
V
g
Ò
´
‡
r
[0
,
1]
«
m
C
¤
‚
.
©
Ñ
y
L
þ
•
‚
,0,1
©
O
•
L
•
Ú
•
Œ
.
½
Â
2.1
X
´
š
˜
8
Ü
,
¡
N
f
:
X
→
L
•
X
L
-
f
8
.
f,g
´
Œ
+
S
þ
L
-
f
8
,
½
Â
f,g
ƒ
m
$
Ž
X
e
:
(
f
∩
g
)(
x
)=
f
(
x
)
∧
g
(
x
)(
∀
x
∈
S
);
(
f
∪
g
)(
x
)=
f
(
x
)
∨
g
(
x
)(
∀
x
∈
S
);
f
⊆
g
⇔
f
(
x
)
≤
g
(
x
)(
∀
x
∈
S
).
(
f
◦
g
)(
x
)=
_
x
=
y z
{
f
(
y
)
∧
g
(
z
)
}
(
∃
y,z
∈
S
)
x
=
yz
;
0
Ù
¦
.
½
Â
2.2
S
´
Œ
+
,
f
´
S
L
-
f
8
.
X
J
∀
x,y
∈
S
,
k
f
(
xy
)
≥
f
(
x
)
∧
f
(
y
),
@
o
¡
f
´
S
L
-
f
Œ
+
.
½
Â
2.3
S
´
Œ
+
,
f
´
S
L
-
f
8
.
X
J
(
∀
x,y
∈
S
)
f
(
xy
)
≥
f
(
y
)(
f
(
x
)),
@
o
¡
f
´
S
L
-
†
£
m
¤
n
Ž
.
X
J
f
Q
´
S
L
-
†
n
Ž
q
´
S
L
-
m
n
Ž
,
@
o
¡
f
´
S
L
-
V
>
n
Ž
,
{
¡
L
-
n
Ž
.
·
‚
5
¿
Œ
+
S
Œ
±
Š
•
§
g
L
-
f
8
,
=
?
¿
x
∈
S
Ñ
k
S
(
x
)=1.
u
´
·
‚
±
e
(
Ø
.
½
n
2.4
S
´
Œ
+
,
f
´
S
þ
L
-
f
8
.
K
e
(
Ø
¤
á
µ
(1)
f
´
S
L
-
f
Œ
+
⇔
f
◦
f
⊆
f
;
(2)
f
´
S
L
-
†
n
Ž
⇔
S
◦
f
⊆
f
;
(3)
f
´
S
L
-
m
n
Ž
⇔
f
◦
S
⊆
f
;
(4)
f
´
S
L
-
n
Ž
⇔
S
◦
f
⊆
f
…
f
◦
S
⊆
f
.
y
²
µ
(1)
7
‡
5
,
b
f
´
S
L
-
f
Œ
+
,
a
∈
S
.
e
(
f
◦
f
)(
a
)=0,
K
(
Ø
w
,
¤
á
.
Ä
K
,
•
3
x,y
∈
S
¦
a
=
xy
.
u
´
(
f
◦
f
)(
a
)=
_
a
=
xy
(
f
(
x
)
∧
f
(
y
))
≤
_
a
=
xy
f
(
xy
)=
f
(
a
)
.
=
f
◦
f
⊆
f
.
DOI:10.12677/pm.2021.1161241105
n
Ø
ê
Æ
o
ÊÊ
¿
©
5
,
x,y,a
∈
S
,
a
=
xy
.
e
(
f
◦
f
)(
x
)
≤
f
(
x
),
K
f
(
xy
)=
f
(
a
)
≥
(
f
◦
f
)(
a
)=
_
a
=
bc
(
f
(
b
)
∧
f
(
c
))
≥
f
(
x
)
∧
f
(
y
)
¤
±
f
´
S
L
-
f
Œ
+
.
(2)
7
‡
5
,
b
f
´
S
L
-
†
n
Ž
,
?
¿
a
∈
S
.
e
(
S
◦
f
)(
a
)=0
K
(
J
w
,
¤
á
.
Ä
K
•
3
x,y
∈
S
¦
a
=
xy
.
u
´
(
S
◦
f
)(
a
)=
_
a
=
xy
(
S
(
x
)
∧
f
(
y
))
≤
_
a
=
xy
(1
∧
f
(
xy
))=
f
(
a
)
.
=
S
◦
f
⊆
f
.
¿
©
5
,
x,y,a
∈
S
,
a
=
xy
.
e
(
S
◦
f
)(
x
)
≤
f
(
x
),
K
f
(
xy
)=
f
(
a
)
≥
(
S
◦
f
)(
a
)=
_
a
=
bc
(
S
(
b
)
∧
f
(
c
))
≥
S
(
x
)
∧
f
(
y
)=
f
(
y
)
.
¤
±
f
´
S
L
-
†
n
Ž
.
Š
â
(2)
y
²
,(3)
Ú
(4)
a
q
Œ
y
.
½
n
2.5
S
´
Œ
+
.
K
e
(
Ø
¤
á
µ
(1)
e
f,g
´
S
L
-
f
Œ
+
,
K
f
∩
g
•
´
S
L
-
f
Œ
+
;
(2)
f,g
´
S
L
-
†
£
m
!
V
>
¤
n
Ž
,
K
f
∩
g
•
´
S
L
-
†
£
m
!
V
>
¤
n
Ž
.
y
²
µ
(1)
b
f,g
´
S
L
-
f
Œ
+
,
?
¿
a,b
∈
S
.
K
(
f
∩
g
)(
ab
)=
f
(
ab
)
∧
g
(
ab
)
≥
(
f
(
a
)
∧
f
(
b
))
∧
(
g
(
a
)
∧
g
(
b
)),
…
(
f
(
a
)
∧
f
(
b
))
∧
(
g
(
a
)
∧
g
(
b
))=(
f
(
a
)
∧
g
(
a
))
∧
(
f
(
b
)
∧
g
(
b
))
≥
(
f
∩
g
)(
a
)
∧
(
f
∩
g
)(
b
)
.
n
þ
¤
ã
,(
f
∩
g
)(
ab
)
≥
(
f
∩
g
)(
a
)
∧
(
f
∩
g
)(
b
),
=
f
∩
g
´
S
L
-
f
Œ
+
.(2)
Œ
±
a
q
y
²
,
ù
p
Ø
2
K
ã
.
·
K
2.6
S
´
Œ
+
,
f
´
S
L
-
m
£
†
¤
n
Ž
.
K
f
∪
(
S
◦
f
)(
f
∪
(
f
◦
S
))
´
S
L
-
V
>
n
Ž
.
y
²
µ
b
f
´
S
L
-
m
n
Ž
,
K
S
◦
(
f
∪
(
S
◦
f
))=(
S
◦
f
)
∪
(
S
◦
(
S
◦
f
))=(
S
◦
f
)
∪
(
S
◦
S
)
◦
f
⊆
(
S
◦
f
)
∪
(
S
◦
f
)=
S
◦
f
⊆
f
∪
(
S
◦
f
)
.
Ï
d
f
∪
(
S
◦
f
)
´
S
L
-
†
n
Ž
.
(
f
∪
(
S
◦
f
))
◦
S
=(
f
◦
S
)
∪
(
S
◦
f
◦
S
)
⊆
(
f
◦
S
)
∪
(
S
◦
f
)
⊆
f
∪
(
S
◦
f
).
¤
±
f
∪
(
S
◦
f
)
´
S
L
-
V
>
n
Ž
.
DOI:10.12677/pm.2021.1161241106
n
Ø
ê
Æ
o
ÊÊ
3.
Œ
+
L
-
V
n
Ž
½
Â
3.1
S
´
Œ
+
,
f
´
S
L
-
f
Œ
+
.
X
J
?
¿
x,y,z
∈
S
k
f
(
xyz
)
≥
f
(
x
)
∧
f
(
z
),
@
o
¡
f
´
S
L
-
V
n
Ž
.
½
n
3.2
S
´
Œ
+
,
f
´
S
L
-
f
Œ
+
,
K
f
´
S
L
-
V
n
Ž
…
=
f
◦
S
◦
f
⊆
f
.
y
²
µ
7
‡
5
,
b
f
´
S
L
-
V
n
Ž
,
?
¿
a
∈
S
.
e
(
f
◦
S
◦
f
)(
a
)=0
K
(
Ø
w
,
¤
á
,
Ä
K
∃
x,y,p,q
∈
S
¦
a
=
xy,x
=
pq
.
du
f
´
S
L
-
f
Œ
+
,
¤
±
f
(
pqy
)
≥
f
(
p
)
∧
f
(
q
).
Ï
d
,
(
f
◦
S
◦
f
)(
a
)=
_
a
=
xy
((
f
◦
S
)(
x
)
∧
f
(
y
))=
_
a
=
xy
(
_
x
=
pq
((
f
(
p
)
∧
S
(
q
))
∧
f
(
y
)))
=
_
a
=
xy
(
_
x
=
pq
((
f
(
p
)
∧
1)
∧
f
(
y
)))=
_
a
=
pq y
(
f
(
p
)
∧
f
(
y
))
≤
_
a
=
pq y
f
(
pqy
)=
f
(
a
)
.
=
f
◦
S
◦
f
⊆
f
.
¿
©
5
,
x,y,z
∈
S
,
a
=
xyz
.
e
(
f
◦
S
◦
f
)(
x
)
≤
f
(
x
)
K
k
f
(
xyz
)=
f
(
a
)
≥
(
f
◦
S
◦
f
)(
a
)=
_
a
=
bc
((
f
◦
S
)(
b
)
∧
f
(
c
))
≥
_
x
=
pq
((
f
(
p
)
∧
S
(
q
))
∧
f
(
z
)))
≥
f
(
x
)
∧
(
y
)
∧
f
(
z
)=
f
(
x
)
∧
1
∧
f
(
z
)=
f
(
x
)
∧
f
(
z
)
.
=
f
´
S
L
-
V
n
Ž
.
y
.
.
·
K
3.3
S
´
Œ
+
,
f
´
S
L
-
f
8
,
g
´
S
L
-
V
n
Ž
.
K
f
◦
g
Ú
g
◦
f
Ñ
´
S
L
-
V
n
Ž
.
y
²
µ
du
g
´
S
L
-
V
n
Ž
,
Š
â
þ
¡
½
n
,
Œ
±
í
(
f
◦
g
)
◦
(
g
◦
f
)=
f
◦
g
◦
(
f
◦
g
)
⊆
f
◦
g
◦
S
◦
g
⊆
f
◦
g.
¤
±
f
◦
g
´
S
L
-
f
Œ
+
.
Ï
d
(
f
◦
g
)
◦
S
◦
(
f
◦
g
)=
f
◦
g
◦
(
S
◦
f
)
◦
g
⊆
f
◦
(
g
◦
S
◦
g
)
⊆
f
◦
g
f
◦
g
´
S
L
-
V
n
Ž
.
Ó
n
Œ
y
g
◦
f
´
S
L
-
V
n
Ž
.
·
K
3.4
S
´
Œ
+
,
f,g
´
S
L
-
V
n
Ž
.
K
f
∩
g
´
S
L
-
V
n
Ž
.
DOI:10.12677/pm.2021.1161241107
n
Ø
ê
Æ
o
ÊÊ
y
²
µ
w
,
,
f
∩
g
´
L
-
f
Œ
+
.
∀
a,b,x
∈
S
,
K
(
f
∩
g
)(
axb
)=
f
(
axb
)
∧
g
(
axb
).
f
(
axb
)
∧
g
(
axb
)
≥
(
f
(
a
)
∧
f
(
b
))
∧
(
g
(
a
)
∧
g
(
b
)).
q
Ï
•
(
f
(
a
)
∧
f
(
b
))
∧
(
g
(
a
)
∧
g
(
b
))=
f
(
a
)
∧
g
(
a
)
∧
f
(
b
)
∧
g
(
b
)
=(
f
∩
g
)(
a
)
∧
(
f
∩
g
)(
b
)
¤
±
(
f
∩
g
)(
axb
)
≥
(
f
∩
g
)(
a
)
∧
(
f
∩
g
)(
b
),
=
f
∩
g
´
S
L
-
V
n
Ž
.
4.
L
-
S
n
Ž
½
Â
4.1
S
´
Œ
+
,
f
´
S
L
-
f
Œ
+
.
X
J
?
¿
x,y,z
∈
S
,(
xyz
)
≥
f
(
y
),
@
o
¡
f
´
S
L
-
S
n
Ž
.
½
n
4.2
S
´
Œ
+
,
f
´
S
L
-
f
Œ
+
.
K
f
´
S
L
-
S
n
Ž
…
=
S
◦
f
◦
S
⊆
f
.
y
²
µ
7
‡
5
,
b
f
´
S
L
-
S
n
Ž
,
?
¿
x
∈
S
.
e
(
S
◦
f
◦
S
)(
x
)=0
≤
f
(
x
),
(
Ø
w
,
¤
á
.
Ä
K
,
•
3
y,z,u,v
∈
S
¦
x
=
yz,y
=
uv
.
du
f
´
S
2
Â
S
n
Ž
,
¤
±
f
(
uvz
)
≥
f
(
v
).
u
´
(
S
◦
f
◦
S
)(
x
)=
_
x
=
y z
{
(
S
◦
f
)(
y
)
∧
S
(
z
)
}
=
_
x
=
y z
{
_
y
=
uv
(
S
(
u
)
∧
f
(
v
))
∧
S
(
z
)
}
≤
_
x
=
y z
{
_
y
=
uv
(1
∧
f
(
v
))
∧
1
}≤
f
(
x
)
.
¤
±
S
◦
f
◦
S
⊆
f
.
¿
©
5
,
S
◦
f
◦
S
⊆
f
,
x,a,y
∈
S
.
=
f
(
xay
)
≥
(
S
◦
f
◦
S
)(
xay
).
(
S
◦
f
◦
S
)(
x
)=
_
xay
=
pq
{
(
S
◦
f
)(
p
)
∧
S
(
q
)
}
≥
(
S
◦
f
(
xa
))
∧
S
(
y
)=(
S
◦
f
)(
xa
)
∧
1
=
_
xa
=
pq
{
S
(
p
)
∧
f
(
q
)
}≥
S
(
x
)
∧
f
(
a
)=
f
(
a
)
.
¤
±
,
f
(
xay
)
≥
f
(
a
),
=
f
´
S
L
-
S
n
Ž
.
w
,
Œ
+
S
z
‡
L
-
V
>
n
Ž
Ñ
´
S
L
-
S
n
Ž
.
´
S
L
-
S
n
Ž
Ø
˜
½
´
S
L
-
V
>
n
Ž
.
e
¡
´
L
-
S
n
Ž
Ø
´
L
-
V
>
n
Ž
˜
‡
~
f
.
DOI:10.12677/pm.2021.1161241108
n
Ø
ê
Æ
o
ÊÊ
~
4.3
µ
S
=
{
a,b,c,d
}
´
Œ
+
.
§
¦
{
$
Ž
X
e
:
abcd
aaaaa
baaaa
caaba
daabb
f
´
S
L
-
f
8
,
f
(
a
)=
a,f
(
b
)=
b,f
(
c
)=
c,f
(
d
)=
d
,
…
a,b,c,d
∈
L
k
a
≥
c
≥
b
≥
d
.
¯¢
þ
∀
x,y,z
∈
S
,
Ñ
k
f
(
xyz
)=
f
(
a
)=
a
≥
f
(
y
).
Ï
d
f
´
S
L
-
S
n
Ž
.
´
,
f
(
dc
)=
f
(
b
)=
b
≤
c
=
f
(
c
),
¤
±
f
Ø
´
S
L
-
†
n
Ž
,
=
f
Ø
´
S
L
-
V
>
n
Ž
.
½
n
4.4
S
´
K
Œ
+
,
f
´
S
L
-
f
8
.
K
e
Q
ã
d
:
(1)
f
´
S
L
-
n
Ž
,
(2)
f
´
S
L
-
S
n
Ž
.
y
²
µ
(1)
⇒
(2)
´
w
,
,
e
¡
y
²
(2)
⇒
(1).
b
f
´
S
L
-
S
n
Ž
,
∀
a,b
∈
S
.
du
S
´
K
Œ
+
,
¤
±
∃
x,y
∈
S
,
¦
a
=
axa,b
=
byb
,
u
´
f
(
ab
)=
f
(
axab
)=
f
((
ax
)
ab
)
≥
f
(
a
)
,
f
(
ab
)=
f
(
abyb
)=
f
((
ab
(
yb
))
≥
f
(
b
)
.
Ï
d
,
f
´
S
L
-
n
Ž
.
5.
L
-
[
n
Ž
½
Â
5.1
S
´
Œ
+
,
f
´
S
L
-
f
8
.
e
(
f
◦
S
)
∩
(
S
◦
f
)
⊆
f
,
K
¡
f
´
S
L
-
[
n
Ž
.
w
,
,
S
?
¿˜
‡
L
-
†
n
Ž
£
S
◦
f
⊆
f
¤
,
L
-
m
n
Ž
£
f
◦
S
⊆
f
¤
Ñ
´
S
L
-
[
n
Ž
.
…
,
S
?
¿˜
‡
L
-
[
n
Ž
Ñ
´
S
L
-
V
n
Ž
£
f
◦
S
◦
f
⊆
f
¤
.
´
(
Ø
‡
L
5
™
7
¤
á
,
e
¡
´
ü
‡
ä
N
~
f
.
~
5.2
µ
S
=
{
0
,a,b,c
}
´
Œ
+
.
§
¦
{
$
Ž
X
e
:
0abc
00000
a0ab0
b0000
c0c00
½
Â
S
L
-
f
8
X
e
:
f
(0)=
f
(
a
)=
a,f
(
b
)=
f
(
c
)=
b
,
…
a,b
∈
L
k
a
≥
b
..
K
f
´
S
L
-
[
n
Ž
,
Ø
´
S
L
-
†
£
m
¤
n
Ž
.
DOI:10.12677/pm.2021.1161241109
n
Ø
ê
Æ
o
ÊÊ
~
5.3
µ
S
=
{
0
,a,b,c
}
´
Œ
+
.
§
¦
{
$
Ž
X
e
:
0abc
00000
a0000
b000a
c00ab
½
Â
S
L
-
f
8
X
e
:
f
(0)=
f
(
b
)=
b,f
(
a
)=
f
(
c
)=
a
,
…
a,b
∈
L
k
b
≥
a
..
K
f
´
S
L
-
V
n
Ž
,
Ø
´
S
L
-
[
n
Ž
.
·
K
5.4
Œ
+
S
z
‡
L
-
[
n
Ž
Ñ
´
S
L
-
f
Œ
+
.
y
²
µ
f
´
S
L
-
[
n
Ž
.
d
f
⊆
S
Œ
f
◦
f
⊆
S
◦
f
…
f
◦
f
⊆
f
◦
S
.
Ï
d
f
◦
f
⊆
(
S
◦
f
)
∩
(
f
◦
S
)
⊆
f
.
=
f
´
S
L
-
f
Œ
+
.
·
K
5.5
S
´
Œ
+
,
f,g
©
O
´
S
L
-
m
!
†
n
Ž
.
K
f
∩
g
´
S
L
-
[
n
Ž
.
y
²
µ
b
f,g
©
O
´
S
L
-
m
!
†
n
Ž
.
¤
±
f
◦
S
⊆
f
,
S
◦
g
⊆
g
.
u
´
k
((
f
∩
g
)
◦
S
)
∩
(
S
◦
(
f
∩
g
))
⊆
(
f
◦
S
)
∩
(
S
◦
g
)
⊆
f
∩
g.
¤
±
f
∩
g
´
S
L
-
[
n
Ž
.
·
K
5.6
S
´
Œ
+
,
f,g
´
S
L
-
f
8
.
e
f,g
Ù
¥
˜
‡
´
L
-
[
n
Ž
,
K
f
◦
g
´
S
L
-
V
n
Ž
.
y
²
µ
Ø
”
f
´
S
L
-
[
n
Ž
,
K
f
◦
S
◦
f
⊆
f
.
Ï
d
(
f
◦
g
)
◦
(
f
◦
g
)=(
f
◦
g
◦
f
)
◦
g
⊆
(
f
◦
S
◦
f
)
◦
g
⊆
f
◦
g.
f
◦
g
´
S
L
-
f
Œ
+
.
…
(
f
◦
g
)
◦
S
◦
(
f
◦
g
)=(
f
◦
(
g
◦
S
)
◦
f
)
◦
g
⊆
(
f
◦
(
S
◦
S
)
◦
f
)
◦
g
⊆
(
f
◦
S
◦
f
)
◦
g
⊆
f
◦
g.
¤
±
f
◦
g
´
S
L
-
V
n
Ž
.
ë
•
©
z
[1]Rosenfeld,A.(1971)FuzzyGroups.
JournalofMathematicalAnalysisandApplications
,
35
,
512-517.https://doi.org/10.1016/0022-247X(71)90199-5
[2]Kuroki,N.(1979)FuzzyBi-IdealsinSemigroups.
CommentariiMathematiciUniversitatis
DOI:10.12677/pm.2021.1161241110
n
Ø
ê
Æ
o
ÊÊ
SanctiPauli
,
28
,17-21.
[3]Kuroki,N.(1981)OnFuzzyIdealsandFuzzyBi-IdealsinSemigroups.
FuzzySetsandSystems
,
5
,203-215.https://doi.org/10.1016/0165-0114(81)90018-X
[4]Kuroki,N.(1982)FuzzySemiprimeIdealsinSemigroups.
FuzzySetsandSystems
,
8
,71-79.
https://doi.org/10.1016/0165-0114(82)90031-8
[5]Kuroki,N.(1993)FuzzySemiprimeQuasi-IdealsinSemigroups.
InformationSciences
,
75
,
201-211.https://doi.org/10.1016/0020-0255(93)90054-P
[6]Mclean,R.G.andKummer,H.(1992)FuzzyIdealsinSemigroups.
FuzzySetsandSystems
,
48
,137-140.https://doi.org/10.1016/0165-0114(92)90258-6
[7]Xie,X.Y.(2002)FuzzyIdealsExtensionsinSemigroups.
KyungpookMathematicalJournal
,
42
,39-49.
[8]Xie,X.Y.(2001)FuzzyIdealsExtensionsofSemigroups.
SoochowJournalofMathematics
,
27
,
125-138.
[9]
Ç
²
¥
.
Œ
+
5
n
Ž
[J].
Ê
µ
Œ
ÆÆ
(
g
,
‰
Æ
‡
),1999,13(3):48-51.
[10]
‰
1
,
Û
¯
_
.
Œ
+
†
n
Ž
[J].
w
Å
˜
Æ
Æ
,2010,12(3):80-82.
[11]
É
ï
²
,
ê
Æ
.
Œ
+
S
n
Ž
(
=
©
)[J].
ê
Æï
Ä
†
µ
Ø
,2008,28(1):103-110.
[12]
Á
U
¬
.
Œ
+
n
Ž
9
)
¤
n
Ž
[J].
X
Ú
†
ê
Æ
,2010,24(5):42-45.
DOI:10.12677/pm.2021.1161241111
n
Ø
ê
Æ