设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2021,11(6),1112-1120
PublishedOnlineJune2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.116125
r
‡
:
¿
Ö
ã
Ú
d
ã
a
ooo
ûûû
∗
§§§
êêê
°°°
¤¤¤
†
“
°
¬
x
Œ
Æ
ê
Æ
†
Ú
O
Æ
§
“
°
Ü
w
Â
v
F
Ï
µ
2021
c
5
8
F
¶
¹
^
F
Ï
µ
2021
c
6
9
F
¶
u
Ù
F
Ï
µ
2021
c
6
16
F
Á
‡
ü
‡
ã
G
Ú
H
Ú
d
…
=
§
‚
Ö
ã
Š
‘
d
.
ã
G
Ú
•
˜
…
=
G
Š
‘
•
˜
.
3ù
Ÿ
©
Ù
¥
,
·
‚
O
Ž
rK
1
∪
C
m
(
r
≥
1
,m
≥
3)
Š
‘
d
ã
‡
ê
,
¿
•
x
§
Š
‘
d
ã
a
.
Ï
,
·
‚
•
O
Ž
rK
1
∪
C
m
Ú
d
ã
‡
ê
,
•
x
rK
1
∪
C
m
Ú
d
ã
a
.
'
…
c
Ú
õ
‘
ª
§
Š
‘
õ
‘
ª
§
Ú
d
§
Š
‘
d
§
Ú
•
˜
§
Š
‘
•
˜
TheChromaticEquivalenceClassesofthe
ComplementsofUnionGraphsof
r
VerticesandaCycle
DanyangLi
∗
,HaichengMa
†
SchoolofMathematicsandStatistics,QinghaiNationalitiesUniversity,XiningQinghai
Received:May8
th
,2021;accepted:Jun.9
th
,2021;published:Jun.16
th
,2021
∗
1
˜
Š
ö
"
†
Ï
&
Š
ö
"
©
Ù
Ú
^
:
o
û
,
ê
°
¤
.
r
‡
:
¿
Ö
ã
Ú
d
ã
a
[J].
n
Ø
ê
Æ
,2021,11(6):1112-1120.
DOI:10.12677/pm.2021.116125
o
û
§
ê
°
¤
Abstract
Twographs
G
and
H
arechromaticallyequivalentifandonlyif
G
and
H
areadjointly
equivalent.
G
ischromaticallyuniqueifandonlyif
G
adjointlyunique.Inthispaper,
thenumberoftheadjointequivalencegraphsof
rK
1
∪
C
m
(
r
≥
1
,m
≥
3)
iscalculated,
andtheadjointequivalenceclassesof
rK
1
∪
C
m
canalsobecharacterized.Asaresult,
thenumberofthechromaticequivalencegraphsof
rK
1
∪
C
m
iscalculated,andthe
chromaticequivalenceclassesof
rK
1
∪
C
m
canalsobecharacterized.
Keywords
ChromaticPolynomial,AdjointPolynomial,ChromaticallyEquivalent,
AdjointlyEquivalent,ChromaticallyUnique,AdjointlyUnique
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
0
©
=
•
Ä
k
•
Ã
•
{
ü
ã
.
é
u
ã
G
,
G,V
(
G
)
,E
(
G
)
,v
(
G
)
,χ
(
G
)
©
OL
«
ã
G
Ö
ã
,
:
8
,
>
8
,
ê
Ú
Ú
ê
.
K
n
,P
n
Ú
C
n
(
n
≥
3)
©
OL
«
n
‡
:
ã
,
´
Ú
,
K
1
L
«
˜
‡
á
:
,
D
n
L
«
C
3
þ
˜
:
†
´
P
n
−
2
˜
‡
à:
Å
(
ã
,
T
i,j,k
L
«
•
k
˜
‡
3
Ý:
,
n
‡
1
Ý:
,
…
ù
‡
3
Ý:
n
‡
1
Ý:
å
l
©
O
•
i,j,k
ä
,
N
G
(
v
)
L
«
G
¥
¤
k†
:
v
:
¤
8
Ü
,
G
∪
H
L
«
ã
G
†
ã
H
Ø
¿
,
mG
L
«
m
‡
G
Ø
¿
.
é
u
ê
k
,
X
J
V
(
G
)
˜
‡
y
©
{
A
1
,A
2
,
···
,A
k
}
¥
z
‡
A
i
´
š
˜
Õ
á
8
,
Kù
‡
y
©
¡
•
ã
G
˜
‡
k
−
Õ
á
y
©
.
-
α
(
G,k
)
L
«
ã
G
¤
k
k
−
Õ
á
y
©
ê
8
,
3
©
[1]
¥
½
Â
ã
G
Ú
õ
‘
ª
•
P
(
G,λ
) =
v
(
G
)
P
k
=1
α
(
G,k
)(
λ
)
k
,
ù
p
(
λ
)
k
=
λ
(
λ
−
1)
···
(
λ
−
k
+1)
,
(
k
≥
1).
X
J
ü
‡
ã
G
Ú
H
÷
v
P
(
G,λ
)=
P
(
H,λ
),
K
¡
ù
ü
‡
ã
´
Ú
d
,
{P
•
G
∼
P
H
.
²
w
/
,
'
X
∼
P
´
¤
k
ã
¤
8
Ü
¥
˜
‡
d
'
X
.
†
ã
G
Ú
d
¤
k
ã
¤
8
Ü
P
•
[
G
]
P
,
DOI:10.12677/pm.2021.1161251113
n
Ø
ê
Æ
o
û
§
ê
°
¤
¡
•
ã
G
Ú
d
ã
a
.
X
J
[
G
]
P
=
{
G
}
,
K
¡
ã
G
´
Ú
•
˜
.
é
u
‰
½
ã
G
,
(
½
[
G
]
P
´
˜
‡
š
~
k
(
J
¯
K
.
®
²
k
N
õ
ã
a
Ú
d
ã
a
(
½
(
„
[2]).
•
ï
Ä
ã
Ú
5
Ú
Ú
õ
‘
ª
,1987
c
4
V
=
3
[3]
¥
Ú
\
Š
‘
õ
‘
ª
V
g
,
-
P
(
G,λ
) =
v
(
G
)
P
i
=1
α
(
G,i
)(
λ
)
i
•
ã
G
Ú
õ
‘
ª
,
K
h
(
G,x
) =
v
(
G
)
P
i
=1
α
(
G,i
)
x
i
‰
ã
G
Š
‘
õ
‘
ª
.
ã
G
Ú
H
Š
‘
d
…
=
G
Ú
H
Ú
d
.
-
[
G
]=
{
H
|
H
∼
G
}
•
G
Š
‘
d
ã
a
.
®
²
u
y
é
õ
ã
Ú
d
ã
a
9
é
õ
Ú
•
˜
ã
[1,4–7],
´
U
•
x
ã
Ú
d
a
©
Ù
„
´
é
.
3
[5]
¥
•
x
8
Ü
[
P
n
]
P
.
3
[8]
¥
•
x
8
Ü
[
aK
1
∪
bC
3
S
1
≤
i
≤
s
P
l
i
]
P
Ú
[
aC
3
S
1
≤
i
≤
s
P
u
i
S
1
≤
j
≤
t
C
v
j
]
P
,
ù
p
a,b
´
?
¿
š
K
ê
,
l
i
´
ó
ê
,
u
i
≥
3
¿
…
u
i
6
=4(
mod
5).
±
β
(
G
)
L
«
Š
‘
õ
‘
ª
h
(
G,x
)
•
¢
Š
.
3
[9]
¥
•
x
β
(
G
)
>
−
4
¤
k
ã
.
3ù
Ÿ
©
Ù
¥
·
‚
•
x
8
Ü
[
rK
1
∪
C
m
],
?
•
x
8
Ü
[
rK
1
∪
C
m
]
P
.
2.
e
Z
Ú
n
Ú
n
1
[8](i)
G
∼
P
H
…
=
G
∼
H
;
(ii)[
G
]
P
=
{
H
|
H
∈
[
G
]
}
;
(iii)
ã
G
Ú
•
˜
…
=
G
Š
‘
•
˜
.
Ú
n
2
[1,3]
ã
G
k
k
‡
ë
Ï
©
|
µ
G
1
,G
2
,
···
G
k
,
K
h
(
G,x
) =
k
Y
i
=1
h
(
G
i
,x
).
é
u
ã
G
?
¿˜
^
>
e
=
uv
,
½
Â
ã
G
∗
e
X
e
:
V
(
G
∗
e
) =
{
V
(
G
)
\{
u,v
}}∪{
x
}
,
E
(
G
∗
e
) =
{
e
∈
E
(
G
)
|
>
e
Ø
'
é
:
u
½
v
}∪{
xy
|
y
∈
N
G
(
u
)
∩
N
G
(
v
)
}
,
Ù
¥
x/
∈
V
(
G
).
Ú
n
3
[1,10]
?
¿
e
∈
E
(
G
)
,h
(
G
) =
h
(
G
−
e
)+
h
(
G
∗
e
),
Ù
¥
G
−
e
L
«
l
ã
G
¥
í
Ø
>
e
.
Ú
n
4
[6]
G
´
˜
‡
ë
Ïã
,
K
β
(
G
)
>
−
4
…
=
G
∈
Γ =
{
K
1
,P
n
(
n
≥
2)
,T
1
,
1
,k
(
k
≥
1)
,T
1
,
2
,i
(2
≤
i
≤
4)
,C
m
(
m
≥
3)
,D
l
(4
≤
l
≤
7)
}
.
Ú
n
5
[9]
(1)
P
2
m
+1
∼
P
m
∪
C
m
+1
(
m
≥
3).
(2)
T
1
,
1
,n
∼
K
1
∪
C
n
+2
(
n
≥
2).
DOI:10.12677/pm.2021.1161251114
n
Ø
ê
Æ
o
û
§
ê
°
¤
(3)
T
1
,
2
,n
∼
K
1
∪
D
n
+3
.
(4)
P
4
∼
K
1
∪
C
3
.
(5)
K
1
∪
P
5
∼
P
2
∪
T
1
,
1
,
1
.
(6)
C
4
∼
D
4
.
(7)
P
2
∪
C
6
∼
P
3
∪
D
5
.
(8)
P
2
∪
C
9
∼
P
5
∪
D
6
.
(9)
K
1
∪
C
9
∼
T
1
,
1
,
1
∪
D
6
.
(10)
P
2
∪
C
15
∼
P
5
∪
C
5
∪
D
7
.
(11)
K
1
∪
C
15
∼
T
1
,
1
,
1
∪
C
5
∪
D
7
.
(12)
C
15
∪
D
6
∼
C
5
∪
C
9
∪
D
7
.
Ú
n
6
[9](1)
X
J
m>n,
K
β
(
P
m
)
<β
(
P
n
).
(2)
β
(
C
m
) =
β
(
P
2
m
−
1
),
Ù
¥
m
≥
4.
(3)
β
(
T
1
,
1
,n
) =
β
(
C
n
+2
) =
β
(
P
2
n
+3
),
Ù
¥
n
≥
2.
(4)
β
(
T
1
,
2
,n
) =
β
(
D
n
+3
).
(5)
β
(
C
3
) =
β
(
P
4
).
(6)
β
(
T
1
,
1
,
1
) =
β
(
P
5
).
(7)
β
(
C
4
) =
β
(
T
1
,
1
,
2
) =
β
(
D
4
) =
β
(
P
7
).
(8)
β
(
C
6
) =
β
(
T
1
,
1
,
4
) =
β
(
D
5
) =
β
(
T
1
,
2
,
2
) =
β
(
P
11
).
(9)
β
(
C
9
) =
β
(
T
1
,
1
,
7
) =
β
(
D
6
) =
β
(
T
1
,
2
,
3
) =
β
(
P
17
).
(10)
β
(
C
15
) =
β
(
T
1
,
1
,
13
) =
β
(
D
7
) =
β
(
T
1
,
2
,
4
) =
β
(
P
29
).
Ú
n
7
[6]
G
´
ä
k
β
(
G
)
>
−
4
˜
‡
ã
,
K
G
Š
‘
•
˜
…
=
G
=
kK
1
∪
m
2
P
2
∪
m
3
P
3
∪
m
5
P
5
∪
[
∪
i
≥
3
m
2
i
P
2
i
]
∪
n
3
C
3
∪
[
∪
j
≥
5
n
j
C
j
]
∪
[
∪
5
≤
l
≤
7
d
l
D
l
]
∪
tT
1
,
1
,
1
¦
kn
j
=
kd
l
=
km
5
=
m
i
n
i
+1
=
m
2
n
6
=
m
2
n
9
=
m
2
n
15
=
m
2
t
=
m
3
d
5
=
m
5
d
6
=
td
6
=
m
5
n
5
d
7
=
tn
5
d
7
=
n
15
d
6
=
n
5
n
9
d
7
= 0,
ù
p
k,m
i
,n
j
,d
l
,t
´
š
K
ê
.
•
•
B
,
·
‚
^
δ
(
G
)
L
«
ã
G
¤
k
Ø
Ó
Š
‘
d
ã
‡
ê
.
δ
(
G
)=1
…
=
G
´
Š
‘
•
˜
.
3.
Ì
‡
(
J
½
n
1
ê
r
≥
1.(
i
)
m
6
=3
,
4
,
9
,
15,
K
δ
(
rK
1
∪
C
m
)=2,[
rK
1
∪
C
m
]=
{
rK
1
∪
C
m
,
(
r
−
1)
K
1
∪
T
1
,
1
,m
−
2
}
.
(
ii
)
δ
(
rK
1
∪
C
3
) = 2,[
rK
1
∪
C
3
] =
{
rK
1
∪
C
3
,
(
r
−
1)
K
1
∪
P
4
}
.
DOI:10.12677/pm.2021.1161251115
n
Ø
ê
Æ
o
û
§
ê
°
¤
(
iii
)
δ
(
rK
1
∪
C
4
) = 3,[
rK
1
∪
C
4
] =
{
rK
1
∪
C
4
,
(
r
−
1)
K
1
∪
T
1
,
1
,
2
,rK
1
∪
D
4
}
.
(
iv
)
δ
(
K
1
∪
C
9
) =
3
,r
= 1
,
4
,r
≥
2.
[
K
1
∪
C
9
] =
{
K
1
∪
C
9
,T
1
,
1
,
7
,T
1
,
1
,
1
∪
D
6
}
,r
= 1
,
{
rK
1
∪
C
9
,
(
r
−
1)
K
1
∪
T
1
,
1
,
7
,
(
r
−
1)
K
1
∪
T
1
,
1
,
1
∪
D
6
,
(
r
−
2)
K
1
∪
T
1
,
1
,
1
∪
T
1
,
2
,
3
}
,r
≥
2.
(
v
)
δ
(
K
1
∪
C
15
) =
3
,r
= 1
,
5
,r
= 2
,
6
,r
≥
3.
[
K
1
∪
C
15
] =
{
K
1
∪
C
15
,T
1
,
1
,
13
,T
1
,
1
,
1
∪
C
5
∪
D
7
}
,r
= 1
,
{
2
K
1
∪
C
15
,K
1
∪
T
1
,
1
,
13
,K
1
∪
T
1
,
1
,
1
∪
C
5
∪
D
7
,
T
1
,
1
,
1
∪
T
1
,
1
,
3
∪
D
7
,T
1
,
1
,
1
∪
T
1
,
2
,
4
∪
C
5
}
,r
= 2
,
{
rK
1
∪
C
15
,
(
r
−
1)
K
1
∪
T
1
,
1
,
13
,
(
r
−
1)
K
1
∪
T
1
,
1
,
1
∪
C
5
∪
D
7
,
(
r
−
2)
K
1
∪
T
1
,
1
,
1
∪
T
1
,
1
,
3
∪
D
7
,
(
r
−
2)
K
1
∪
T
1
,
1
,
1
∪
T
1
,
2
,
4
∪
C
5
,
(
r
−
3)
K
1
∪
T
1
,
1
,
1
∪
T
1
,
1
,
3
∪
T
1
,
2
,
4
}
,r
≥
3.
y
²
:
H
∼
rK
1
∪
C
m
,
H
1
´
H
˜
‡
ë
Ï
©
|
,
β
(
H
1
)=
β
(
rK
1
∪
C
m
)=
β
(
C
m
),
H
=
H
1
∪
H
2
.
(
i
)
œ
/
1.
m
6
= 3
,
4
,
6
,
9
,
15
ž
,
d
Ú
n
6
•
,
H
1
=
C
m
,T
1
,
1
,m
−
2
,P
2
m
−
1
.
H
1
=
C
m
ž
,
d
rK
1
∪
C
m
∼
C
m
∪
H
2
H
2
∼
rK
1
,
d
Ú
n
7
•
rK
1
Š
‘
•
˜
,
K
H
2
=
rK
1
.
H
1
=
T
1
,
1
,m
−
2
ž
,
d
T
1
,
1
,m
−
2
∪
H
2
∼
rK
1
∪
C
m
∼
(
r
−
1)
K
1
∪
T
1
,
1
,m
−
2
H
2
∼
(
r
−
1)
K
1
,
?
˜
Ú
H
2
= (
r
−
1)
K
1
.
H
1
=
P
2
m
−
1
ž
,
d
rK
1
∪
C
m
∼
P
2
m
−
1
∪
H
2
∼
P
m
−
1
∪
C
m
∪
H
2
rK
1
∼
P
m
−
1
∪
H
2
,
d
Ú
n
7
•
rK
1
Š
‘
•
˜
,
Kù
H
2
´
Ø
•
3
.
m
6
= 3
,
4
,
6
,
9
,
15
ž
,
H
k
ü
‡
:
rK
1
∪
C
m
,
(
r
−
1)
K
1
∪
T
1
,
1
,m
−
2
.
œ
/
2.
m
= 6
ž
,
d
Ú
n
6
•
,
H
1
=
C
6
,T
1
,
1
,
4
,D
5
,T
1
,
2
,
2
,P
11
.
H
1
=
C
6
ž
,
d
rK
1
∪
C
6
∼
C
6
∪
H
2
H
2
=
rK
1
.
H
1
=
T
1
,
1
,
4
ž
,
d
rK
1
∪
C
6
∼
T
1
,
1
,
4
∪
H
2
∼
K
1
∪
C
6
∪
H
2
H
2
= (
r
−
1)
K
1
.
DOI:10.12677/pm.2021.1161251116
n
Ø
ê
Æ
o
û
§
ê
°
¤
H
1
=
D
5
ž
,
d
rK
1
∪
C
6
∼
D
5
∪
H
2
,
d
Ú
n
5(7)
?
˜
Ú
P
3
∪
rK
1
∪
C
6
∼
P
3
∪
D
5
∪
H
2
∼
P
2
∪
C
6
∪
H
2
P
3
∪
rK
1
∼
P
2
∪
H
2
,
d
Ú
n
7
•
P
3
∪
rK
1
Š
‘
•
˜
,
¤
±
ù
H
2
´
Ø
•
3
.
H
1
=
T
1
,
2
,
2
ž
,
d
rK
1
∪
C
6
∼
T
1
,
2
,
2
∪
H
2
∼
K
1
∪
D
5
∪
H
2
,
d
Ú
n
5(7)
?
˜
Ú
P
3
∪
rK
1
∪
C
6
∼
P
3
∪
D
5
∪
K
1
∪
H
2
∼
P
2
∪
C
6
∪
K
1
∪
H
2
P
3
∪
(
r
−
1)
K
1
∼
P
2
∪
H
2
,
d
Ú
n
7
•
P
3
∪
(
r
−
1)
K
1
Š
‘
•
˜
,
¤
±
ù
H
2
´
Ø
•
3
.
H
1
=
P
11
ž
,
d
rK
1
∪
C
6
∼
P
11
∪
H
2
∼
P
5
∪
C
6
∪
H
2
rK
1
∼
P
5
∪
H
2
,
d
Ú
n
7
•
rK
1
Š
‘
•
˜
,
¤
±
ù
H
2
´
Ø
•
3
.
m
= 6
ž
,
H
k
ü
‡
:
rK
1
∪
C
6
,
(
r
−
1)
K
1
∪
T
1
,
1
,
4
.
n
þ
¤
ã
,
m
6
= 3
,
4
,
9
,
15
ž
,
H
k
ü
‡
:
rK
1
∪
C
m
,
(
r
−
1)
K
1
∪
T
1
,
1
,m
−
2
.
(
ii
)
m
= 3
ž
,
d
Ú
n
6
•
,
H
1
=
C
3
,P
4
.
H
1
=
C
3
ž
,
d
rK
1
∪
C
3
∼
C
3
∪
H
2
H
2
=
rK
1
.
H
1
=
P
4
ž
,
d
rK
1
∪
C
3
∼
P
4
∪
H
2
∼
K
1
∪
C
3
∪
H
2
H
2
= (
r
−
1)
K
1
.
m
= 3
ž
,
H
k
ü
‡
:
rK
1
∪
C
3
,
(
r
−
1)
K
1
∪
P
4
.
(
iii
)
m
= 4
ž
,
d
Ú
n
6
•
,
H
1
=
C
4
,T
1
,
1
,
2
,D
4
,P
7
.
H
1
=
C
4
ž
,
d
rK
1
∪
C
4
∼
C
4
∪
H
2
H
2
=
rK
1
.
H
1
=
T
1
,
1
,
2
ž
,
d
rK
1
∪
C
4
∼
T
1
,
1
,
2
∪
H
2
∼
K
1
∪
C
4
∪
H
2
H
2
= (
r
−
1)
K
1
.
H
1
=
D
4
ž
,
d
rK
1
∪
C
4
∼
D
4
∪
H
2
∼
C
4
∪
H
2
H
2
=
rK
1
.
H
1
=
P
7
ž
,
d
rK
1
∪
C
4
∼
P
7
∪
H
2
∼
P
3
∪
C
4
∪
H
2
rK
1
∼
P
3
∪
H
2
,
d
Ú
n
7
•
rK
1
Š
‘
•
˜
,
Kù
H
2
´
Ø
•
3
.
m
= 4
ž
,
H
k
n
‡
:
rK
1
∪
C
4
,
(
r
−
1)
K
1
∪
T
1
,
1
,
2
,rK
1
∪
D
4
.
(
iv
)
m
= 9
ž
,
d
Ú
n
6
•
,
H
1
=
C
9
,T
1
,
1
,
7
,D
6
,T
1
,
2
,
3
,P
17
.
œ
/
1.
r
= 1
ž
:
H
1
=
C
9
ž
,
d
K
1
∪
C
9
∼
C
9
∪
H
2
H
2
=
K
1
.
H
1
=
T
1
,
1
,
7
ž
,
d
K
1
∪
C
9
∼
T
1
,
1
,
7
∪
H
2
∼
K
1
∪
C
9
∪
H
2
H
2
•
˜
ã
.
H
1
=
D
6
ž
,
d
D
6
∪
H
2
∼
K
1
∪
C
9
∼
T
1
,
1
,
1
∪
D
6
H
2
∼
T
1
,
1
,
1
,
d
Ú
n
7
•
T
1
,
1
,
1
Š
‘
•
˜
,
K
H
2
=
T
1
,
1
,
1
.
H
1
=
T
1
,
2
,
3
ž
,
d
K
1
∪
C
9
∼
T
1
,
2
,
3
∪
H
2
∼
K
1
∪
D
6
∪
H
2
C
9
∼
D
6
∪
H
2
,
d
Ú
n
7
•
C
9
Š
‘
•
˜
,
Kù
H
2
´
Ø
•
3
.
H
1
=
P
17
ž
,
d
K
1
∪
C
9
∼
P
17
∪
H
2
∼
P
8
∪
C
9
∪
H
2
K
1
∼
P
8
∪
H
2
,
d
Ú
n
7
•
K
1
Š
‘
•
˜
,
Kù
H
2
´
Ø
•
3
.
m
= 9(
r
= 1)
ž
,
H
k
n
‡
:
K
1
∪
C
9
,T
1
,
1
,
7
,T
1
,
1
,
1
∪
D
6
.
œ
/
2.
r
= 2
ž
,
†
œ
/
1
a
q
,
Ñ
.
DOI:10.12677/pm.2021.1161251117
n
Ø
ê
Æ
o
û
§
ê
°
¤
œ
/
3.
r
≥
3
ž
:
H
1
=
C
9
ž
,
d
rK
1
∪
C
9
∼
C
9
∪
H
2
H
2
=
rK
1
.
H
1
=
T
1
,
1
,
7
ž
,
d
rK
1
∪
C
9
∼
T
1
,
1
,
7
∪
H
2
∼
K
1
∪
C
9
∪
H
2
H
2
= (
r
−
1)
K
1
.
H
1
=
D
6
ž
,
d
D
6
∪
H
2
∼
rK
1
∪
C
9
∼
(
r
−
1)
K
1
∪
T
1
,
1
,
1
∪
D
6
H
2
∼
(
r
−
1)
K
1
∪
T
1
,
1
,
1
,
d
Ú
n
7
•
(
r
−
1)
K
1
∪
T
1
,
1
,
1
Š
‘
•
˜
,
K
H
2
= (
r
−
1)
K
1
∪
T
1
,
1
,
1
.
H
1
=
T
1
,
2
,
3
ž
,
d
T
1
,
2
,
3
∪
H
2
∼
rK
1
∪
C
9
∼
(
r
−
1)
K
1
∪
T
1
,
1
,
1
∪
D
6
∼
(
r
−
2)
K
1
∪
T
1
,
1
,
1
∪
T
1
,
2
,
3
H
2
∼
(
r
−
2)
K
1
∪
T
1
,
1
,
1
,
d
Ú
n
7
•
((
r
−
2)
K
1
∪
T
1
,
1
,
1
Š
‘
•
˜
,
K
H
2
= (
r
−
2)
K
1
∪
T
1
,
1
,
1
.
H
1
=
P
17
ž
,
d
rK
1
∪
C
9
∼
P
17
∪
H
2
∼
P
8
∪
C
9
∪
H
2
rK
1
∼
P
8
∪
H
2
,
d
Ú
n
7
•
rK
1
Š
‘
•
˜
,
Kù
H
2
´
Ø
•
3
.
m
= 9
ž
,
H
k
o
‡
:
rK
1
∪
C
9
,
(
r
−
1)
K
1
∪
T
1
,
1
,
7
,
(
r
−
1)
K
1
∪
T
1
,
1
,
1
∪
D
6
,
(
r
−
2)
K
1
∪
T
1
,
1
,
1
∪
T
1
,
2
,
3
.
(
v
)
m
= 15
ž
,
d
Ú
n
6
•
,
H
1
=
C
15
,T
1
,
1
,
13
,D
7
,T
1
,
2
,
4
,P
29
.
œ
/
1.
r
= 1
ž
:
H
1
=
C
15
ž
,
d
K
1
∪
C
15
∼
C
15
∪
H
2
H
2
=
K
1
.
H
1
=
T
1
,
1
,
13
ž
,
d
K
1
∪
C
15
∼
T
1
,
1
,
13
∪
H
2
∼
K
1
∪
C
15
∪
H
2
H
2
•
˜
ã
.
H
1
=
D
7
ž
,
d
D
7
∪
H
2
∼
K
1
∪
C
15
∼
T
1
,
1
,
1
∪
C
5
∪
D
7
H
2
∼
T
1
,
1
,
1
∪
C
5
,
d
Ú
n
7
•
T
1
,
1
,
1
∪
C
5
Š
‘
•
˜
,
K
H
2
=
T
1
,
1
,
1
∪
C
5
..
H
1
=
T
1
,
2
,
4
ž
,
d
K
1
∪
C
15
∼
T
1
,
2
,
4
∪
H
2
∼
K
1
∪
D
7
∪
H
2
C
15
∼
D
7
∪
H
2
,
d
Ú
n
7
•
C
15
Š
‘
•
˜
,
Kù
H
2
´
Ø
•
3
.
H
1
=
P
29
ž
,
d
K
1
∪
C
15
∼
P
29
∪
H
2
∼
P
14
∪
C
15
∪
H
2
K
1
∼
P
14
∪
H
2
,
d
Ú
n
7
•
K
1
Š
‘
•
˜
,
Kù
H
2
´
Ø
•
3
.
m
= 15(
r
= 1)
ž
,
H
k
n
‡
:
K
1
∪
C
15
,T
1
,
1
,
13
,T
1
,
1
,
1
∪
C
5
∪
D
7
.
œ
/
2.
r
= 2
ž
:
H
1
=
C
15
ž
,
d
2
K
1
∪
C
15
∼
C
15
∪
H
2
H
2
= 2
K
1
.
H
1
=
T
1
,
1
,
13
ž
,
d
2
K
1
∪
C
15
∼
T
1
,
1
,
13
∪
H
2
∼
K
1
∪
C
15
∪
H
2
H
2
=
K
1
.
H
1
=
D
7
ž
,
d
D
7
∪
H
2
∼
2
K
1
∪
C
15
∼
K
1
∪
T
1
,
1
,
1
∪
C
5
∪
D
7
H
2
∼
K
1
∪
T
1
,
1
,
1
∪
C
5
,
d
Ú
n
5
•
K
1
∪
T
1
,
1
,
1
∪
C
5
∼
T
1
,
1
,
1
∪
T
1
,
1
,
3
,
?
˜
Ú
d
Ú
n
7
•
H
2
=
K
1
∪
T
1
,
1
,
1
∪
C
5
,T
1
,
1
,
1
∪
T
1
,
1
,
3
.
H
1
=
T
1
,
2
,
4
ž
,
d
T
1
,
2
,
4
∪
H
2
∼
2
K
1
∪
C
15
∼
K
1
∪
T
1
,
1
,
1
∪
C
5
∪
D
7
∼
T
1
,
1
,
1
∪
C
5
∪
T
1
,
2
,
4
H
2
∼
T
1
,
1
,
1
∪
C
5
,
d
Ú
n
7
•
T
1
,
1
,
1
∪
C
5
Š
‘
•
˜
,
K
H
2
=
T
1
,
1
,
1
∪
C
5
.
H
1
=
P
29
ž
,
d
2
K
1
∪
C
15
∼
P
29
∪
H
2
∼
P
14
∪
C
15
∪
H
2
2
K
1
∼
P
14
∪
H
2
,
d
Ú
n
7
•
2
K
1
Š
‘
•
˜
,
Kù
H
2
´
Ø
•
3
.
m
= 15(
r
= 2)
ž
,
H
k
Ê
‡
:2
K
1
∪
C
15
,K
1
∪
T
1
,
1
,
13
,K
1
∪
T
1
,
1
,
1
∪
C
5
∪
D
7
,T
1
,
1
,
1
∪
T
1
,
1
,
3
∪
D
7
,T
1
,
1
,
1
∪
C
5
∪
T
1
,
2
,
4
.
DOI:10.12677/pm.2021.1161251118
n
Ø
ê
Æ
o
û
§
ê
°
¤
œ
/
3.
r
= 3
ž
,
†
œ
/
2
a
q
,
Ñ
.
œ
/
4.
r
≥
4
ž
:
H
1
=
C
15
ž
,
d
rK
1
∪
C
15
∼
C
15
∪
H
2
H
2
=
rK
1
.
H
1
=
T
1
,
1
,
13
ž
,
d
rK
1
∪
C
15
∼
T
1
,
1
,
13
∪
H
2
∼
K
1
∪
C
15
∪
H
2
H
2
= (
r
−
1)
K
1
.
H
1
=
D
7
ž
,
d
D
7
∪
H
2
∼
rK
1
∪
C
15
∼
(
r
−
1)
K
1
∪
T
1
,
1
,
1
∪
C
5
∪
D
7
H
2
∼
(
r
−
1)
K
1
∪
T
1
,
1
,
1
∪
C
5
,
d
Ú
n
5
•
(
r
−
1)
K
1
∪
T
1
,
1
,
1
∪
C
5
∼
(
r
−
2)
K
1
∪
T
1
,
1
,
1
∪
T
1
,
1
,
3
,
?
˜
Ú
d
Ú
n
7
•
H
2
= (
r
−
1)
K
1
∪
T
1
,
1
,
1
∪
C
5
,
(
r
−
2)
K
1
∪
T
1
,
1
,
1
∪
T
1
,
1
,
3
.
H
1
=
T
1
,
2
,
4
ž
,
d
T
1
,
2
,
4
∪
H
2
∼
rK
1
∪
C
15
∼
(
r
−
1)
K
1
∪
T
1
,
1
,
1
∪
C
5
∪
D
7
∼
(
r
−
2)
K
1
∪
T
1
,
1
,
1
∪
C
5
∪
T
1
,
2
,
4
H
2
∼
(
r
−
2)
K
1
∪
T
1
,
1
,
1
∪
C
5
,
d
Ú
n
5
•
(
r
−
2)
K
1
∪
T
1
,
1
,
1
∪
C
5
∼
(
r
−
3)
K
1
∪
T
1
,
1
,
1
∪
T
1
,
1
,
3
,
?
˜
Ú
d
Ú
n
7
•
H
2
= (
r
−
2)
K
1
∪
T
1
,
1
,
1
∪
C
5
,
(
r
−
3)
K
1
∪
T
1
,
1
,
1
∪
T
1
,
1
,
3
.
H
1
=
P
29
ž
,
d
rK
1
∪
C
15
∼
P
29
∪
H
2
∼
P
14
∪
C
15
∪
H
2
rK
1
∼
P
14
∪
H
2
,
d
Ú
n
7
•
rK
1
Š
‘
•
˜
,
Kù
H
2
´
Ø
•
3
.
m
=15
ž
,
H
k
8
‡
µ
rK
1
∪
C
15
,
(
r
−
1)
K
1
∪
T
1
,
1
,
13
,
(
r
−
1)
K
1
∪
T
1
,
1
,
1
∪
C
5
∪
D
7
,
(
r
−
2)
K
1
∪
T
1
,
1
,
1
∪
T
1
,
1
,
3
∪
D
7
,
(
r
−
2)
K
1
∪
T
1
,
1
,
1
∪
C
5
∪
T
1
,
2
,
4
,
(
r
−
3)
K
1
∪
T
1
,
1
,
1
∪
T
1
,
1
,
3
∪
T
1
,
2
,
4
.
í
Ø
1
é
u
½
n
1
¥
m
Ø
Ó
a
.
,[
rK
1
∪
C
m
]
P
Ò
´
½
n
1
¤
ã
z
‡
8
Ü
¥
ã
Ö
ã
¤
8
Ü
.
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
]
Ï
‘
8
(11561056,11661066)
§
“
°
Ž
g
,
‰
Æ
Ä
7
]
Ï
‘
8
(2016-ZJ-
914)
"
ë
•
©
z
[1]Liu,R.Y. (1997)Adjoint Polynomials andChromaticallyUniqueGraphs.
DiscreteMathemat-
ics
,
172
,85-92.https://doi.org/10.1016/S0012-365X(96)00271-3
[2]Dong,F.M.,Koh,K.M.andTeo,K.T.(2005)ChromaticPolynomialsandChromaticityof
Graph.WorldScientific,London.
[3]Liu, R.Y. (1987) ANew Method toFind Chromatic Polynomial of Graphand Its Applications.
ChineseScienceBulletin
,
32
,1508-1509.(InChinese,EnglishSummary)
[4]Zhao,H.,Huo,B.andLiu,R.(2000)ChromaticityoftheComplementsofPaths.
Journalof
MathematicalStudy
,
33
,345-353.
[5]Ye,C.F. and Li,N.Z. (2002) GraphswithChromatic Polynomial
P
1
≤
m
0
lm
0
−
1(
λ
)
l
.
Discrete
Mathematics
,
259
,369-381.https://doi.org/10.1016/S0012-365X(02)00592-7
DOI:10.12677/pm.2021.1161251119
n
Ø
ê
Æ
o
û
§
ê
°
¤
[6]Zhao,H.X.,Li,X.L.,Zhang,S.G.andLiu,R.Y.(2004)OntheMinimumRealRootsofthe
σ
-PolynomialsandChromaticUniquenessofGraphs.
DiscreteMathematics
,
281
,277-294.
https://doi.org/10.1016/j.disc.2003.06.010
[7]Ye,C.F.andYang,W.J.(2004)TheGraphswiththeSameChromaticPartitionsasthe
Complementof
T
1
,
2
,n
.
JournalofNortheastNormalUniversity
,
36
,18-26.
[8]Dong,F.M., Teo,K.L., Little,C.H.C.and Hendy,M.D.(2002)ChromaticityofSome Families
ofDenseGraphs.
DiscreteMathematics
,
258
,303-321.
https://doi.org/10.1016/S0012-365X(02)00355-2
[9]Ma,H.C.andRen,H.Z.(2008)TheChromaticEquivalenceClassesoftheComplementsof
Graphs withtheMinimumReal Roots ofTheir Adjoint PolynomialsGreater Than–4.
Discrete
Mathematics
,
308
,1830-1836.
[10]Du, Q.Y. (1996)Chromaticityof theComplements ofPathsand Cycles.
DiscreteMathematics
,
162
,109-125.https://doi.org/10.1016/0012-365X(95)00308-J
DOI:10.12677/pm.2021.1161251120
n
Ø
ê
Æ