设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2021,11(6),1211-1220
PublishedOnlineJune2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.116134
˜
a
š
‚
5
‡
©
X
Ú
)
•
3
•
˜
5
Ü
“
‰
Œ
Æ
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2021
c
5
13
F
¶
¹
^
F
Ï
µ
2021
c
6
15
F
¶
u
Ù
F
Ï
µ
2021
c
6
22
F
Á
‡
©
|
^
Leray-Schauder
ö
J
Ú
Banach
Ø
N
”
n
ï
Ä
‡
©
X
Ú
−
u
00
=
f
(
t,u
(
t
)
,v
(
t
))
,t
∈
(0
,
1)
,
−
v
00
=
g
(
t,u
(
t
)
,v
(
t
))
,
u
(0) =
u
0
(1) = 0
,
v
(0) =
v
0
(1) = 0
)
•
3
•
˜
5
,
Ù
¥
f,g
: [0
,
1]
×
[0
,
+
∞
)
×
[0
,
+
∞
)
→
[0
,
+
∞
)
ë
Y
.
'
…
c
Lipschitz
^
‡
§
Ø
N
”
n
§
)
§
Leray-Schauder
ö
J
ExistenceandUniquenessofPositive
SolutionsforaClassofSecond-Order
NonlinearDifferentialSystems
YangYang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
©
Ù
Ú
^
:
.
˜
a
š
‚
5
‡
©
X
Ú
)
•
3
•
˜
5
[J].
n
Ø
ê
Æ
,2021,11(6):1211-1220.
DOI:10.12677/pm.2021.116134
Received:May13
th
,2021;accepted:Jun.15
th
,2021;published:Jun.22
nd
,2021
Abstract
Inthispaper,byusingLeray-Schauder’salternativeandcontractionmappingprinciple
tostudythepositivesolutionsforasystemofsecond-orderboundaryvalueproblems
−
u
00
=
f
(
t,u
(
t
)
,v
(
t
))
,t
∈
(0
,
1)
,
−
v
00
=
g
(
t,u
(
t
)
,v
(
t
))
,
u
(0) =
u
0
(1) = 0
,
v
(0) =
v
0
(1) = 0
,
where
f,g
: [0
,
1]
×
[0
,
+
∞
)
×
[0
,
+
∞
)
→
[0
,
+
∞
)
arecontinuous.
Keywords
LipschitzCondition,ContractionMappingPrinciple,PositiveSolution,
LeraySchauder’sAlternative
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense (CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
š
‚
5
~
‡
©•
§
>
Š
¯
K
)
•
3
5
¯
K
,
´
C
A
›
c
5
;
[
Æ
ö
¤
ï
Ä
-
‡
‘
K
.
c
Ù
´
~
‡
©•
§
>
Š
¯
K
,
§
3
Ô
n
Æ
,
)
Ô
Æ
+
•k
X
2
•
A^
.
Ï
L
©
z
·
‚
•
,
é
u
š
‚
5
~
‡
©•
§
|
ï
Ä
ƒ
é
[1–4].
3
©
z
[5]
¥
,
ê
X
|
^
I
þ
Ø
Ä:
n
Ø
ï
Ä
X
e
‡
©
X
Ú
x
00
(
t
)+
λf
1
(
t,x
(
t
)
,y
(
t
)) = 0
,t
∈
(0
,
1)
,
y
00
(
t
)+
λf
2
(
t,x
(
t
)
,y
(
t
)) = 0
,t
∈
(0
,
1)
,
u
(0) =
u
(1) = 0
,
v
(0) =
v
(1) = 0
DOI:10.12677/pm.2021.1161341212
n
Ø
ê
Æ
õ
)
•
3
5
¯
K
,
Ù
¥
λ>
0
•
ë
ê
,
f
1
,f
2
: [0
,
1]
×
R
+
×
R
+
→
R
+
ë
Y
.
3
©
z
[6]
¥
,
ƒ
|
^
Williams-Leggett
Ø
Ä:½
n
,
?
Ø
‡
©
X
Ú
−
u
00
(
t
) =
f
1
(
t,u
(
t
)
,v
(
t
))
,t
∈
(0
,
1)
,
−
v
00
(
t
) =
f
2
(
t,u
(
t
)
,v
(
t
))
,t
∈
(0
,
1)
,
u
(0) =
u
(1) = 0
,
v
(0) =
v
(1) = 0
n
‡
)
•
3
5
,
Ù
¥
f
1
,f
2
: [0
,
1]
×
[0
,
+
∞
)
×
[0
,
+
∞
)
→
[0
,
+
∞
)
ë
Y
.
3
©
z
[7]
¥
,
“
,
š
²
k
|
^
ÿ
À
Ý
•{
ï
Ä
~
‡
©•
§
|
>
Š
¯
K
−
u
00
=
f
(
x,v
)
,t
∈
(0
,
1)
,
−
v
00
=
g
(
x,u
)
,t
∈
(0
,
1)
,
u
(0) =
u
(1) = 0
,
v
(0) =
v
(1) = 0
)
•
3
5
Ú
)
°
(
‡
ê
,
Ù
¥
g,f
: [0
,
1]
×
[0
,
+
∞
)
×
[0
,
+
∞
)
→
[0
,
+
∞
)
ë
Y
.
3
©
z
[8]
¥
,
“
<
|
^
Ø
Ä:
•
ê
ï
Ä
[
‚
5
‡
©
X
Ú
−
((
u
0
)
p
−
1
)
0
=
f
(
t,u
(
t
)
,v
(
t
))
,t
∈
(0
,
1)
,
−
((
v
0
)
q
−
1
)
0
=
g
(
t,u
(
t
)
,v
(
t
))
,t
∈
(0
,
1)
,
u
(0) =
u
0
(1) = 0
,
v
(0) =
v
0
(1) = 0
)
•
3
5
,
Ù
¥
f,g
: [0
,
1]
×
[0
,
+
∞
)
×
[0
,
+
∞
)
→
[0
,
+
∞
)
ë
Y
.
É
þ
ã
©
z
é
u
,
©
Ä
k
|
^
Leray-Schauder
ö
J
y
²
¯
K
−
u
00
=
f
(
t,u
(
t
)
,v
(
t
))
,t
∈
(0
,
1)
,
−
v
00
=
g
(
t,u
(
t
)
,v
(
t
))
,t
∈
(0
,
1)
,
u
(0) =
u
0
(1) = 0
,
v
(0) =
v
0
(1) = 0
(1
.
1)
)
•
3
5
,
2
Ï
L
Banach
Ø
N
”
n
¯
K
(1.1)
)
•
˜
5
.
DOI:10.12677/pm.2021.1161341213
n
Ø
ê
Æ
2.
ý
•
£
©
Ì
‡
ó
ä
´
X
e
½
n
:
Ú
n
2.1.
[9](Banach
Ø
N
”
n
)
(
x,ρ
)
´
Ý
þ
˜
m
,
T
:
X
→
X
•
Ø
N
,
@
o
N
T
3
X
S
k
…
•
k
˜
‡
Ø
Ä:
.
Ú
n
2.2.
[9](Arzela-Ascoli
½
n
)
8
Ü
M
⊂
C
(
J,R
1
)
ƒ
é
;
¿
©
7
‡
^
‡
´
µ
(i)
8
Ü
M
¥
¼
ê
˜
—
k
.
,
=
•
3
~
ê
K>
0,
¦
é
˜
ƒ
u
=
u
(
t
)
∈
M
Ñ
k
|
u
(
t
)
|≤
K
,
∀
t
∈
J
;
(ii)
8
Ü
M
¥
¼
ê
Ý
ë
Y
,
=
é
?
‰
ε>
0,
•
3
δ
=
δ
(
ε
),
¦
t
1
∈
J,t
2
∈
J,
|
t
1
−
t
2
|
<δ
ž
,
é
?
‰
u
=
u
(
t
)
∈
M
,
Ñ
k
|
u
(
t
1
)
−
u
(
t
2
)
|
<ε
.
Ú
n
2.3.
[10](Leray-Schauder
ö
J
)
F
:
E
→
E
´
˜
‡
ë
Y
Ž
f
.
K
f
8
e
(
F
)
‡
o
Ã
.
,
‡
o
F
–
k
˜
‡
Ø
Ä:
,
Ù
¥
e
(
F
) =
{
x
∈
E
:
x
= Θ
F
(
x
)
,
0
<
Θ
<
1
}
.
3.
Ì
‡
(
J
9
Ù
y
²
©
ó
Š
˜
m
´¢
Banach
˜
m
E
=
C
[0
,
1],
‰
ê
•
||
u
||
=max
{|
u
(
t
)
|
:
t
∈
[0
,
1]
}
,
P
I
P
=
{
u
∈
C
[0
,
1] :
u
(
t
)
≥
0
,t
∈
[0
,
1]
}
,
K
P
⊂
E
.
½
Â
||
(
u,v
)
||
=
||
u
||
+
||
v
||
,
(
u,v
)
∈
E
2
,
Ù
¥
E
2
=
E
×
E
´
½
Â
3
þ
ã
‰
ê
e
¢
Banach
˜
m
…
P
2
⊂
E
2
.
à
g
¯
K
(
−
u
00
= 0
,
u
(0) =
u
0
(1) = 0
Green
¼
ê
•
G
(
t,s
) =
s,
0
≤
s
≤
t
≤
1
,
t,
0
≤
t
≤
s
≤
1
,
Ù
¥
G
(
t,s
)
≥
0
,
…
´
•
∀
t,s
∈
[0
,
1],
k
G
(
t,s
)
≤
G
(
s,s
)
¤
á
.
‡
©
X
Ú
(1
.
1)
k
)
…
=
È
©•
§
|
u
(
t
) =
R
1
0
G
(
t,s
)
f
(
s,u
(
s
)
,v
(
s
))
ds,
v
(
t
) =
R
1
0
G
(
t,s
)
g
(
s,u
(
s
)
,v
(
s
))
ds
(3
.
1)
k
)
.
DOI:10.12677/pm.2021.1161341214
n
Ø
ê
Æ
X
e
½
Â
Ž
f
A
1
,A
2
,A
µ
A
1
(
u,v
)(
t
) =
Z
1
0
G
(
t,s
)
f
(
s,u
(
s
)
,v
(
s
))
ds,
A
2
(
u,v
)(
t
) =
Z
1
0
G
(
t,s
)
g
(
s,u
(
s
)
,v
(
s
))
ds,
A
(
u,v
)(
t
) = (
A
1
(
u,v
)(
t
)
,A
2
(
u,v
)(
t
))
.
(3
.
2)
K
A
1
,A
2
:
P
2
→
P
Ú
A
:
P
2
→
P
2
.
w
,
‡
©
X
Ú
(1
.
1)
Œ
)
5
d
u
Ž
f
•
§
A
k
Ø
Ä:
.
©
Ì
‡
(
J
´
½
n
3.1.
f,g
:[0
,
1]
×
[0
,
+
∞
)
×
[0
,
+
∞
)
→
[0
,
+
∞
)
ë
Y
,
…
•
3
~
ê
α
i
,γ
i
>
0(
i
=1
,
2)
…
α
0
,γ
0
>
0
,
∀
u
i
,v
i
∈
[0
,
∞
)
,i
= 1
,
2
¦
|
f
(
t,u
1
,v
2
)
|≤
α
0
+
α
1
|
u
1
|
+
α
2
|
u
2
|
,
|
g
(
t,u
1
,v
2
)
|≤
γ
0
+
γ
1
|
u
1
|
+
γ
2
|
u
2
|
.
K
max
{
ω
1
,ω
2
}
<
1
,
Ù
¥
ω
1
=
1
2
(
α
1
+
γ
1
)
,ω
2
=
1
2
(
α
2
+
γ
2
)
,ω
0
=
1
2
(
α
0
+
γ
0
).
X
Ú
(1
.
1)
–
k
˜
‡
)
.
y
²
Ä
k
y
Ž
f
A
´
P
2
→
P
2
ë
Y
Ž
f
.
du
f,g
´
ë
Y
¼
ê
,
l
A
1
,A
2
´
ë
Y
Ž
f
,
K
A
´
ë
Y
Ž
f
.
Ω
´
P
×
P
¥
k
.
8
,
K
∃
M
3
>
0,
¦
é
∀
(
u,v
)
∈
Ω,
|
f
|≤
M
3
.
||
A
1
(
u,v
)(
t
)
||
=
|
Z
1
0
G
(
t,s
)
f
(
s,u
(
s
)
,v
(
s
))
ds
|
≤
Z
1
0
G
(
s,s
)
M
3
ds
≤
M
3
2
.
A
1
(Ω)
˜
—
k
.
.
Ó
n
Œ
||
A
2
(
u,v
)(
t
)
||
=
Z
1
0
G
(
t,s
)
g
(
s,u
(
s
)
,v
(
s
))
ds
≤
Z
1
0
G
(
s,s
)
N
3
ds
≤
N
3
2
,
Ù
¥
N
3
>
0,
|
g
|≤
N
3
.
A
2
(Ω)
˜
—
k
.
.
DOI:10.12677/pm.2021.1161341215
n
Ø
ê
Æ
d
d
Œ
•
∃
M
3
,N
3
>
0
,
¦
||
A
(
u,v
)(
t
)
||
=
||
(
A
1
(
u,v
)(
t
)
||
+
||
A
2
(
u,v
)(
t
))
||≤
M
3
2
+
N
3
2
,
A
(Ω)
˜
—
k
.
.
Ï
•
Green
¼
ê
3
0
≤
t,s
≤
1
þ
ë
Y
,
d
4
«
m
þ
ë
Y
¼
ê
˜
—
ë
Y5
Œ
•
,Green
¼
ê
3
«
m
[0
,
1]
þ
˜
—
ë
Y
,
=
é
∀
ε>
0
,
∃
δ
¦
é
∀
t
1
,t
2
∈
[0
,
1],
…
|
t
1
−
t
1
|
<δ
,
∀
s
∈
[0
,
1],
k
|
G
(
t
2
,s
)
−
G
(
t
1
,s
)
|
<
ε
M
3
,
é
∀
u,v
∈
Ω,
|
t
1
−
t
1
|
<δ
1
ž
,
k
||
A
1
(
u,v
)(
t
2
)
−
A
1
(
u,v
)(
t
1
)
||
=
Z
1
0
G
(
t
2
,s
)
f
(
s,u
(
s
)
,v
(
s
))
ds
−
Z
1
0
G
(
t
1
,s
)
f
(
s,u
(
s
)
,v
(
s
))
ds
≤
Z
1
0
M
3
G
(
t
2
,s
)
−
G
(
t
1
,s
)
ds
≤
ε,
A
1
(Ω)
Ý
ë
Y
.
Ó
n
∀
u,v
∈
Ω ,
|
t
1
−
t
1
|
<δ
2
ž
,
k
||
A
2
(
u,v
)(
t
2
)
−
A
2
(
u,v
)(
t
1
)
||
=
Z
1
0
G
(
t
2
,s
)
g
(
s,u
(
s
)
,v
(
s
))
ds
−
Z
1
0
G
(
t
1
,s
)
g
(
s,u
(
s
)
,v
(
s
))
ds
≤
Z
1
0
N
3
G
(
t
2
,s
)
−
G
(
t
1
,s
)
ds
≤
ε,
A
2
(Ω)
Ý
ë
Y
.
é
∀
u,v
∈
Ω,
δ
= min(
δ
1
,δ
2
),
|
t
1
−
t
1
|
<δ
,
k
||
A
(
u,v
)(
t
2
)
−
A
(
u,v
)(
t
1
)
||
=
(
A
1
(
u,v
)(
t
2
)
,A
2
(
u,v
)(
t
2
))
−
(
A
1
(
u,v
)(
t
1
)
,A
2
(
u,v
)(
t
1
)
=
(
A
1
(
u,v
)(
t
2
)
−
A
1
(
u,v
)(
t
1
))
+
(
A
2
(
u,v
)(
t
2
)
−
A
2
(
u,v
)(
t
1
))
≤
2
ε,
A
(Ω)
Ý
ë
Y
.
Ï
d
d
Arzela-Ascoli’s
½
n
•
A
´
ë
Y
Ž
f
.
½
Â
Θ(
A
)=
{
(
u,v
)
∈
P
×
P
:(
u,v
)=
ϑA
(
u,v
);0
≤
ϑ
≤
1
}
.
é
(
u,v
)
∈
Θ
A
.
k
(
u,v
)=
ϑA
(
u,v
).
é
∀
t
∈
[0
,
1],
k
u
(
t
) =
ϑA
1
(
u,v
)(
t
)
,v
(
t
) =
ϑA
2
(
u,v
)(
t
)
DOI:10.12677/pm.2021.1161341216
n
Ø
ê
Æ
|
u
(
t
)
|
=
|
ϑA
1
(
u,v
)(
t
)
|
≤|
A
1
(
u,v
)(
t
)
|
≤|
Z
1
0
G
(
s,s
)
f
(
s,u
(
s
)
,v
(
s
))
ds
|
≤
1
2
(
α
0
+
α
1
|
u
1
|
+
α
2
|
u
2
|
)
,
Š
â
‰
ê
½
Â
k
||
u
(
t
)
||≤
1
2
(
α
0
+
α
1
||
u
1
||
+
α
2
||
u
2
||
)
.
Ó
·
‚
k
||
v
(
t
)
||≤
1
2
(
γ
0
+
γ
1
||
u
1
||
+
γ
2
||
u
2
||
)
.
d
‰
ê
||
(
u,v
)
||
=
||
u
||
+
||
v
||
,
•
||
u
||
+
||
v
||
=
1
2
(
α
0
+
α
1
||
u
1
||
+
α
2
||
u
2
||
)+
1
2
(
γ
0
+
γ
1
||
u
1
||
+
γ
2
||
u
2
||
)
≤
1
2
(
α
0
+
γ
0
)+max
{
1
2
(
α
1
+
γ
1
)
,
1
2
(
α
2
+
γ
2
)
}
(
||
u
||
+
||
v
||
)
K
é
∀
t
∈
[0
,
1]
||
(
u,v
)
||≤
ω
0
1
−
max
{
ω
1
,ω
2
}
l
8
Ü
Θ(
A
)
k
.
.
d
Ú
n
(3
.
2)
•
Ž
f
A
–
k
˜
‡
Ø
Ä:
,
=
¯
K
(1
.
1)
k
)
.
½
n
3.2
f,g
:[0
,
1]
×
[0
,
+
∞
)
×
[0
,
+
∞
)
→
[0
,
+
∞
)
ë
Y
,
¿
…
•
3
K
i
,L
i
>
0,
é
∀
t
∈
[0
,
1]
,u
i
,v
i
∈
[0
,
∞
)
,i
= 1
,
2,
÷
v
Lipschitz
^
‡
|
f
(
t,u
1
,v
1
)
−
f
(
t,u
2
,v
2
)
≤
K
1
|
u
1
−
u
2
|
+
L
1
|
v
1
−
v
2
|
,
|
g
(
t,u
1
,v
1
)
−
g
(
t,u
2
,v
2
)
≤
K
2
|
u
1
−
u
2
|
+
L
2
|
v
1
−
v
2
|
.
X
J
M
2
+
N
2
<
1
,
(3
.
3)
Ù
¥
M
= max
{
K
1
,L
1
}
,N
= max
{
K
2
,L
2
}
.
K
X
Ú
(1.1)
3
B
r
þ
k
•
˜
)
.
y
²
P
M
1
=sup
t
∈
[0
,
1]
|
f
(
t,
0
,
0)
|
,M
2
=sup
t
∈
[0
,
1]
|
g
(
t,
0
,
0)
|
,
B
r
=
{
(
u,v
)
∈
P
×
P
:
||
(
u,v
)
||≤
r
}
,
Ù
¥
r
≥
M
1
2
+
M
2
2
1
−
M
2
−
N
2
.
DOI:10.12677/pm.2021.1161341217
n
Ø
ê
Æ
Ä
k
y
²
AB
r
⊂
B
r
,
é
?
¿
(
u,v
)
∈
B
r
,t
∈
[0
,
1],
k
|
f
(
t,u
(
t
)
,v
(
t
))
|≤|
f
(
t,u
(
t
)
,v
(
t
))
−
f
(
t,
0
,
0)+
f
(
t,
0
,
0)
|
≤
K
1
|
u
(
t
)
|
+
L
1
|
v
(
t
)
|
+
M
1
≤
M
(
||
u
(
t
)
||
+
||
v
(
t
)
||
)+
M
1
≤
M
||
(
u,v
)
||
+
M
1
≤
Mr
+
M
1
.
(3
.
4)
Ó
n
Œ
y
|
g
(
t,u
(
t
)
,v
(
t
))
|≤
Nr
+
M
2
.
(3
.
5)
d
(3.4)
Ú
(3.5)
||
A
1
(
u,v
)
||
=max
t
∈
[0
,
1]
|
A
1
(
u,v
)(
t
)
|
≤
Z
1
0
G
(
s,s
)
|
f
(
s,u
(
s
)
,v
(
s
))
|
ds
≤
Z
1
0
G
(
s,s
)(
Mr
+
M
1
)
ds
≤
1
2
(
Mr
+
M
1
)
.
(3
.
6)
Ó
Œ
||
A
2
(
u,v
)
||≤
1
2
(
Nr
+
M
2
)
.
(3
.
7)
d
(3.6)
Ú
(3.7)
||
A
(
u,v
)
||
=
||
A
1
(
u,v
)
||
+
||
A
2
(
u,v
)
||≤
r,
=
AB
r
⊂
B
r
.
y
3
y
²
A
´
Ø
Ž
f
,
é
?
¿
(
u
1
,v
1
)
,
(
u
2
,v
2
)
∈
B
r
,
t
∈
[0
,
1],
k
||
A
1
(
u
2
,v
2
)(
t
)
−
A
1
(
u
1
,v
1
)(
t
)
||
=
Z
1
0
G
(
t,s
)
f
(
s,u
2
(
s
)
,v
2
(
s
))
ds
−
Z
1
0
G
(
t,s
)
f
(
s,u
1
(
s
)
,v
1
(
s
))
ds
≤
Z
1
0
G
(
s,s
)
f
(
s,u
2
(
s
)
,v
2
(
s
))
−
f
(
s,u
1
(
s
)
,v
1
(
s
))
ds
≤
Z
1
0
G
(
s,s
)(
K
1
|
u
2
(
s
)
−
u
1
(
s
)
|
+
L
1
|
v
2
(
s
)
−
v
1
(
s
)
|
)
ds
≤
Z
1
0
G
(
s,s
)(
K
1
||
u
2
−
u
1
||
+
L
1
||
v
2
−
v
1
||
)
ds
≤
M
Z
1
0
G
(
s,s
)(
||
u
2
−
u
1
||
+
||
v
2
−
v
1
||
)
ds
=
M
2
(
||
u
2
−
u
1
||
+
||
v
2
−
v
1
||
)
.
DOI:10.12677/pm.2021.1161341218
n
Ø
ê
Æ
Ó
n
||
A
2
(
u
2
,v
2
(
t
))
−
A
2
(
u
1
,v
1
(
t
))
||
=
Z
1
0
G
(
t,s
)
g
(
s,u
2
(
s
)
,v
2
(
s
))
ds
−
Z
1
0
G
(
t,s
)
g
(
s,u
1
(
s
)
,v
1
(
s
))
ds
≤
Z
1
0
G
(
s,s
)
g
(
s,u
2
(
s
)
,v
2
(
s
))
−
g
(
s,u
1
(
s
)
,v
1
(
s
))
ds
≤
Z
1
0
G
(
s,s
)(
K
2
|
u
2
(
s
)
−
u
1
(
s
)
|
+
L
2
|
v
2
(
s
)
−
v
1
(
s
)
|
ds
≤
Z
1
0
G
(
s,s
)(
K
2
||
u
2
−
u
1
||
+
L
2
||
v
2
−
v
1
||
)
ds
≤
N
Z
1
0
G
(
s,s
)(
||
u
2
−
u
1
||
+
||
v
2
−
v
1
||
)
ds
=
N
2
(
||
u
2
−
u
1
||
+
||
v
2
−
v
1
||
)
.
Ï
d
||
A
(
u
2
,v
2
)(
t
)
−
A
(
u
1
,v
1
)(
t
)
||
=
(
A
1
(
u
2
,v
2
)(
t
)
,A
2
(
u
2
,v
2
)(
t
))
−
(
A
1
(
u
1
,v
1
)(
t
)
,A
2
(
u
1
,v
1
)(
t
))
=
(
A
1
(
u
2
,v
2
)(
t
)
−
A
1
(
u
1
,v
1
)(
t
))
,
(
A
2
(
u
2
,v
2
)(
t
)
−
A
2
(
u
1
,v
1
)(
t
))
≤
(
M
2
+
N
2
)(
||
u
2
−
u
1
||
+
||
v
2
−
v
1
||
)
.
d
(3
.
3)
•
,
A
(
u,v
)(
t
)
•
B
r
→
B
r
Ø
Ž
f
.
Ï
d
d
Banach
Ø
N
”
n
•
Ž
f
•
§
(3.2)
k
•
˜
Ø
Ä:
(
u,v
),
=
¯
K
(1
.
1)
k
•
˜
)
(
u,v
),
¦
A
(
u,v
) = (
u,v
).
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
(11561063).
ë
•
©
z
[1]Grigorian,G.A.(2021)OntheReducibilityofSystemsofTwoLinearFirst-OrderOrdinary
DifferentialEquations.
Monatsheftef¨urMathematik
,
195
,107-117.
https://doi.org/10.1007/s00605-020-01503-7
[2]Maksimov,V.I.(2021)TheMethodsofDynamicalReconstructionofanInputinaSystemof
OrdinaryDifferentialEquations.
JournalofInverseandIll-PosedProblems
,
29
,125-156.
https://doi.org/10.1515/jiip-2020-0040
[3]Gainetdinova,A.A.andGazizov,R.K.(2020)IntegrationofSystemsofTwoSecond-Order
OrdinaryDifferential EquationswithaSmallParameterThatAdmitFourEssential Operators.
DOI:10.12677/pm.2021.1161341219
n
Ø
ê
Æ
Sibirskie
`
ElektronnyeMatematicheskieIzvestiya
,
17
,604-614.
https://doi.org/10.33048/semi.2020.17.039
[4]Filimonov, M.Yu. (2020) GlobalAsymptotic Stability with Respect to Part of theVariables for
SolutionsofSystemsofOrdinaryDifferentialEquations.
DifferentialEquations
,
56
,710-720.
https://doi.org/10.1134/S001226612006004X
[5]Ma,R.Y.(2000)MultipleNonnegativeSolutionsofSecond-OrderSystemofBoundaryValue
Problem.
NonlinearAnalysis:Theory,MethodsandApplications
,
42
,1003-1010.
https://doi.org/10.1016/S0362-546X(99)00152-2
[6]
ƒ
.
˜
a
~
‡
©•
§
|
>
Š
¯
K
n
‡
)
[J].
A^
•
¼
©
Û
Æ
,2000,2(4):
349-352.
[7]
“
,
š
²
k
.
š
‚
5
~
‡
©•
§
|
>
Š
¯
K
)
[J].
ê
ÆÆ
,2000,47(1):111-118.
[8]Yang,Z.L.,Wang,X.M.andLi,H.Y.(2020)PositiveSolutionsforSystemofSecond-Order
QuasilinearBoundaryValueProblems.
NonlinearAnalysis
,
195
,ArticleID:111749.
https://doi.org/10.1016/j.na.2020.111749
[9]
H
Œ
þ
,
š
²
k
,
4
î
n
,
š
‚
5
~
‡
©•
§
•
¼
•{
[M].
1
2
‡
.
L
H
:
ì
À
‰
Æ
E
â
Ñ
‡
,
2006.
[10]
H
Œ
þ
.
š
‚
5
•
¼
©
Û
[M].
1
2
‡
.
L
H
:
ì
À
‰
Æ
E
â
Ñ
‡
,2003.
DOI:10.12677/pm.2021.1161341220
n
Ø
ê
Æ