设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2021,11(7),1379-1388
PublishedOnlineJuly2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.117155
‘
k
{
z
Monod-Haldane
.
R-M
Ó
ö
-
.
Û
Ü
-
½
5
©
Û
yyy
ššš
___
§§§
æææ
œœœ
Ü
“
‰
Œ
Æ
§
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Email:2677737928@qq.com
Â
v
F
Ï
µ
2021
c
6
11
F
¶
¹
^
F
Ï
µ
2021
c
7
13
F
¶
u
Ù
F
Ï
µ
2021
c
7
21
F
Á
‡
©
ï
Ä
‘
k
{
z
Monod-Haldane
.
Rosenzweig-MacArthur
Ó
ö
-
.
"
Ä
k
|
^
Routh-Hurwitz
â
?
Ø
~
‡
©•
§
.
¤
k
²
ï
:
•
3
5
Ú
Û
Ü
-
½
5
"
,
©
Û
3
˜
½
^
‡
e
§
²
ï
:
E
∗
?
)
Hopf
©
|
"
'
…
c
Rosenzweig-MacArthur
.
§
{
z
Monod-Haldane
.
õ
U
‡
A
§
Hopf
©
|
LocalStabilityAnalysiswithSimplified
Monod-HaldaneR-MPredator-Prey
Model
ChenxiaSong,YafeiYang
SchoolofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Email:2677737928@qq.com
Received:Jun.11
th
,2021;accepted:Jul.13
th
,2021;published:Jul.21
st
,2021
©
Ù
Ú
^
:
y
š
_
,
æ
œ
.
‘
k
{
z
Monod-Haldane
.
R-M
Ó
ö
-
.
Û
Ü
-
½
5
©
Û
[J].
n
Ø
ê
Æ
,
2021,11(7):1379-1388.DOI:10.12677/pm.2021.117155
y
š
_
§
æ
œ
Abstract
Inthispaper,Rosenzweig-MacArthurpredator-preymodelwithsimplifiedMonod-
Haldanetypeisstudied.Firstly,theexistenceandlocalstabilityofallequilibrium
pointsofordinarydifferentialmodelarediscussed.Thenanalyzethatundercertain
conditions,Hopfbranchesaregeneratedatthepositiveequilibrium
E
∗
.
Keywords
Rosenzweig-MacArthurModel, SimplifiedMonod-HaldaneFunctionalResponse, Hopf
Branch
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
g
l
Lotka
Ú
Volterra
ó
Š
±
5
,
Ó
ö
†
Ô
ƒ
p
Š
^
˜
†
´ê
Æ
Ú
)
Æ
¥
9
€
{
K
,
¿
…
„
Ð
«
)
X
Ú
´
L
)
Ô
õ
5
.
c
ï
Ä
Ó
ö
-
ƒ
p
Š
^
ê
Æ
.
k
é
õ
,
Ù
¥ƒ
˜
´
Rosenzweig-MacArthur
.
[1][2][3].1963
c
,Gause[4]
J
Ñ
X
e
.
:
d
B
d
t
=
rB
(1
−
B
)
−
αθ
θ
+
B
BR,
d
R
d
t
=
−
δR
+
ζαθ
θ
+
B
BR,
Ù
¥
B
Ú
R
©
OL
«
Ú
Ó
ö3
t
ž
•
«
+
—
Ý
.
r
L
«
S
O
•
Ç
.
φ
(
B
)=
αθB
θ
+
B
´
Holling
¼
ê
[5],
L
«
Ó
ö
Ó
Ç
.
δ
•
Ó
ö
«
+
g
,
k
Ç
.
ζ
•
=
z
Ç
.
5
Rosenzweig-MacArthur
.
¤
ï
Ä
9
Œ
.
'
u
Rosenzweig-MacArthur
Ä
•
¡
,
©
z
[6] [7]
º
L
8
Ø
Å
›
.
©
z
[8]
•
Ä
ä
k
Allee
A
Rosenzweig-MacArthur
.
,
,
ï
á
²
ï
:
•
3
^
‡9
Û
Ü
-
½
5
,
¿
y
²
3
²
ï
:
±
Œ
•
3
4
•
‚
.
‘
,
©
z
[9][10]
©
Û
‘
k
o
«
Rosenzweig-MacArthur
.
-
½
5
Ú
Hopf
©
|
•
3
5
.
…
, Javidi
Ú
Nyamoradi[11]
ï
Ä
‘
k
Â
¼
‘
©
ê
Rosenzweig-MacArthur
.
Û
Ü
-
½
5
.
DOI:10.12677/pm.2021.1171551380
n
Ø
ê
Æ
y
š
_
§
æ
œ
õ
U
‡
A
3
Ä
å
Æ
[12]
ï
Ä
¥
å
X
š
~
-
‡
Š
^
,
Ù
¥
˜
«
´
Holling-II
.
õ
U
‡
A
[13]
§
´
•
~
^
õ
U
‡
A
¼
ê
.
3
©
z
[14]
¥
,Beay
<
é
‘
k
c
#
(
Holling-II
.
Rosenzweig-
MacArthur
.
?
1
ï
Ä
,
©
Û
X
Ú
¤
k
²
ï
:
-
½
5
Ú
Hopf
©
|
•
3
5
.
•
C
, Kruff,
Lax
Ú
Liebscher
<
3
©
z
[15]
¥
ï
á
˜
‡
{
ü
‘
a
q
[15]
~
‡
©•
§
|
§
Ù
/
ª
•
d
B
d
t
=
rB
(1
−
B
)
−
αBH,
d
S
d
t
=
−
ηS
+
γBH,
d
H
d
t
=
βS
−
δH
+
ηS
−
γBH,
(1
.
1)
Ù
¥
S
Ú
H
©
OL
«
>
E
Ú
ö
Ó
ö
«
+
—
Ý
,
r
L
«
S
O
•
Ç
,
α
•
Ó
ö
Ó
„
Ç
,
δ
•
Ó
ö
«
+
g
,
k
Ç
.
ζ
•
=
z
Ç
,
β
•
·
E
Ó
ö
Ñ
)
Ç
,
η
•
·
E
Ó
ö
ˆ
£
ö
„
Ç
,
γ
•
Ó
ö
ö
r
Ý
,
¤
k
ë
ê
þ
•
.
‘
(
½
¤
k
Œ
U
‘
Û
É
Ä
,
u
y
Hopf
©
|
u
)
3
‘
X
Ú
S
Ü
²
ï
:
?
.
w
,
,
3
X
Ú
(1.1)
¥
Ó
ö
é
Ù
õ
U
‡
A
´
‚
5
.
,
,
3
)
Ô
Æ
¿Â
e
,
‚
5
õ
U
‡
A
é
Ó
þ
v
k
•
›
,
Ï
d
·
‚
ò
X
Ú
(1.1)
¥
‚
5
õ
U
‡
A
O
†
•
{
z
Monod-Haldane
.
,
l
/
¤
±
e
.
d
B
d
t
=
rB
(1
−
B
K
)
−
αBH
a
+
B
2
,
d
S
d
t
=
−
ηS
+
eαBH
a
+
B
2
,
d
H
d
t
=
βS
−
δH
+
ηS
−
eαBH
a
+
B
2
,
(1
.
2)
Ù
¥
K
•
‚
¸
N
B
þ
,
e
•
=
z
Ç
,
αB
a
+
B
2
•
{
z
Monod-Haldane
.
õ
U
‡
A
.
Ï
L
Ã
þ
j
C
†
x
=
B
K
,y
= (
β
+
η
)
S,z
=
αH
r
,t
=
τ
r
,
¿
E
P
τ
•
t
,
K
X
Ú
(1.2)
Œ
z
•
d
x
d
t
=
x
(1
−
x
)
−
xz
a
+
x
2
,
d
y
d
t
=
−
α
1
y
+
α
2
xz
a
+
x
2
,
d
z
d
t
=
β
1
y
−
β
2
z
−
β
3
xz
a
+
x
2
.
(1
.
3)
Ù
¥
α
1
=
η
r
,α
2
=
eK
(
β
+
η
)
,β
1
=
α
r
,β
2
=
δ
r
,β
3
=
e,
X
Ú
(1.3)
¤
k
ë
ê
þ
•
~
ê
,
K
•
‚
¸
«
1
U
å
.
©
(
|
„
X
e
:
3
1
2
!
¥
,
·
‚
‰
Ñ
X
Ú
(1.3)
¤
k
²
ï
:
,
¿
‰
Ñ
Û
Ü
-
½
5
DOI:10.12677/pm.2021.1171551381
n
Ø
ê
Æ
y
š
_
§
æ
œ
^
‡
.
3
1
3
!
¥
,
y
²
3
²
ï
:
E
∗
?
)
Hopf
©
|
.
3
1
4
!
¥
Ñ
(
Ø
.
2.
²
ï
:
•
3
5
Ú
-
½
5
2.1.
²
ï
:
•
3
5
é
u
.
(1.3),
(i)
o
•
3
²
…
²
ï
:
E
0
= (0
,
0
,
0)
Ú
Œ
²
…
²
ï
:
E
1
= (1
,
0
,
0);
(ii)
(
H
1
)
α
2
α
1
>
β
3
+
β
2
(1+
a
)
β
1
¤
á
,
…
4
= (
α
1
β
3
−
β
1
α
2
)
2
−
4
α
2
1
β
2
2
a
= 0
ž
,
X
Ú
(1.3)
•
3
•
˜
~
ê
²
ï
:
E
∗
= (
x
∗
,y
∗
,z
∗
),
Ù
¥
x
∗
=
α
2
β
1
−
α
1
β
3
2
α
1
β
2
,y
∗
=
α
2
α
1
x
∗
(1
−
x
∗
)
,z
∗
= (1
−
x
∗
)(
a
+
x
∗
2
)
.
•
{
z
E
∗
?
Jacobi
Ý
9
ƒ
A
A
•
§
L
«
†
©
Û
,
P
m
=
α
2
β
1
−
α
1
β
3
>
0 (
d
(
H
1
)).
u
´
,
x
∗
=
m
2
α
1
β
2
.
2.2.
²
ï
:
Û
Ü
-
½
5
X
Ú
(1.3)
3
(
x,y.z
)
?
Jacobi
Ý
X
e
J
=
1
−
2
x
+
(
x
2
−
a
)(1
−
x
)
a
+
x
2
0
−
x
a
+
x
2
−
α
2
(
x
2
−
a
)(1
−
x
)
a
+
x
2
−
α
1
α
2
x
a
+
x
2
β
3
(
x
2
−
a
)(1
−
x
)
a
+
x
2
β
1
−
β
2
−
β
3
x
a
+
x
2
,
(1)
e
¡
Ï
L
O
Ž
X
Ú
(1.3)
3
z
‡
²
ï
:
?
Jacobi
Ý
A
Š
,
5
(
½
ù
²
ï
:
-
½
5
.
½
n
1
(i)
²
…
²
ï
:
E
0
= (0
,
0
,
0)
´
Ã
^
‡
Ø
-
½
.
(ii)
e
^
‡
(
H
1
)
¤
á
,
K
Œ
²
…
²
ï
:
E
1
= (1
,
0
,
0)
Ø
-
½
;
Ä
K
E
1
´
Û
Ü
ì
C
-
½
.
y
²
(i)
X
Ú
(1.3)
3
²
ï
:
E
0
?
Jacobi
Ý
•
J
E
0
=
100
0
−
α
1
0
0
β
1
−
β
2
.
(2)
DOI:10.12677/pm.2021.1171551382
n
Ø
ê
Æ
y
š
_
§
æ
œ
Ý
(2)
A
Š
•
λ
1
= 1
,λ
2
=
−
α
1
Ú
λ
3
=
−
β
2
.
Ï
d
,
²
ï
:
E
0
´
Ø
-
½
.
(ii)
X
Ú
(1.3)
3
²
ï
:
E
1
?
Jacobi
Ý
•
J
E
1
=
−
10
−
1
1+
a
0
−
α
1
α
2
1+
a
0
β
1
−
β
2
−
β
3
1+
a
.
(3)
Ý
(3)
A
•
§
•
(
λ
+1)
λ
2
+
α
1
+
β
2
+
β
3
1+
a
λ
+
α
1
β
2
+
α
1
β
3
−
α
2
β
1
1+
a
= 0
.
¤
±
,
Ý
(3)
A
Š
•
λ
1
=
−
1
,λ
2
Ú
λ
3
,
¿
…
λ
2
+
λ
3
=
−
α
1
+
β
2
+
β
3
1+
a
<
0
,
λ
2
λ
3
=
α
1
β
2
+
α
1
β
3
−
α
2
β
1
1+
a
.
(
H
1
)
¤
á
ž
,
k
α
1
β
2
(1+
a
)+
α
1
β
3
−
α
2
β
1
<
0
,
λ
2
λ
3
<
0,
l
²
ï
:
E
1
´
Ø
-
½
;
‡
ƒ
,
E
1
´
Û
Ü
ì
C
-
½
.
½
n
2
b
2
x
−
d
+2
β
2
c
2
β
2
c
>
0
,
…
α
1
α
2
>
β
1
β
3
¤
á
ž
.
e
÷
v
(
H
2
)(
s
+
t
)
h
st
+
α
1
β
2
+
2
mβ
2
(
α
1
β
3
−
α
2
β
1
)
c
+
mβ
3
d
c
2
i
>
h
tα
1
β
2
+
m
(
α
1
β
3
−
α
2
β
1
)(2
tcβ
2
+
d
)
c
2
i
,
Ù
¥
s
=
α
1
+
β
2
+
2
mβ
2
β
3
c
>
0
,t
= 2
x
−
d
+2
β
2
c
2
β
2
c
>
0
.
K
X
Ú
(1.3)
~
ê
²
ï
:
E
∗
´
Û
Ü
ì
C
-
½
.
‡
L
5
,
e
(
H
2
)
Ø
¤
á
,
K
E
∗
´
Ø
-
½
.
y
²
X
Ú
(1.3)
3
~
ê
²
ï
:
E
∗
?
Jacobi
Ý
•
J
E
∗
=
−
2
x
∗
+
d
+2
β
2
c
2
β
2
c
0
−
2
mβ
2
c
−
α
2
d
2
β
2
c
−
α
1
2
mα
2
β
2
c
β
3
d
2
β
2
c
β
1
−
β
2
−
2
mβ
2
β
3
c
.
(4)
DOI:10.12677/pm.2021.1171551383
n
Ø
ê
Æ
y
š
_
§
æ
œ
Ù
¥
c
=
m
2
α
1
+4
aα
1
β
2
2
>
0,
d
=
2
m
2
β
2
α
1
−
8
aα
1
β
3
2
−
m
3
α
2
1
+4
amβ
2
2
Ý
(4)
A
•
§
•
λ
3
+
N
1
λ
2
+
N
2
λ
+
N
3
= 0
.
(5)
Ù
¥
N
1
=
s
+
t,
N
2
=
st
+
α
1
β
2
+
2
mβ
2
(
α
1
β
3
−
α
2
β
1
)
c
+
mdβ
3
c
2
,
N
3
=
t
α
1
β
2
+
2
mβ
2
(
α
1
β
3
−
α
2
β
1
)
c
+
md
(
α
1
β
3
−
α
2
β
1
)
c
2
,
w
,
,
N
1
>
0.
d
^
‡
(
H
1
)
Œ
•
,
N
3
>
0.
d
ž
,
N
1
N
2
−
N
3
=(
s
+
t
)
st
+
α
1
β
2
+
2
mβ
2
(
α
1
β
3
−
α
2
β
1
)
c
+
mβ
3
d
c
2
−
t
α
1
β
2
+
2
mβ
2
(
α
1
β
3
−
α
2
β
1
)
c
−
md
(
α
1
β
3
−
α
2
β
1
)
c
2
=(
s
+
t
)
st
+
α
1
β
2
+
2
mβ
2
(
α
1
β
3
−
α
2
β
1
)
c
+
mβ
3
d
c
2
−
tα
1
β
2
+
m
(
α
1
β
3
−
α
2
β
1
)(2
tcβ
2
+
d
)
c
2
.
(6)
Ï
d
,
^
‡
(
H
2
)
¤
á
ž
,
N
1
>
0,
N
3
>
0,
N
1
N
2
−
N
3
>
0,
d
Routh-Hurwitz
â
Œ
•
,
A
•
§
(5)
Š
þä
k
K
¢
Ü
,
?
X
Ú
(1.3)
~
ê
²
ï
:
E
∗
´
Û
Ü
ì
C
-
½
.
‡
ƒ
,
A
•
§
(5)
Š
Ø
k
K
¢
Ü
…
¢
ÜØ
•
"
,
Ï
d
~
ê
²
ï
:
E
∗
´
Ø
-
½
.
3.Hopf
©
|
•
3
5
!
À
ë
ê
β
1
5
ï
Ä
X
Ú
(1.3)
3
~
ê
²
ï
:
E
∗
?
Hopf
©
|
•
3
5
.
Ú
n
3
b
^
‡
(
H
1
)
¤
á
,
K
•
3
β
∗
1
>
0,
¦
β
1
=
β
∗
1
ž
,
N
1
(
β
∗
1
)
N
2
(
β
∗
1
)
−
N
3
(
β
∗
1
) = 0.
y
²
-
<
(
s
) = (
N
1
N
2
−
N
3
)(
s
) = 0
.
<
(
s
) =
b
1
(
β
1
)
s
2
+
b
2
(
β
1
)
s
+
b
3
(
β
1
) = 0
,
(7)
DOI:10.12677/pm.2021.1171551384
n
Ø
ê
Æ
y
š
_
§
æ
œ
Ù
¥
b
1
(
β
1
) =
t>
0
,
b
2
(
β
1
) =
t
2
+
α
1
β
2
+
2
mβ
2
(
α
1
β
3
−
α
2
β
1
)
c
+
mβ
3
d
c
2
,
b
3
(
β
1
) =
md
[
β
3
(
t
−
α
1
)+
β
1
α
2
]
c
2
.
β
1
β
3
<
α
1
−
t
α
2
ž
,
k
b
3
(
β
1
)
<
0
.
Ï
d
,
d
‰
ˆ
½
n
Ú
s
L
ˆ
ª
Œ
•
,
•
3
β
∗
1
>
0,
¦
(7)
¤
á
,
…
÷
v
s
=
−
b
2
(
β
∗
1
)+
p
b
2
(
β
∗
1
)
2
−
4
b
1
(
β
∗
1
)
b
3
(
β
∗
1
)
2
b
1
(
β
∗
1
)
.
K
,
d
b
1
,
b
3
É
Ò
Œ
•
,
β
∗
1
´
•
˜
.
½
n
4
b
^
‡
(
H
1
)
¤
á
,
k
β
∗
1
>
0,
β
1
=
β
∗
1
ž
,
X
Ú
(1.3)
3
•
²
ï
:
E
∗
?
)
Hopf
©
|
.
y
²
d
Ú
n
3
•
,
•
3
•
˜
β
∗
1
>
0,
¦
N
1
(
β
∗
1
)
N
2
(
β
∗
1
)
−
N
3
(
β
∗
1
) = 0
.
Ï
d
,
β
1
=
β
∗
1
ž
,
A
•
§
(7)
Œ
-
•
(
λ
+
N
1
)(
λ
2
+
N
2
) = 0
.
(8)
d
½
n
2
Ú
Ú
n
3
Œ
•
,
N
1
>
0
,N
2
(
β
∗
1
)
>
0.
l
•
§
(8)
A
Š
©
O
•
λ
1
=
−
N
1
,
λ
2
=
±
i
p
N
2
(
β
∗
1
)
.
é
Ù
§
β
1
∈
˚
U
(
β
∗
1
),
N
1
(
β
∗
1
)
N
2
(
β
∗
1
)
−
N
3
(
β
∗
1
)
6
=0,
Ï
d
,
b
λ
=
κ
(
β
1
)+
iθ
(
β
1
)
•
A
•
§
(7)
˜
‡EŠ
,
“
\
•
§
(7),
(
κ
+
iθ
)
3
+
N
1
(
κ
+
iθ
)
2
+
N
2
(
κ
+
iθ
)+
N
3
= 0
,
ü
>
Ó
ž
'
u
β
1
¦
,
k
D
1
(
β
1
)
κ
0
(
β
1
)
−
D
2
(
β
1
)
θ
0
(
β
1
)+
D
3
(
β
1
) = 0
,
(9)
D
2
(
β
1
)
κ
0
(
β
1
)+
D
1
(
β
1
)
θ
0
(
β
1
)+
D
4
(
β
1
) = 0
.
(10)
Ù
¥
D
1
(
β
1
)=3(
κ
2
−
θ
2
)+2
N
1
κ
+
N
2
,
D
2
(
β
1
)=6
κθ
+2
N
1
θ,
D
3
(
β
1
)=
N
0
1
(
κ
2
−
θ
2
)+
N
0
2
κ
+
N
0
3
,
D
4
(
β
1
)=2
N
0
1
κθ
+
N
0
2
θ,
N
0
1
(
β
1
)=
2
β
2
β
3
(
m
0
c
−
mc
0
)
c
2
+2
x
0
−
d
0
c
−
dc
0
2
β
2
c
2
,
DOI:10.12677/pm.2021.1171551385
n
Ø
ê
Æ
y
š
_
§
æ
œ
N
0
2
(
β
1
)=
2
β
2
(
m
0
c
−
mc
0
)
h
α
1
β
3
−
α
2
β
1
+
β
3
(2
x
−
d
2
β
2
c
+1)
i
c
2
+
β
2
+
2
mβ
2
β
3
c
+
α
1
·
2
x
0
−
d
0
c
−
dc
0
2
β
2
c
2
+
(
m
0
d
+
md
0
)
β
3
c
−
2
mdβ
3
c
0
−
2
mc
2
α
2
β
2
c
3
,
N
0
3
(
β
1
)=
2
x
0
−
d
0
c
−
dc
0
2
β
2
c
2
α
1
β
2
+
2
mβ
2
(
α
1
β
3
−
α
2
β
1
)
c
+(2
x
−
d
2
β
2
c
−
1)
·
2
β
2
(
m
0
c
−
mc
0
)(
α
1
β
3
−
α
2
β
1
)
−
2
mα
2
β
2
c
c
2
+
(
α
1
β
3
−
β
1
α
2
)
c
[
m
0
d
+
md
0
−
2
c
0
md
]
−
mdβ
1
α
2
c
c
4
,
u
∗
1
0
(
β
1
)=
α
2
>
0
,
m
0
(
β
1
)=
α
2
,
c
0
(
β
1
)=
2
mm
0
α
1
,
d
0
(
β
1
)=
4
mm
0
β
2
α
1
−
3
mm
0
α
2
1
+4
aβ
2
2
m
0
,
(
H3
)
m
0
c
−
mc
0
>
0
,
2
x
0
−
d
0
c
−
dc
0
2
β
2
c
2
>
0
¤
á
ž
,
k
N
0
1
(
β
1
)
>
0.
Ï
d
,
D
1
(
β
1
)
D
3
(
β
1
)+
D
2
(
β
1
)
D
4
(
β
1
)
6
=
0
.
d
(9),(10)
Œ
d
(Re
λ
)
dβ
1
β
∗
1
=
κ
0
(
β
∗
1
) =
−
D
1
(
β
∗
1
)
D
3
(
β
∗
1
)+
D
2
(
β
∗
1
)
D
4
(
β
∗
1
)
N
2
1
(
β
∗
1
)+
N
2
2
(
β
∗
1
)
=
(
N
3
−
N
1
N
2
)
0
2(
N
2
1
+
N
2
)
β
1
=
β
∗
1
.
?
˜
Ú
,
d
½
n
2
Ú
(
H3
),
´
s
0
(
β
1
) =
2
β
2
β
3
(
m
0
c
−
mc
0
)
c
2
>
0
,t
0
(
β
1
) = 2
x
0
−
d
0
c
−
dc
0
2
β
2
c
2
>
0
.
d
(6),
d(
N
1
N
2
−
N
3
)
d
β
1
=(
s
0
+
t
0
)
st
+
α
1
β
2
+
2
mβ
2
(
α
1
β
3
−
α
2
β
1
)
c
+
mβ
3
d
c
2
+(
s
+
t
)
·
s
0
t
+
st
0
+
2
β
2
(
m
0
c
−
mc
0
)(
α
1
β
3
−
α
2
β
1
)
−
2
mα
2
β
2
c
c
2
+
(
m
0
d
+
md
0
)
β
3
c
−
2
mdβ
3
c
0
c
3
−
t
0
α
1
β
2
−
(
α
1
β
3
−
α
2
β
1
)[
m
0
(2
tcβ
2
+
d
)+
m
(2
t
0
cβ
2
+
d
0
+2
tc
0
β
2
)]
−
α
2
m
(2
tcβ
2
+
d
)
c
4
.
(
Ü
½
n
2,
Ú
n
3
Ú
s
0
,
t
0
L
ˆ
ª
,
Œ
d(
N
1
N
2
−
N
3
)
d
β
1
β
1
=
β
∗
1
>
0.
κ
0
(
β
∗
1
)
<
0
.
î
5
^
‡
¤
á
,
X
Ú
(1.3)
3
²
ï
:
E
∗
?
)
Hopf
©
|
.
3
)
Ô
Æ
¿Â
þ
,Hopf
©
|
»
€
X
Ú
ž
m
-
½
5
,
3
ž
m
þ
—
˜
m
þ
!
Ú
±
Ï
.
DOI:10.12677/pm.2021.1171551386
n
Ø
ê
Æ
y
š
_
§
æ
œ
4.
(
Ø
©
ï
Ä
‘
k
{
z
Monod-Haldane
.
Rosenzweig-MacArthur
Ó
ö
-
.
.
Ä
k
,
3
^
‡
(
H
1
)
e
,
X
Ú
(1.3)
ä
k
•
˜
²
ï
U
∗
,
¿
…
U
∗
´
Û
Ü
ì
?
-
½
…
=
^
‡
(
H
2
)
¤
á
.
,
r
β
∗
1
w
Š
©
|
ë
ê
,
Š
â
½
n
4
X
Ú
(1
.
3)
3
˜
½
^
‡
e
Œ
±
)
Hopf
©
|
,
Ñ
y
Ø
-
½
œ
¹
.
du
{
z
Monod-Haldane
.
A^
'
‚
5
õ
U
‡
A
•
•
2
•
,
Ï
d
©
(
J
•
·
^u
ƒ
A
‚
5
‡
A
*
Ñ
X
Ú
.
ë
•
©
z
[1]Murray,J.D.(2002)AnIntroduction.3rdEdition,Springer,NewYork.
[2]Kelley,P.,Kowalewski,M.andHansen,T.A.(2003)Predator-PreyInteractionsintheFossil
Record.SpringerScience&BusinessMedia,Berlin.
https://doi.org/10.1007/978-1-4615-0161-9
[3]Lima,S.L.(1998)NonlethalEffectsintheEcologyofPredator-PreyInteractions.
BioScience
,
48
,25-34.https://doi.org/10.2307/1313225
[4]Gause,G.F.(1934)ExperimentalAnalysisofVitoVolterra’sMathematicalTheoryofthe
StruggleforExistence.
Science
,
79
,16-17.https://doi.org/10.1126/science.79.2036.16-a
[5]Wu,W.J. andLiang,G.W.(1989)ReviewofMethodsFittingHollingDiskEquation.
Natural
EnemiesofInsects
,
11
,96-100.
[6]Rosenzweig,M.L.andMacArthur,R.H.(1963)GraphicalRepresentationandStabilityCon-
ditionsofPredator-PreyInteractions.
TheAmericanNaturalist
,
97
,209-223.
https://doi.org/10.1086/282272
[7]Smith, H.L. (2008) TheRosenzweig-MacArthur Predator-Prey Model. School of Mathematical
andStatisticalSciences,ArizonaStateUniversity,Phoenix.
[8]Gonzalez-Olivares, E. and Huincahue-Arcos, J. (2014) Double Allee Effects on Prey in a Modi-
fied Rosenzweig-MacArthur Predator-Prey Model. In:Mastorakis,N. and Mladenov, V., Eds.,
ComputationalProblemsinEngineering
,SpringerInternationalPublishing,Cham,105-119.
https://doi.org/10.1007/978-3-319-03967-19
[9]Almanza-Vasquez,E.,Ortiz-Ortiz,R.D.andMarin-Ramirez,A.M.(2015)Bifurcationsinthe
DynamicsofRosenzweig-MacArthurPredator-PreyModelConsideringSaturatedRefugefor
thePreys.
AppliedMathematicalSciences
,
9
,7475-7482.
https://doi.org/10.12988/ams.2015.510640
[10]Moustafa,M.,Mohd, M.H.,Ismail, A.I.,
et al.
(2018)DynamicalAnalysis ofa Fractional-Order
Rosenzweig-MacArthurModelIncorporatingaPreyRefuge.
Chaos,Solitons&Fractals
,
109
,
1-13.https://doi.org/10.1016/j.chaos.2018.02.008
DOI:10.12677/pm.2021.1171551387
n
Ø
ê
Æ
y
š
_
§
æ
œ
[11]Javidi,M.andNyamoradi,N.(2013)DynamicAnalysisofaFractionalOrderPrey-Predator
InteractionwithHarvesting.
AppliedMathematicalModelling
,
37
,8946-8956.
https://doi.org/10.1016/j.apm.2013.04.024
[12]Jeschke,J.M.,Kopp,M.andTollrianR.(2002)PredatorFunctionalResponses:Discriminating
betweenHandlingandDigestingPrey.
EcologicalMonographs
,
72
,95-112.
https://doi.org/10.1890/0012-9615(2002)072[0095:PFRDBH]2.0.CO;2
[13]Holling,C.S.(1965)TheFunctionalResponseofPredatorstoPreyDensityanditsRolein
MimicryandPopulationRegulation.
TheMemoirsoftheEntomologicalSocietyofCanada
,
97
,5-60.https://doi.org/10.4039/entm9745fv
[14]Jia,J.andWei,X.(2016)OntheStabilityandHopfBifurcationofaPredator-PreyModel.
AdvancesinDifferenceEquations
,
2016
,ArticleNo.86.
https://doi.org/10.1186/s13662-016-0773-y
[15]Kru, N.and Lax, C.(2019) The Rosenzweig-MacArthur Systemvia Reductionof an Individual
BasedModel.
JournalofMathematicalBiology
,
78
,413-439.
https://doi.org/10.1007/s00285-018-1278-y
DOI:10.12677/pm.2021.1171551388
n
Ø
ê
Æ