设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2021,11(7),1389-1399
PublishedOnlineJuly2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.117156
f
Berwald
V
L
È
Finsler
Ý
þ
"""
††††††
§§§
ÛÛÛ
]]]
∗
§§§
XXX
jjj
¦¦¦
#
õ
“
‰
Œ
Æ
ê
Æ
‰
ÆÆ
§
#
õ
¿
°
7
à
Email:dxxw523@126.com,
∗
heyong@xjnu.edu.cn,niqihui@126.com
Â
v
F
Ï
µ
2021
c
6
11
F
¶
¹
^
F
Ï
µ
2021
c
7
13
F
¶
u
Ù
F
Ï
µ
2021
c
7
21
F
Á
‡
©
Ì
‡
ï
Ä
V
L
È
Finsler
Ý
þ
²
þ
Berwald
-
Ç
Ú
•
•
²
þ
Berwald
-
Ç
§
‰
Ñ
V
L
È
Finsler
Ý
þ
´
f
Berwald
Ý
þ
¿
‡
^
‡
§
y
²
3
˜
½
^
‡
e
ä
k
•
•
²
þ
Berwald
-
Ç
V
L
È
Finsler
Ý
þ
´
f
Berwald
Ý
þ
"
'
…
c
Finsler
Ý
þ
§
V
L
È
§
f
Berwald
Ý
þ
§
•
•
²
þ
Berwald
-
Ç
WeaklyBerwaldDoubly-Twisted
ProductFinsler
Metrics
XiangxiangDeng,YongHe
∗
,QihuiNi
SchoolofMathematicsScience,XinjiangNormalUniversity,Urumqi Xinjiang
Email:dxxw523@126.com,
∗
heyong@xjnu.edu.cn,niqihui@126.com
Received:Jun.11
th
,2021;accepted:Jul.13
th
,2021;published:Jul.21
st
,2021
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
"
††
,
Û
]
,
X
j
¦
.
f
Berwald
V
L
È
Finsler
Ý
þ
[J].
n
Ø
ê
Æ
,2021,11(7):1389-1399.
DOI:10.12677/pm.2021.117156
"
††
Abstract
ThispapermainlystudiesthemeanBerwaldcurvatureandisotropicmeanBerwald
curvaturedoubly-twistedproductofFinslermetrics.Thenecessaryandsufficient
conditionsforthedoubly-twisted productofFinslermetricsareweaklyBerwald met-
rics.Itisprovedthatundercertainconditionsthedoubly-twistedproductofFinsler
metricswithisotropicmeanBerwaldcurvatureisweaklyBerwaldmetrics.
Keywords
FinslerMetrics,DoublyTwistedProduct,WeaklyBerwaldMetrics,IsotropicMean
BerwaldCurvature
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
L
È
´
˜
«
E
A
Ï
Ý
þ
k
•{
.1981
c
,Chen
‰
Ñ
Riemann
Ý
þ
L
È
V
g
[1].
2006
c
,Kozma,Peter
Ú
Shimada
ò
L
È
í
2
Finsler
A
Û
¥
,
ï
Ä
L
È
Finsler
Ý
þ
Cartan
é
ä
,
ÿ
/
‚
9
Ù
5
[2].
C
A
c
,
L
È
Finsler
Ý
þ
˜
Æ
ö
'
5
Ú
ï
Ä
[3][4].
3
Finsler
A
Û
¥
,
f
Berwald
Ý
þ
´
˜
a
-
‡
Finsler
Ý
þ
.Berwald
Ä
k
J
Ñ
Berwald
-
Ç
V
g
[5][6].1986
c
,Matsumoto
‰
Ñ
Berwald
Ý
þ
½
Â
[7].2001
c
,
!
§
¬
y
²
ä
k
ž
”
Berwald
-
Ç
Finsler
Ý
þ
´
Berwald
Ý
þ
.Berwald
-
Ç
,
¡
•
²
þ
Berwald
-
Ç
,
…
ä
k
ž
”
²
þ
Berwald
-
Ç
Finsler
Ý
þ
•
f
Berwald
Ý
þ
[8].2005
c
,
§
#
Ú
!
§
¬
‰
Ñ
•
•
²
þ
Berwald
-
Ç
½
Â
[9],
§
´
Berwald
-
Ç
í
2
.2013
c
,Peyghan
Ú
Tayebi
y
²
ä
k
•
•
²
þ
Berwald
-
Ç
L
È
Finsler
Ý
þ
´
f
Berwald
Ý
þ
[3].2020
c
,
n
!
Û
]
Ú
Ü
¡
y
²
V
Û
-
È
Finsler
6
/
ä
k
•
•
²
þ
Berwald
-
Ç
…
=
§
´
f
Berwald
6
/
[10].
©
ò
L
È
Finsler
Ý
þ
í
2
•
V
L
È
Finsler
Ý
þ
,
Ì
‡
ï
Ä
V
L
È
Finsler
Ý
þ
²
þ
Berwald
-
Ç
Ú
•
•
²
þ
Berwald
-
Ç
,
}
Á
‰
Ñ
V
L
È
Finsler
Ý
þ
•
f
Berwald
Ý
þ
¿
‡
^
‡
.
…
É
©
z
[3]
Ú
[10]
é
u
,
©
ò
&
¢
ä
k
•
•
²
þ
Berwald
-
Ç
V
L
È
Finsler
Ý
þ
†
f
Berwald
Ý
þ
ƒ
m
'
X
.
DOI:10.12677/pm.2021.1171561390
n
Ø
ê
Æ
"
††
2.
ý
•
£
M
•
n
‘
1
w
6
/
,
M
þ
Û
Ü
‹
I
•
(
x
1
,
···
,x
n
).
TM
´
M
ƒ
m
,
Ù
p
Û
Ü
‹
I
•
(
x,y
) = (
x
1
,
···
,x
n
,y
1
,
···
,y
n
),
M
þ
Finsler
Ý
þ
½
Â
X
e
.
½
Â
1.
[11]
1
w
6
/
M
þ
Finsler
Ý
þ
´
˜
ë
Y
¼
ê
F
:
TM
→
[0
,
∞
),
÷
v
(
i
)
K
5
:
F
3
TM
◦
=
TM
\{
0
}
þ
´
C
∞
¼
ê
;
(
ii
)
à
g
5
:
F
(
x,λy
) =
λF
(
x,y
),
∀
λ>
0;
(
iii
)
r
à
5
:
n
×
n
Hessian
Ý
(
g
ij
) := (
1
2
∂
2
F
2
∂y
i
∂y
j
)
3
TM
◦
þ
´
½
.
½
Â
2.
[12]
F
´
Finsler
Ý
þ
,
K
d
F
p
X
ê
•
G
i
:=
1
4
g
il
(
∂
2
F
2
∂y
l
∂x
k
y
k
−
∂F
2
∂x
l
);(2.1)
Š
â
G
i
'
u
y
à
g
5
Ú
Euler
½
n
k
y
j
∂
G
i
∂y
j
= 2
G
i
.
(2.2)
½
Â
3.
[8]
F
´
Finsler
Ý
þ
.Berwald
-
Ç
X
ê
•
B
i
jkl
:=
∂
3
G
i
∂y
j
∂y
k
∂y
l
;(2.3)
²
þ
Berwald
-
Ç
X
ê
•
E
jk
:=
1
2
B
m
jkm
.
(2.4)
e
B
i
jkl
= 0,
¡
F
•
Berwald
Ý
þ
;
e
E
jk
= 0,
¡
F
•
f
Berwald
Ý
þ
.
½
Â
4.
[9]
F
´
Finsler
Ý
þ
.
F
p
²
þ
Berwald
-
Ç÷
v
E
ij
=
1
2
(
n
+1)
cF
y
i
y
j
,
(2.5)
¡
F
ä
k
•
•
²
þ
Berwald
-
Ç
,
Ù
¥
c
=
c
(
x
)
´
M
þ
I
þ
¼
ê
.
©
¥
,
(G
AB
)
´
Ý
(G
BC
)
_
Ý
,
¦
G
AB
G
BC
=
δ
A
C
.
M
1
Ú
M
2
©
O
´
n
1
‘
Ú
n
2
‘
1
w
6
/
,
M
1
Ú
M
2
þ
Û
Ü
‹
I
©
O
•
(
x
1
,
···
,x
n
1
)
Ú
(
u
1
,
···
,u
n
2
).
TM
1
Ú
TM
2
þ
Û
Ü
‹
I
©
O
•
(
x
1
,
···
,x
n
1
,y
1
,
···
,y
n
1
)
Ú
(
u
1
,
···
,u
n
2
,v
1
,
···
,
v
n
2
).
M
=
M
1
×
M
2
•
M
1
Ú
M
2
¦
È
6
/
,
‘
ê
•
n
1
+
n
2
.
π
1
:
M
→
M
1
Ú
π
2
:
M
→
M
2
´
g
,
Ý
K
,
dπ
1
:
TM
→
TM
1
Ú
dπ
2
:
TM
→
TM
2
©
O
´
d
π
1
Ú
π
2
p
ƒ
N
.
-
X
= (
x,u
)
∈
M
,
Y
= (
y,v
)
∈
T
X
M
,
…
T
X
M
=
T
x
M
1
⊕
T
u
M
1
.
½
Â
5.
(
M
1
,F
1
)
Ú
(
M
2
,F
2
)
´
ü
‡
Finsler
6
/
,
…
f
1
Ú
f
2
:
M
1
×
M
2
→
R
+
´
ü
‡
1
w
¢
Š
¼
ê
.
F
1
Ú
F
2
V
L
È
Finsler
Ý
þ
´
3
¦
È
6
/
M
=
M
1
×
M
2
þ
U
X
e
•
ª
½
Â
Finsler
Ý
DOI:10.12677/pm.2021.1171561391
n
Ø
ê
Æ
"
††
þ
F
:
TM
→
R
+
F
2
(
X,Y
) =
f
2
2
(
π
1
(
X
)
,π
2
(
X
))
F
2
1
(
π
1
(
X
)
,dπ
1
(
Y
))
+
f
2
1
(
π
1
(
X
)
,π
2
(
X
))
F
2
2
(
π
2
(
X
)
,dπ
2
(
Y
))
,
(2.6)
Ù
¥
f
1
Ú
f
2
¡
•
L
¼
ê
.
é
²
w
F
´
M
þ
˜
‡
Finsler
Ý
þ
.
X
J
f
1
≡
1
†
f
2
≡
1
k
…
=
k
˜
‡
¤
á
,
K
F
•
L
È
Finsler
Ý
þ
.
X
J
f
1
≡
1
…
f
2
≡
1,
K
F
•
¦
È
Finsler
Ý
þ
.
X
J
f
1
Ú
f
2
Ñ
Ø
ð
u
~
ê
,
K
¡
F
•
š
²
…
V
L
È
Finsler
Ý
þ
.
P
(
i
)
g
ij
:=
1
2
∂
2
F
2
1
∂y
i
∂y
j
,
(
ii
)
g
αβ
:=
1
2
∂
2
F
2
2
∂v
α
∂v
β
.
(2.7)
K
F
Ä
Ü
þ
Ý
•
(G
AB
) = (
1
2
∂
2
F
2
∂Y
A
∂Y
B
) =
f
2
2
g
ij
0
0
f
2
1
g
αβ
!
,
(2.8)
Ù
_
Ý
•
(G
BA
) =
f
2
−
2
g
ji
0
0
f
1
−
2
g
βα
!
.
(2.9)
©
½
,
.
¶
i
1
•
I
,
X
i,j
,
C
z
‰
Œ
l
1
n
1
;
F
1
i
1
•
I
,
X
α,β
,
C
z
‰
Œ
l
1
n
2
;
Œ
.
¶
i
1
•
I
,
X
A,B
,
C
z
‰
Œ
l
1
n
1
+
n
2
.
†
1
w
6
1
(
M
1
,F
1
)
Ú
(
M
2
,F
2
)
k
'
A
Û
þ
,
©
O
3
Ù
þ
•
\
•
I
1
Ú
2,
X
1
G
i
Ú
2
G
α
©
OL
«
d
F
1
Ú
F
2
p
X
ê
.
3.
V
L
È
Finsler
Ý
þ
²
þ
Berwald
-
Ç
!
Ì
‡
í
d
V
L
È
Finsler
Ý
þ
p
²
þ
Berwald
-
Ç
X
ê
.
·
K
3.1.
F
´
Finsler
Ý
þ
F
1
Ú
F
2
V
L
È
.
@
o
,
F
p
Berwald
-
Ç
X
ê
B
A
BCD
•
:
B
k
ijl
=
1
B
k
ijl
−
1
4
f
2
2
(
∂
2
g
kh
∂y
j
∂y
l
∂F
2
1
∂y
i
+
∂
2
g
kh
∂y
i
∂y
l
∂F
2
1
∂y
j
+
∂
2
g
kh
∂y
i
∂y
j
∂F
2
1
∂y
l
)
∂f
2
2
∂x
h
−
1
2
f
2
2
(
∂g
kh
∂y
i
g
jl
+
∂g
kh
∂y
j
g
il
+
∂g
kh
∂y
l
g
ij
+
g
kh
∂g
ij
∂y
l
)
∂f
2
2
∂x
h
−
1
4
f
2
2
∂
3
g
kh
∂y
i
∂y
j
∂y
l
(
∂f
2
2
∂x
h
F
2
1
+
∂f
2
1
∂x
h
F
2
2
)
,
(3.1)
B
k
iβl
=
B
k
ilβ
=
B
k
βil
=
−
1
4
f
2
2
∂
2
g
kh
∂y
i
∂y
l
∂f
2
1
∂x
h
∂F
2
2
∂v
β
,
(3.2)
DOI:10.12677/pm.2021.1171561392
n
Ø
ê
Æ
"
††
B
k
αβl
=
B
k
αlβ
=
B
k
lαβ
=
−
1
2
f
2
2
∂g
kh
∂y
l
∂f
2
1
∂x
h
g
αβ
,
(3.3)
B
k
αβλ
=
−
1
f
2
2
g
kh
∂f
2
1
∂x
h
C
αβλ
,
(3.4)
B
γ
ijl
=
−
1
f
2
1
g
γµ
∂f
2
2
∂u
µ
C
ijl
,
(3.5)
B
γ
iβl
=
B
γ
βil
=
B
γ
ilβ
=
−
1
2
f
2
1
∂g
γµ
∂v
β
∂f
2
2
∂u
µ
g
il
,
(3.6)
B
γ
αβl
=
B
γ
αlβ
=
B
γ
lαβ
=
−
1
4
f
2
1
∂
2
g
γµ
∂v
α
∂v
β
∂f
2
2
∂u
µ
∂F
2
1
∂y
l
,
(3.7)
B
γ
αβλ
=
2
B
γ
αβλ
−
1
4
f
2
1
(
∂
2
g
γµ
∂v
β
∂v
λ
∂F
2
2
∂v
α
+
∂
2
g
γµ
∂v
α
∂v
λ
∂F
2
2
∂v
β
+
∂
2
g
γµ
∂v
α
∂v
β
∂F
2
2
∂v
λ
)
∂f
2
1
∂u
µ
−
1
2
f
2
1
(
∂g
γµ
∂v
α
g
βλ
+
∂g
γµ
∂v
β
g
αλ
+
∂g
γµ
∂v
λ
g
αβ
+
g
γµ
∂g
αβ
∂v
λ
)
∂f
2
1
∂u
µ
−
1
4
f
2
1
∂
3
g
γµ
∂v
α
∂v
β
∂v
λ
(
∂f
2
2
∂u
µ
F
2
1
+
∂f
2
1
∂u
µ
F
2
2
)
.
(3.8)
y
²
.
Š
â
(2.1)
G
A
=
1
4
G
AB
(
∂
2
F
2
∂Y
B
∂X
C
Y
C
−
∂F
2
∂X
B
)
,
(3.9)
-
(3.9)
¥
A
=
i
,
K
G
i
=
1
4
G
ih
(
∂
2
F
2
∂y
h
∂x
j
y
j
+
∂
2
F
2
∂y
h
∂u
α
v
α
−
∂F
2
∂x
h
)+
1
4
G
iµ
(
∂
2
F
2
∂v
µ
∂x
j
y
j
+
∂
2
F
2
∂v
µ
∂u
α
v
α
−
∂F
2
∂u
µ
)
,
(3.10)
d
(2.6)
†
O
Ž
k
∂F
2
∂y
h
=
f
2
2
∂F
2
1
∂y
h
,
∂F
2
∂x
h
=
∂f
2
2
∂x
h
F
2
1
+
f
2
2
∂F
2
1
∂x
h
+
∂f
2
1
∂x
h
F
2
2
,
(3.11)
∂
2
F
2
∂y
h
∂u
α
=
∂f
2
2
∂u
α
∂F
2
1
∂y
h
,
∂
2
F
2
∂y
h
∂x
j
=
∂f
2
2
∂x
j
∂F
2
1
∂y
h
+
f
2
2
∂
2
F
2
1
∂y
h
∂x
j
,
(3.12)
r
(2.9),(3.11)
Ú
(3.12)
“
\
(3.10),
Œ
G
i
=
1
G
i
+
1
4
f
2
2
g
ih
[(
∂f
2
2
∂x
j
y
j
+
∂f
2
2
∂u
α
v
α
)
∂F
2
1
∂y
h
−
∂f
2
2
∂x
h
F
2
1
−
∂f
2
1
∂x
h
F
2
2
]
,
(3.13)
(3.13)
ü
>
Ó
ž
'
u
y
j
‡
©
Œ
∂
G
i
∂y
j
=
∂
1
G
i
∂y
j
+
1
4
f
2
2
∂g
ih
∂y
j
[(
∂f
2
2
∂x
k
y
k
+
∂f
2
2
∂u
α
v
α
)
∂F
2
1
∂y
h
−
∂f
2
2
∂x
h
F
2
1
−
∂f
2
1
∂x
h
F
2
2
]
+
1
4
f
2
2
g
ih
[
∂f
2
2
∂x
j
∂F
2
1
∂y
h
+(
∂f
2
2
∂x
k
y
k
+
∂f
2
2
∂u
α
v
α
)
∂
2
F
2
1
∂y
h
∂y
j
−
∂f
2
2
∂x
h
∂F
2
1
∂y
j
]
,
(3.14)
DOI:10.12677/pm.2021.1171561393
n
Ø
ê
Æ
"
††
d
(2.7)
(
i
)
∂F
2
1
∂y
h
= 2
g
hk
y
k
.
Ï
d
,
∂g
ih
∂y
j
∂F
2
1
∂y
h
= 2
∂g
ih
∂y
j
g
hk
y
k
=
−
2
g
ih
∂g
hk
∂y
j
y
k
= 0
,
(3.15)
¿
5
¿
g
ih
g
hj
=
δ
i
j
,
¤
±
1
8
f
2
2
g
ih
(
∂f
2
2
∂x
k
y
k
+
∂f
2
2
∂u
α
v
α
)
∂
2
F
2
1
∂y
h
∂y
j
=
1
4
f
2
2
(
∂f
2
2
∂x
k
y
k
+
∂f
2
2
∂u
α
v
α
)
δ
i
j
,
(3.16)
r
(3.15)
Ú
(3.16)
“
\
(3.14),
Œ
∂
G
i
∂y
j
=
∂
1
G
i
∂y
j
+
1
4
f
2
2
g
ih
(
∂f
2
2
∂x
j
∂F
2
1
∂y
h
−
∂f
2
2
∂x
h
∂F
2
1
∂y
j
)+
1
2
f
2
2
(
∂f
2
2
∂x
k
y
k
+
∂f
2
2
∂u
α
v
α
)
δ
i
j
−
1
4
f
2
2
∂g
ih
∂y
j
(
∂f
2
2
∂x
h
F
2
1
+
∂f
2
1
∂x
h
F
2
2
)
,
(3.17)
(3.17)
ü
>
Ó
ž
'
u
y
l
‡
©
Œ
∂
2
G
i
∂y
j
∂y
l
=
∂
2
1
G
i
∂y
j
∂y
l
−
1
4
f
2
2
(
∂g
ih
∂y
j
∂F
2
1
∂y
l
+
∂g
ih
∂y
l
∂F
2
1
∂y
j
+2
g
ih
g
lj
)
∂f
2
2
∂x
h
+
1
2
f
2
2
(
∂f
2
2
∂x
l
δ
i
j
+
∂f
2
2
∂x
j
δ
i
l
)
−
1
4
f
2
2
∂
2
g
ih
∂y
l
∂y
j
(
∂f
2
2
∂x
h
F
2
1
+
∂f
2
1
∂x
h
F
2
2
)
,
(3.18)
(3.18)
ü
>
Ó
ž
'
u
y
k
‡
©
,
=
Œ
y
(3.1),
Ó
n
Œ
(3.2)
)
(3.4)
¤
á
.
a
q
/
,
e
-
(3.9)
¥
A
=
α
,
Ó
n
Œ
(3.5)
)
(3.8)
¤
á
.
·
K
3.2.
F
´
Finsler
Ý
þ
F
1
Ú
F
2
V
L
È
.
@
o
,
F
p
²
þ
Berwald
-
Ç
X
ê
E
AB
•
:
E
ij
=
1
E
ij
−
1
8
f
2
2
(
∂g
kh
∂y
k
∂
2
F
2
1
∂y
i
∂y
j
+
∂
2
g
kh
∂y
j
∂y
k
∂F
2
1
∂y
i
+
∂
2
g
kh
∂y
i
∂y
k
∂F
2
1
∂y
j
+
∂
3
g
kh
∂y
i
∂y
j
∂y
k
F
2
1
)
∂f
2
2
∂x
h
−
1
8
f
2
2
∂
3
g
kh
∂y
i
∂y
j
∂y
k
∂f
2
1
∂x
h
F
2
2
−
1
8
f
2
1
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
∂
2
F
2
1
∂y
i
∂y
j
,
(3.19)
E
iβ
=
E
βi
=
−
1
8
f
2
2
∂
2
g
kh
∂y
i
∂y
k
∂f
2
1
∂x
h
∂F
2
2
∂v
β
−
1
8
f
2
1
∂
2
g
γµ
∂v
β
∂v
γ
∂f
2
2
∂u
µ
∂F
2
1
∂y
i
,
(3.20)
E
αβ
=
2
E
αβ
−
1
8
f
2
1
(
∂g
γµ
∂v
γ
∂
2
F
2
2
∂v
α
∂v
β
+
∂
2
g
γµ
∂v
β
∂v
γ
∂F
2
2
∂v
α
+
∂
2
g
γµ
∂v
α
∂v
γ
∂F
2
2
∂v
β
+
∂
3
g
γµ
∂v
α
∂v
β
∂v
γ
F
2
2
)
∂f
2
1
∂u
µ
−
1
8
f
2
1
∂
3
g
γµ
∂v
α
∂v
β
∂v
γ
∂f
2
2
∂u
µ
F
2
1
−
1
8
f
2
2
∂g
kh
∂y
k
∂f
2
1
∂x
h
∂
2
F
2
2
∂v
α
∂v
β
.
(3.21)
y
²
.
Š
â
(2.4)
•
E
AB
=
1
2
B
k
ABk
+
1
2
B
γ
ABγ
,
l
E
ij
=
1
2
B
k
ijk
+
1
2
B
γ
ijγ
,
(3.22)
DOI:10.12677/pm.2021.1171561394
n
Ø
ê
Æ
"
††
r
(3.1)
Ú
(3.6)
“
\
(3.22)
ª
,
¿
5
¿
1
E
ij
=
1
2
1
B
k
ijk
,
K
E
ij
=
1
E
ij
−
1
8
f
2
2
(
∂g
kh
∂y
j
∂
2
F
2
1
∂y
i
∂y
k
+
∂g
kh
∂y
k
∂
2
F
2
1
∂y
i
∂y
j
+2
∂g
kh
∂y
i
g
jk
+2
g
kh
∂g
ij
∂y
k
+
∂
2
g
kh
∂y
j
∂y
k
∂F
2
1
∂y
i
+
∂
2
g
kh
∂y
i
∂y
k
∂F
2
1
∂y
j
+
∂
2
g
kh
∂y
i
∂y
j
∂F
2
1
∂y
k
+
∂
3
g
kh
∂y
i
∂y
j
∂y
k
F
2
1
)
∂f
2
2
∂x
h
−
1
8
f
2
2
∂
3
g
kh
∂y
i
∂y
j
∂y
k
∂f
2
1
∂x
h
F
2
2
−
1
8
f
2
1
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
∂
2
F
2
1
∂y
i
∂y
j
,
(3.23)
Š
â
(3.15)
•
∂g
kh
∂y
j
∂F
2
1
∂y
k
= 0,
T
ª
ü
>
Ó
ž
'
u
y
i
‡
©
Œ
∂g
kh
∂y
j
∂
2
F
2
1
∂y
k
∂y
i
+
∂
2
g
kh
∂y
j
∂y
i
∂F
2
1
∂y
k
= 0
,
(3.24)
5
¿
2
∂g
kh
∂y
i
g
jk
+2
g
kh
∂g
ij
∂y
k
= 2(
∂g
kh
∂y
i
g
jk
+
g
kh
∂g
jk
∂y
i
) = 2
∂g
kh
g
jk
∂y
i
= 2
∂δ
h
j
∂y
i
= 0
,
(3.25)
r
(3.24)
Ú
(3.25)
“
\
(3.23)
Œ
(3.19)
¤
á
.
Ó
n
,
Œ
y
²
(3.20)
Ú
(3.21)
¤
á
.
4.
f
Berwald
V
L
È
Finsler
Ý
þ
!
ï
Ä
f
Berwald
V
L
È
Finsler
Ý
þ
,
&
¢
ä
k
•
•
²
þ
Berwald
-
Ç
V
L
È
Finsler
Ý
þ
†
f
Berwald
Ý
þ
ƒ
m
'
X
.
½
n
4.1.
F
´
Finsler
Ý
þ
F
1
Ú
F
2
V
L
È
.
F
´
f
Berwald
Ý
þ
…
=
e
•
§
|
¤
á
µ
1
E
ij
=
1
8
f
2
2
(
∂g
kh
∂y
k
∂
2
F
2
1
∂y
i
∂y
j
+
∂
2
g
kh
∂y
j
∂y
k
∂F
2
1
∂y
i
+
∂
2
g
kh
∂y
i
∂y
k
∂F
2
1
∂y
j
+
∂
3
g
kh
∂y
i
∂y
j
∂y
k
F
2
1
)
∂f
2
2
∂x
h
,
(4.1)
2
E
αβ
=
1
8
f
2
1
(
∂g
γµ
∂v
γ
∂
2
F
2
2
∂v
α
∂v
β
+
∂
2
g
γµ
∂v
β
∂v
γ
∂F
2
2
∂v
α
+
∂
2
g
γµ
∂v
α
∂v
γ
∂F
2
2
∂v
β
+
∂
3
g
γµ
∂v
α
∂v
β
∂v
γ
F
2
2
)
∂f
2
1
∂u
µ
,
(4.2)
∂g
kh
∂y
k
∂f
2
1
∂x
h
= 0
,
(4.3)
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
= 0
.
(4.4)
y
²
.
¿
©
5
.(4.3)
ü
>
Ó
ž
'
u
y
i
‡
©
∂
2
g
kh
∂y
i
∂y
k
∂f
2
1
∂x
h
= 0
,
(4.5)
DOI:10.12677/pm.2021.1171561395
n
Ø
ê
Æ
"
††
(4.4)
ü
>
Ó
ž
'
u
v
β
‡
©
∂
2
g
γµ
∂v
β
∂v
γ
∂f
2
2
∂u
µ
= 0
,
(4.6)
r
(4.5)
Ú
(4.6)
“
\
(3.20)
Œ
E
iβ
=
E
βi
= 0
,
(4.7)
(4.5)
ü
>
Ó
ž
'
u
y
j
‡
©
∂
3
g
kh
∂y
i
∂y
j
∂y
k
∂f
2
1
∂x
h
= 0
,
(4.8)
r
(4.1),(4.4)
Ú
(4.8)
“
\
(3.19)
E
ij
= 0
,
(4.9)
Ó
n
,
Œ
y
E
αβ
= 0
,
(4.10)
d
(4.7),(4.9)
Ú
(4.10)
Œ
E
AB
= 0,
=
F
´
f
Berwald
Ý
þ
.
7
‡
5
,
F
´
f
Berwald
Ý
þ
,
@
o
E
AB
= 0,
=
E
ij
=
E
iβ
=
E
βi
=
E
αβ
= 0.
Š
â
(3.20)
ª
u
"
Œ
1
f
2
2
∂
2
g
kh
∂y
i
∂y
k
∂f
2
1
∂x
h
∂F
2
2
∂v
β
=
−
1
f
2
1
∂
2
g
γµ
∂v
β
∂v
γ
∂f
2
2
∂u
µ
∂F
2
1
∂y
i
,
(4.11)
(4.11)
ü
>
Ó
ž
'
u
y
j
‡
©
,
2
†
v
β
¿
Œ
1
f
2
2
∂
3
g
kh
∂y
i
∂y
j
∂y
k
∂f
2
1
∂x
h
F
2
2
=
1
2
f
2
1
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
∂
2
F
2
1
∂y
i
∂y
j
,
(4.12)
r
(4.12)
“
\
(3.19)
1
E
ij
=
1
8
f
2
2
(
∂g
kh
∂y
k
∂
2
F
2
1
∂y
i
∂y
j
+
∂
2
g
kh
∂y
j
∂y
k
∂F
2
1
∂y
i
+
∂
2
g
kh
∂y
i
∂y
k
∂F
2
1
∂y
j
+
∂
3
g
kh
∂y
i
∂y
j
∂y
k
F
2
1
)
∂f
2
2
∂x
h
+
3
16
f
2
1
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
∂
2
F
2
1
∂y
i
∂y
j
,
(4.13)
(4.13)
ª
ü
>
Ó
ž
'
u
v
λ
‡
©
,
2
†
v
λ
¿
(4.4),
r
(4.4)
“
£
(4.13),
=
(4.1).
Ó
n
Œ
y
(4.2)
Ú
(4.3)
¤
á
.
í
Ø
4.1.
F
´
Finsler
Ý
þ
F
1
Ú
F
2
V
L
È
,
…
f
2
(
x,u
) =
f
2
(
u
)
,
f
1
(
x,u
) =
f
1
(
x
)
.
@
o
F
´
DOI:10.12677/pm.2021.1171561396
n
Ø
ê
Æ
"
††
f
Berwald
Ý
þ
…
=
F
1
Ú
F
2
´
f
Berwald
Ý
þ
,
¿
…
∂g
kh
∂y
k
∂f
2
1
∂x
h
=
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
= 0
¤
á
.
5
4.1.
e
f
2
(
x,u
)=
f
2
(
u
),
f
1
(
x,u
)=
f
1
(
x
),
V
L
È
Finsler
Ý
þ
ò
z
•
V
Û
-
È
Finsler
Ý
þ
,
d
ž
,
í
Ø
3.1
†
©
z
[13]
¥
½
n
2
(
Ø
˜
—
.
½
n
4.2.
F
´
Finsler
Ý
þ
F
1
Ú
F
2
V
L
È
.
X
J
F
1
Ú
F
2
´
f
Berwald
Ý
þ
,
@
o
F
´
f
Berwald
Ý
þ
…
=
∂g
kh
∂y
k
∂f
2
1
∂x
h
=
∂g
kh
∂y
k
∂f
2
2
∂x
h
=
∂g
γµ
∂v
γ
∂f
2
1
∂u
µ
=
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
= 0
.
(4.14)
y
²
.
7
‡
5
.
F
´
f
Berwald
Ý
þ
,
K
Š
â
½
n
3.2
Œ
∂g
kh
∂y
k
∂f
2
1
∂x
h
=
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
= 0
,
e
F
1
´
f
Berwald
Ý
þ
,
=
1
E
ij
= 0,
d
(4.1)
k
(
∂g
kh
∂y
k
∂
2
F
2
1
∂y
i
∂y
j
+
∂
2
g
kh
∂y
j
∂y
k
∂F
2
1
∂y
i
+
∂
2
g
kh
∂y
i
∂y
k
∂F
2
1
∂y
j
+
∂
3
g
kh
∂y
i
∂y
j
∂y
k
F
2
1
)
∂f
2
2
∂x
h
= 0
,
(4.15)
(4.15)
ü
>
Ó
ž
†
y
k
¿
,
2
'
u
y
k
‡
©
,
¿
A^
(3.24)
k
(
∂
2
g
kh
∂y
j
∂y
k
∂F
2
1
∂y
i
+
∂
2
g
kh
∂y
i
∂y
k
∂F
2
1
∂y
j
+2
∂
3
g
kh
∂y
i
∂y
j
∂y
k
F
2
1
)
∂f
2
2
∂x
h
= 0
,
(4.16)
(4.16)
†
(4.15)
Š
,
Œ
∂g
kh
∂y
k
∂f
2
2
∂x
h
∂
2
F
2
1
∂y
i
∂y
j
−
∂
3
g
kh
∂y
i
∂y
j
∂y
k
∂f
2
2
∂x
h
F
2
1
= 0
,
(4.17)
(4.17)
ü
>
Ó
ž
†
y
k
¿
∂
2
g
kh
∂y
i
∂y
j
∂f
2
2
∂x
h
= 0
,
(4.18)
(4.18)
ª
ü
>
'
u
y
k
‡
©
,
Œ
∂
3
g
kh
∂y
i
∂y
j
∂y
k
∂f
2
2
∂x
h
= 0
,
(4.19)
r
(4.19)
“
£
(4.17)
∂g
kh
∂y
k
∂f
2
2
∂x
h
= 0
,
Ó
n
,
Š
â
(4.2)
Œ
∂g
γµ
∂v
γ
∂f
2
1
∂u
µ
= 0.
DOI:10.12677/pm.2021.1171561397
n
Ø
ê
Æ
"
††
¿
©
5
,
F
1
Ú
F
2
´
f
Berwald
Ý
þ
,
K
1
E
ij
=
2
E
αβ
= 0
,
(4.20)
²
w
/
,
Š
â
(4.14)
Œ
∂
2
g
kh
∂y
i
∂y
k
∂f
2
1
∂x
h
=
∂
2
g
γµ
∂v
β
∂v
γ
∂f
2
1
∂u
µ
= 0
,
∂
3
g
kh
∂y
i
∂y
j
∂y
k
∂f
2
1
∂x
h
=
∂
3
g
γµ
∂v
α
∂v
β
∂v
γ
∂f
2
1
∂u
µ
= 0
,
(4.21)
r
(4.14),(4.20)
Ú
(4.21)
“
\
(3.19)
E
ij
= 0.
Ó
n
Œ
y
E
iβ
=
E
βi
=
E
αβ
= 0.
n
þ
¤
ã
,
E
AB
= 0,
=
F
´
f
Berwald
Ý
þ
.
½
n
4.3.
F
´
Finsler
Ý
þ
F
1
Ú
F
2
V
L
È
.
X
J
∂g
kh
∂y
k
∂f
2
1
∂x
h
=0
½
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
=0
,
@
o
ä
k
•
•
²
þ
Berwald
-
Ç
V
L
È
Finsler
Ý
þ
´
f
Berwald
Ý
þ
.
y
²
.
F
´
Finsler
Ý
þ
F
1
Ú
F
2
V
L
È
.
Š
â
(2.5)
k
E
AB
=
1
2
(
n
+1)
cF
Y
A
Y
B
,
(4.22)
l
E
iβ
=
E
βi
=
1
2
(
n
+1)
cF
y
i
v
β
,
(4.23)
Ù
¥
c
=
c
(
x,u
)
´
M
þ
I
þ
¼
ê
.
qd
(3.20)
•
E
iβ
=
E
βi
=
−
1
8
f
2
2
∂
2
g
kh
∂y
i
∂y
k
∂f
2
1
∂x
h
∂F
2
2
∂v
β
−
1
8
f
2
1
∂
2
g
γµ
∂v
β
∂v
γ
∂f
2
2
∂u
µ
∂F
2
1
∂y
i
,
(4.24)
¤
±
1
8
f
2
2
∂
2
g
kh
∂y
i
∂y
k
∂f
2
1
∂x
h
∂F
2
2
∂v
β
+
1
8
f
2
1
∂
2
g
γµ
∂v
β
∂v
γ
∂f
2
2
∂u
µ
∂F
2
1
∂y
i
=
−
1
2
(
n
+1)
cF
y
i
v
β
,
(4.25)
X
J
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
= 0,
@
o
(4.25)
Œ
z
•
1
8
f
2
2
∂
2
g
kh
∂y
i
∂y
k
∂f
2
1
∂x
h
=
1
8
(
n
+1)
c
f
2
1
f
2
2
F
3
∂F
2
1
∂y
i
,
(4.26)
(4.26)
ü
>
Ó
ž
'
u
v
λ
‡
©
c
(
n
+1)
F
5
f
4
1
f
2
2
∂F
2
1
∂y
i
∂F
2
2
∂v
λ
= 0
,
Ï
d
c
= 0,
ò
Ù
“
\
(4.22)
Œ
E
AB
= 0,
=
F
´
f
Berwald
Ý
þ
.
DOI:10.12677/pm.2021.1171561398
n
Ø
ê
Æ
"
††
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
(No.11761069)
"
ë
•
©
z
[1]Chen, B.Y.(1981) Geometryof SubmanifoldsandItsApplications.ScienceUniversityofToky-
o,III,Tokyo.
[2]Kozma,L.,Peter,I.R.andShimada,H.(2006)OntheTwistedProductofFinslerManifolds.
ReportsonMathematicalPhysics
,
57
,375-383.
https://doi.org/10.1016/S0034-4877(06)80028-5
[3]Peyghan,E.,Tayebi,A.andFar,L.N.(2013)OnTwistedProductsFinslerManifolds.
ISRN
Geometry
,
2013
,ArticleID:732432.https://doi.org/10.1155/2013/732432
[4]Nibaruta,G., Karimumuryango,M., Nibirantiza, A.andNdayirukiye,D.(2020) TwistedProd-
uctsBerwaldMetricsofPolarType.
DifferentialGeometry-DynamicalSystems
,
22
,183-193.
[5]Berwald,L.(1926)UntersuchungderKr¨ummungallgemeinermetrischerR¨aumeaufGrund
desinihnenherrschendenParallelismus.
MathematischeZeitschrift
,
25
,40-73.
https://doi.org/10.1007/BF01283825
[6]Berwald,L.(1928)Parallel´ubertragunginallgemeinenR¨aumen.
AttiDelCongressoInter-
nazionaleDeiMatematiciBolognaDelAlDeSettembreDi
,
4
,263-270.
[7]Matsumoto,M.(1986)FoundationofFinslerGeometryandSpecialFinslerSpaces.Kaiseisha
Press,Otsu,Japan.
[8]Shen, Z. (2001) Differential Geometry of Spray and Finsler Spaces. Springer, The Netherlands.
[9]Chen,X.andShen,Z.(2005)OnDouglasMetrics.
PublicationesMathematicae
,
66
,503-503.
[10]Yang,Z.,He,Y.andZhang,X.(2020)S-CurvatureofDoublyWarpedProductofFinsler
Manifolds.
ActaMathematicaSinica
,
36
,95-101.
[11]Bao,D.,Chern,S.S.andShen,Z.(2000)AnIntroductiontoRiemann-FinslerGeometry.
Springer-Verlag,NewYork.
[12]
!
˜
W
,
!
§
¬
.
y
“
¥
d
V
A
Û
Ð
Ú
[M].
®
:
p
˜
Ñ
‡
,2013.
[13]Peyghan, E., Tayebi, A. and Najafi,B. (2012) DoublyWarpedProduct FinslerManifolds with
SomeNon-RiemannianCurvatureProperties.
AnnalesPoloniciMathematici
,
105
,293-311.
https://doi.org/10.4064/ap105-3-6
DOI:10.12677/pm.2021.1171561399
n
Ø
ê
Æ