设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(7),1389-1399
PublishedOnlineJuly2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.117156
fBerwaldVLÈFinslerÝþ
"""††††††§§§ÛÛÛ]]]
∗
§§§XXXjjj¦¦¦
#õ“‰ŒÆêÆ‰ÆÆ§#õ¿°7à
Email:dxxw523@126.com,
∗
heyong@xjnu.edu.cn,niqihui@126.com
ÂvFϵ2021c611F¶¹^Fϵ2021c713F¶uÙFϵ2021c721F
Á‡
©Ì‡ï ÄVLÈFinslerÝþ²þBerwald-ÇÚ••²þBerwald-ǧ‰ÑV
LÈFinslerÝþ´fBerwaldÝþ¿‡^‡§y²3˜½^‡eäk••²þBerwald
-ÇVLÈFinslerÝþ´fBerwaldÝþ"
'…c
FinslerÝþ§VLȧfBerwaldÝþ§••²þBerwald-Ç
WeaklyBerwaldDoubly-Twisted
ProductFinsler
Metrics
XiangxiangDeng,YongHe
∗
,QihuiNi
SchoolofMathematicsScience,XinjiangNormalUniversity,Urumqi Xinjiang
Email:dxxw523@126.com,
∗
heyong@xjnu.edu.cn,niqihui@126.com
Received:Jun.11
th
,2021;accepted:Jul.13
th
,2021;published:Jul.21
st
,2021
∗ÏÕŠö"
©ÙÚ^:"††,Û],Xj¦.fBerwaldVLÈFinslerÝþ[J].nØêÆ,2021,11(7):1389-1399.
DOI:10.12677/pm.2021.117156
"††
Abstract
ThispapermainlystudiesthemeanBerwaldcurvatureandisotropicmeanBerwald
curvaturedoubly-twistedproductofFinslermetrics.Thenecessaryandsufficient
conditionsforthedoubly-twisted productofFinslermetricsareweaklyBerwald met-
rics.Itisprovedthatundercertainconditionsthedoubly-twistedproductofFinsler
metricswithisotropicmeanBerwaldcurvatureisweaklyBerwaldmetrics.
Keywords
FinslerMetrics,DoublyTwistedProduct,WeaklyBerwaldMetrics,IsotropicMean
BerwaldCurvature
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
LÈ´˜«EAÏÝþk•{.1981c,Chen‰ÑRiemannÝþLÈVg[1].
2006c,Kozma,PeterÚShimadaòLÈí2FinslerAÛ¥,ïÄLÈFinslerÝþ
Cartanéä,ÿ/‚9Ù5[2].CAc,LÈFinslerÝþ˜Æö'5ÚïÄ[3][4].
3FinslerAÛ¥,fBerwaldÝþ´˜a-‡FinslerÝþ.BerwaldÄkJÑBerwald
-ÇVg[5][6].1986c,Matsumoto‰ÑBerwaldÝþ½Â[7].2001c,!§¬y²ä
kž”Berwald-ÇFinslerÝþ´BerwaldÝþ.Berwald-Ç,¡•²þBerwald-Ç,
…äk ž”²þBerwald-ÇFinslerÝþ•fBerwaldÝþ[8].2005c,§#Ú!§¬‰Ñ
••²þBerwald-Ç½Â[9],§´Berwald-Çí2.2013c,PeyghanÚTayebiy²
äk••²þBerwald-ÇLÈFinslerÝþ´fBerwaldÝþ[3].2020c,n!Û]ÚÜ
¡ y²VÛ-ÈFinsler6/äk••²þBerwald-Ç…=§´fBerwald6/[10].
©òLÈFinslerÝþí2•VLÈFinslerÝþ,̇ïÄVLÈFinslerÝþ²þ
Berwald-ÇÚ••²þBerwald-Ç,}Á‰ ÑVLÈFinslerÝþ•fBerwaldÝþ¿‡^
‡.…É©z[3]Ú[10]éu,©ò&¢äk••²þBerwald-ÇVLÈFinslerÝþ†f
BerwaldÝþƒm'X.
DOI:10.12677/pm.2021.1171561390nØêÆ
"††
2.ý•£
M•n‘1w6/,MþÛÜ‹ I•(x
1
,···,x
n
).TM´Mƒm,ÙpÛÜ
‹I•(x,y) = (x
1
,···,x
n
,y
1
,···,y
n
),MþFinslerÝþ½ÂXe.
½Â1.[11]1w6/MþFinslerÝþ´˜ëY¼êF:TM→[0,∞),÷v
(i)K5:F3TM
◦
= TM\{0}þ´C
∞
¼ê;
(ii)àg5:F(x,λy) = λF(x,y),∀λ>0;
(iii)rà5:n×nHessianÝ(g
ij
) := (
1
2
∂
2
F
2
∂y
i
∂y
j
)3TM
◦
þ´½.
½Â2.[12]F´FinslerÝþ,KdFpXê•
G
i
:=
1
4
g
il
(
∂
2
F
2
∂y
l
∂x
k
y
k
−
∂F
2
∂x
l
);(2.1)
ŠâG
i
'uyàg5ÚEuler½nk
y
j
∂G
i
∂y
j
= 2G
i
.(2.2)
½Â3.[8]F´FinslerÝþ.Berwald-ÇXê•
B
i
jkl
:=
∂
3
G
i
∂y
j
∂y
k
∂y
l
;(2.3)
²þBerwald-ÇXê•
E
jk
:=
1
2
B
m
jkm
.(2.4)
eB
i
jkl
= 0,¡F•BerwaldÝþ;eE
jk
= 0,¡F•fBerwaldÝþ.
½Â4.[9]F´FinslerÝþ.Fp²þBerwald-Ç÷v
E
ij
=
1
2
(n+1)cF
y
i
y
j
,(2.5)
¡Fäk••²þBerwald-Ç,Ù¥c= c(x)´MþIþ¼ê.
©¥,(G
AB
)´Ý(G
BC
)_Ý,¦G
AB
G
BC
= δ
A
C
.
M
1
ÚM
2
©O´n
1
‘Ún
2
‘1w6/,M
1
ÚM
2
þÛÜ‹I©O•(x
1
,···,x
n
1
)Ú
(u
1
,···,u
n
2
).TM
1
ÚTM
2
þÛÜ‹I©O•(x
1
,···,x
n
1
,y
1
,···,y
n
1
) Ú(u
1
,···,u
n
2
,v
1
,···,
v
n
2
).M=M
1
×M
2
•M
1
ÚM
2
¦È6/,‘ê•n
1
+n
2
.π
1
: M→M
1
Úπ
2
: M→M
2
´g,ÝK,dπ
1
:TM→TM
1
Údπ
2
:TM→TM
2
©O´dπ
1
Úπ
2
pƒN.-
X= (x,u) ∈M,Y= (y,v) ∈T
X
M,…T
X
M= T
x
M
1
⊕T
u
M
1
.
½Â5.(M
1
,F
1
)Ú(M
2
,F
2
)´ü‡Finsler6/,…f
1
Úf
2
: M
1
×M
2
→R
+
´ü‡1w¢Š
¼ê.F
1
ÚF
2
VLÈFinslerÝþ´3¦È6/M= M
1
×M
2
þUXe•ª½ÂFinslerÝ
DOI:10.12677/pm.2021.1171561391nØêÆ
"††
þF: TM→R
+
F
2
(X,Y) = f
2
2
(π
1
(X),π
2
(X))F
2
1
(π
1
(X),dπ
1
(Y))
+f
2
1
(π
1
(X),π
2
(X))F
2
2
(π
2
(X),dπ
2
(Y)),(2.6)
Ù¥f
1
Úf
2
¡•L¼ê.é²wF´Mþ˜‡FinslerÝþ.
XJf
1
≡1†f
2
≡1k…=k˜‡¤á,KF•LÈFinslerÝþ.XJf
1
≡1…f
2
≡1,K
F•¦ÈFinslerÝþ.XJf
1
Úf
2
ÑØðu~ê,K¡F•š²…VLÈFinslerÝþ.
P
(i)g
ij
:=
1
2
∂
2
F
2
1
∂y
i
∂y
j
,(ii)g
αβ
:=
1
2
∂
2
F
2
2
∂v
α
∂v
β
.(2.7)
KFÄÜþÝ•
(G
AB
) = (
1
2
∂
2
F
2
∂Y
A
∂Y
B
) =
f
2
2
g
ij
0
0f
2
1
g
αβ
!
,(2.8)
Ù_Ý•
(G
BA
) =
f
2
−2
g
ji
0
0f
1
−2
g
βα
!
.(2.9)
©½,.¶i1•I,Xi,j,Cz‰Œl1n
1
;F1i1•I,Xα,β,
Cz‰Œl1n
2
;Œ.¶i1•I,XA,B,Cz‰Œl1n
1
+n
2
.†1w61(M
1
,F
1
)
Ú(M
2
,F
2
)k'AÛþ,©O3Ùþ•\•I1Ú2,X
1
G
i
Ú
2
G
α
©OL«dF
1
ÚF
2
p
Xê.
3.VLÈFinslerÝþ²þBerwald-Ç
!̇ídVLÈFinslerÝþp²þBerwald-ÇXê.
·K3.1.F´FinslerÝþF
1
ÚF
2
VLÈ.@o,FpBerwald-ÇXêB
A
BCD
•:
B
k
ijl
=
1
B
k
ijl
−
1
4f
2
2
(
∂
2
g
kh
∂y
j
∂y
l
∂F
2
1
∂y
i
+
∂
2
g
kh
∂y
i
∂y
l
∂F
2
1
∂y
j
+
∂
2
g
kh
∂y
i
∂y
j
∂F
2
1
∂y
l
)
∂f
2
2
∂x
h
−
1
2f
2
2
(
∂g
kh
∂y
i
g
jl
+
∂g
kh
∂y
j
g
il
+
∂g
kh
∂y
l
g
ij
+g
kh
∂g
ij
∂y
l
)
∂f
2
2
∂x
h
−
1
4f
2
2
∂
3
g
kh
∂y
i
∂y
j
∂y
l
(
∂f
2
2
∂x
h
F
2
1
+
∂f
2
1
∂x
h
F
2
2
),(3.1)
B
k
iβl
= B
k
ilβ
= B
k
βil
= −
1
4f
2
2
∂
2
g
kh
∂y
i
∂y
l
∂f
2
1
∂x
h
∂F
2
2
∂v
β
,(3.2)
DOI:10.12677/pm.2021.1171561392nØêÆ
"††
B
k
αβl
= B
k
αlβ
= B
k
lαβ
= −
1
2f
2
2
∂g
kh
∂y
l
∂f
2
1
∂x
h
g
αβ
,(3.3)
B
k
αβλ
= −
1
f
2
2
g
kh
∂f
2
1
∂x
h
C
αβλ
,(3.4)
B
γ
ijl
= −
1
f
2
1
g
γµ
∂f
2
2
∂u
µ
C
ijl
,(3.5)
B
γ
iβl
= B
γ
βil
= B
γ
ilβ
= −
1
2f
2
1
∂g
γµ
∂v
β
∂f
2
2
∂u
µ
g
il
,(3.6)
B
γ
αβl
= B
γ
αlβ
= B
γ
lαβ
= −
1
4f
2
1
∂
2
g
γµ
∂v
α
∂v
β
∂f
2
2
∂u
µ
∂F
2
1
∂y
l
,(3.7)
B
γ
αβλ
=
2
B
γ
αβλ
−
1
4f
2
1
(
∂
2
g
γµ
∂v
β
∂v
λ
∂F
2
2
∂v
α
+
∂
2
g
γµ
∂v
α
∂v
λ
∂F
2
2
∂v
β
+
∂
2
g
γµ
∂v
α
∂v
β
∂F
2
2
∂v
λ
)
∂f
2
1
∂u
µ
−
1
2f
2
1
(
∂g
γµ
∂v
α
g
βλ
+
∂g
γµ
∂v
β
g
αλ
+
∂g
γµ
∂v
λ
g
αβ
+g
γµ
∂g
αβ
∂v
λ
)
∂f
2
1
∂u
µ
−
1
4f
2
1
∂
3
g
γµ
∂v
α
∂v
β
∂v
λ
(
∂f
2
2
∂u
µ
F
2
1
+
∂f
2
1
∂u
µ
F
2
2
).(3.8)
y².Šâ(2.1)
G
A
=
1
4
G
AB
(
∂
2
F
2
∂Y
B
∂X
C
Y
C
−
∂F
2
∂X
B
),(3.9)
-(3.9)¥A= i,K
G
i
=
1
4
G
ih
(
∂
2
F
2
∂y
h
∂x
j
y
j
+
∂
2
F
2
∂y
h
∂u
α
v
α
−
∂F
2
∂x
h
)+
1
4
G
iµ
(
∂
2
F
2
∂v
µ
∂x
j
y
j
+
∂
2
F
2
∂v
µ
∂u
α
v
α
−
∂F
2
∂u
µ
),(3.10)
d(2.6)†OŽk
∂F
2
∂y
h
= f
2
2
∂F
2
1
∂y
h
,
∂F
2
∂x
h
=
∂f
2
2
∂x
h
F
2
1
+f
2
2
∂F
2
1
∂x
h
+
∂f
2
1
∂x
h
F
2
2
,(3.11)
∂
2
F
2
∂y
h
∂u
α
=
∂f
2
2
∂u
α
∂F
2
1
∂y
h
,
∂
2
F
2
∂y
h
∂x
j
=
∂f
2
2
∂x
j
∂F
2
1
∂y
h
+f
2
2
∂
2
F
2
1
∂y
h
∂x
j
,(3.12)
r(2.9),(3.11)Ú(3.12)“\(3.10),Œ
G
i
=
1
G
i
+
1
4f
2
2
g
ih
[(
∂f
2
2
∂x
j
y
j
+
∂f
2
2
∂u
α
v
α
)
∂F
2
1
∂y
h
−
∂f
2
2
∂x
h
F
2
1
−
∂f
2
1
∂x
h
F
2
2
],(3.13)
(3.13)ü>Óž'uy
j
‡©Œ
∂G
i
∂y
j
=
∂
1
G
i
∂y
j
+
1
4f
2
2
∂g
ih
∂y
j
[(
∂f
2
2
∂x
k
y
k
+
∂f
2
2
∂u
α
v
α
)
∂F
2
1
∂y
h
−
∂f
2
2
∂x
h
F
2
1
−
∂f
2
1
∂x
h
F
2
2
]
+
1
4f
2
2
g
ih
[
∂f
2
2
∂x
j
∂F
2
1
∂y
h
+(
∂f
2
2
∂x
k
y
k
+
∂f
2
2
∂u
α
v
α
)
∂
2
F
2
1
∂y
h
∂y
j
−
∂f
2
2
∂x
h
∂F
2
1
∂y
j
],(3.14)
DOI:10.12677/pm.2021.1171561393nØêÆ
"††
d(2.7)(i)
∂F
2
1
∂y
h
= 2g
hk
y
k
.Ïd,
∂g
ih
∂y
j
∂F
2
1
∂y
h
= 2
∂g
ih
∂y
j
g
hk
y
k
= −2g
ih
∂g
hk
∂y
j
y
k
= 0,(3.15)
¿5¿g
ih
g
hj
= δ
i
j
,¤±
1
8f
2
2
g
ih
(
∂f
2
2
∂x
k
y
k
+
∂f
2
2
∂u
α
v
α
)
∂
2
F
2
1
∂y
h
∂y
j
=
1
4f
2
2
(
∂f
2
2
∂x
k
y
k
+
∂f
2
2
∂u
α
v
α
)δ
i
j
,(3.16)
r(3.15)Ú(3.16)“\(3.14),Œ
∂G
i
∂y
j
=
∂
1
G
i
∂y
j
+
1
4f
2
2
g
ih
(
∂f
2
2
∂x
j
∂F
2
1
∂y
h
−
∂f
2
2
∂x
h
∂F
2
1
∂y
j
)+
1
2f
2
2
(
∂f
2
2
∂x
k
y
k
+
∂f
2
2
∂u
α
v
α
)δ
i
j
−
1
4f
2
2
∂g
ih
∂y
j
(
∂f
2
2
∂x
h
F
2
1
+
∂f
2
1
∂x
h
F
2
2
),(3.17)
(3.17)ü>Óž'uy
l
‡©Œ
∂
2
G
i
∂y
j
∂y
l
=
∂
2
1
G
i
∂y
j
∂y
l
−
1
4f
2
2
(
∂g
ih
∂y
j
∂F
2
1
∂y
l
+
∂g
ih
∂y
l
∂F
2
1
∂y
j
+2g
ih
g
lj
)
∂f
2
2
∂x
h
+
1
2f
2
2
(
∂f
2
2
∂x
l
δ
i
j
+
∂f
2
2
∂x
j
δ
i
l
)−
1
4f
2
2
∂
2
g
ih
∂y
l
∂y
j
(
∂f
2
2
∂x
h
F
2
1
+
∂f
2
1
∂x
h
F
2
2
),(3.18)
(3.18)ü>Óž'uy
k
‡©,=Œy(3.1),ÓnŒ(3.2))(3.4)¤á.
aq/,e-(3.9)¥A= α,ÓnŒ(3.5))(3.8)¤á.
·K3.2.F´FinslerÝþF
1
ÚF
2
VLÈ.@o,Fp²þBerwald-ÇXêE
AB
•:
E
ij
=
1
E
ij
−
1
8f
2
2
(
∂g
kh
∂y
k
∂
2
F
2
1
∂y
i
∂y
j
+
∂
2
g
kh
∂y
j
∂y
k
∂F
2
1
∂y
i
+
∂
2
g
kh
∂y
i
∂y
k
∂F
2
1
∂y
j
+
∂
3
g
kh
∂y
i
∂y
j
∂y
k
F
2
1
)
∂f
2
2
∂x
h
−
1
8f
2
2
∂
3
g
kh
∂y
i
∂y
j
∂y
k
∂f
2
1
∂x
h
F
2
2
−
1
8f
2
1
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
∂
2
F
2
1
∂y
i
∂y
j
,(3.19)
E
iβ
= E
βi
= −
1
8f
2
2
∂
2
g
kh
∂y
i
∂y
k
∂f
2
1
∂x
h
∂F
2
2
∂v
β
−
1
8f
2
1
∂
2
g
γµ
∂v
β
∂v
γ
∂f
2
2
∂u
µ
∂F
2
1
∂y
i
,(3.20)
E
αβ
=
2
E
αβ
−
1
8f
2
1
(
∂g
γµ
∂v
γ
∂
2
F
2
2
∂v
α
∂v
β
+
∂
2
g
γµ
∂v
β
∂v
γ
∂F
2
2
∂v
α
+
∂
2
g
γµ
∂v
α
∂v
γ
∂F
2
2
∂v
β
+
∂
3
g
γµ
∂v
α
∂v
β
∂v
γ
F
2
2
)
∂f
2
1
∂u
µ
−
1
8f
2
1
∂
3
g
γµ
∂v
α
∂v
β
∂v
γ
∂f
2
2
∂u
µ
F
2
1
−
1
8f
2
2
∂g
kh
∂y
k
∂f
2
1
∂x
h
∂
2
F
2
2
∂v
α
∂v
β
.(3.21)
y².Šâ(2.4)•E
AB
=
1
2
B
k
ABk
+
1
2
B
γ
ABγ
,l
E
ij
=
1
2
B
k
ijk
+
1
2
B
γ
ijγ
,(3.22)
DOI:10.12677/pm.2021.1171561394nØêÆ
"††
r(3.1)Ú(3.6)“\(3.22)ª,¿5¿
1
E
ij
=
1
2
1
B
k
ijk
,K
E
ij
=
1
E
ij
−
1
8f
2
2
(
∂g
kh
∂y
j
∂
2
F
2
1
∂y
i
∂y
k
+
∂g
kh
∂y
k
∂
2
F
2
1
∂y
i
∂y
j
+2
∂g
kh
∂y
i
g
jk
+2g
kh
∂g
ij
∂y
k
+
∂
2
g
kh
∂y
j
∂y
k
∂F
2
1
∂y
i
+
∂
2
g
kh
∂y
i
∂y
k
∂F
2
1
∂y
j
+
∂
2
g
kh
∂y
i
∂y
j
∂F
2
1
∂y
k
+
∂
3
g
kh
∂y
i
∂y
j
∂y
k
F
2
1
)
∂f
2
2
∂x
h
−
1
8f
2
2
∂
3
g
kh
∂y
i
∂y
j
∂y
k
∂f
2
1
∂x
h
F
2
2
−
1
8f
2
1
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
∂
2
F
2
1
∂y
i
∂y
j
,(3.23)
Šâ(3.15)•
∂g
kh
∂y
j
∂F
2
1
∂y
k
= 0,Tªü>Óž'uy
i
‡©Œ
∂g
kh
∂y
j
∂
2
F
2
1
∂y
k
∂y
i
+
∂
2
g
kh
∂y
j
∂y
i
∂F
2
1
∂y
k
= 0,(3.24)
5¿
2
∂g
kh
∂y
i
g
jk
+2g
kh
∂g
ij
∂y
k
= 2(
∂g
kh
∂y
i
g
jk
+g
kh
∂g
jk
∂y
i
) = 2
∂g
kh
g
jk
∂y
i
= 2
∂δ
h
j
∂y
i
= 0,(3.25)
r(3.24)Ú(3.25)“\(3.23)Œ(3.19)¤á.
Ón,Œy²(3.20)Ú(3.21)¤á.
4.fBerwaldVLÈFinslerÝþ
!ïÄfBerwald VLÈFinslerÝþ,&¢äk••²þBerwald -ÇVLÈFinslerÝ
þ†fBerwaldÝþƒm'X.
½n4.1.F´FinslerÝþF
1
ÚF
2
VLÈ.F´fBerwaldÝþ…=e•§|¤
áµ

























1
E
ij
=
1
8f
2
2
(
∂g
kh
∂y
k
∂
2
F
2
1
∂y
i
∂y
j
+
∂
2
g
kh
∂y
j
∂y
k
∂F
2
1
∂y
i
+
∂
2
g
kh
∂y
i
∂y
k
∂F
2
1
∂y
j
+
∂
3
g
kh
∂y
i
∂y
j
∂y
k
F
2
1
)
∂f
2
2
∂x
h
,(4.1)
2
E
αβ
=
1
8f
2
1
(
∂g
γµ
∂v
γ
∂
2
F
2
2
∂v
α
∂v
β
+
∂
2
g
γµ
∂v
β
∂v
γ
∂F
2
2
∂v
α
+
∂
2
g
γµ
∂v
α
∂v
γ
∂F
2
2
∂v
β
+
∂
3
g
γµ
∂v
α
∂v
β
∂v
γ
F
2
2
)
∂f
2
1
∂u
µ
,(4.2)
∂g
kh
∂y
k
∂f
2
1
∂x
h
= 0,(4.3)
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
= 0.(4.4)
y².¿©5.(4.3)ü>Óž'uy
i
‡©
∂
2
g
kh
∂y
i
∂y
k
∂f
2
1
∂x
h
= 0,(4.5)
DOI:10.12677/pm.2021.1171561395nØêÆ
"††
(4.4)ü>Óž'uv
β
‡©
∂
2
g
γµ
∂v
β
∂v
γ
∂f
2
2
∂u
µ
= 0,(4.6)
r(4.5)Ú(4.6)“\(3.20)Œ
E
iβ
= E
βi
= 0,(4.7)
(4.5)ü>Óž'uy
j
‡©
∂
3
g
kh
∂y
i
∂y
j
∂y
k
∂f
2
1
∂x
h
= 0,(4.8)
r(4.1),(4.4)Ú(4.8)“\(3.19)
E
ij
= 0,(4.9)
Ón,Œy
E
αβ
= 0,(4.10)
d(4.7),(4.9)Ú(4.10)ŒE
AB
= 0,=F´fBerwaldÝþ.
7‡5,F´fBerwaldÝþ,@oE
AB
= 0,=E
ij
= E
iβ
= E
βi
= E
αβ
= 0.
Šâ(3.20)ªu"Œ
1
f
2
2
∂
2
g
kh
∂y
i
∂y
k
∂f
2
1
∂x
h
∂F
2
2
∂v
β
= −
1
f
2
1
∂
2
g
γµ
∂v
β
∂v
γ
∂f
2
2
∂u
µ
∂F
2
1
∂y
i
,(4.11)
(4.11)ü>Óž'uy
j
‡©,2†v
β
¿Œ
1
f
2
2
∂
3
g
kh
∂y
i
∂y
j
∂y
k
∂f
2
1
∂x
h
F
2
2
=
1
2f
2
1
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
∂
2
F
2
1
∂y
i
∂y
j
,(4.12)
r(4.12)“\(3.19)
1
E
ij
=
1
8f
2
2
(
∂g
kh
∂y
k
∂
2
F
2
1
∂y
i
∂y
j
+
∂
2
g
kh
∂y
j
∂y
k
∂F
2
1
∂y
i
+
∂
2
g
kh
∂y
i
∂y
k
∂F
2
1
∂y
j
+
∂
3
g
kh
∂y
i
∂y
j
∂y
k
F
2
1
)
∂f
2
2
∂x
h
+
3
16f
2
1
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
∂
2
F
2
1
∂y
i
∂y
j
,(4.13)
(4.13)ªü>Óž'uv
λ
‡©,2†v
λ
¿(4.4),r(4.4)“£(4.13),=(4.1).
ÓnŒy(4.2)Ú(4.3)¤á.
íØ4.1.F´FinslerÝþF
1
ÚF
2
VLÈ,…f
2
(x,u) = f
2
(u),f
1
(x,u) = f
1
(x).@oF´
DOI:10.12677/pm.2021.1171561396nØêÆ
"††
fBerwaldÝþ…=F
1
ÚF
2
´fBerwaldÝþ,¿…
∂g
kh
∂y
k
∂f
2
1
∂x
h
=
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
= 0¤á.
54.1.ef
2
(x,u)=f
2
(u),f
1
(x,u)=f
1
(x),VLÈFinslerÝþ òz•VÛ-ÈFinslerÝþ,d
ž,íØ3.1†©z[13]¥½n2(ؘ—.
½n4.2.F´FinslerÝþF
1
ÚF
2
VLÈ.XJF
1
ÚF
2
´fBerwaldÝþ,@oF´f
BerwaldÝþ…=
∂g
kh
∂y
k
∂f
2
1
∂x
h
=
∂g
kh
∂y
k
∂f
2
2
∂x
h
=
∂g
γµ
∂v
γ
∂f
2
1
∂u
µ
=
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
= 0.(4.14)
y².7‡5.F´fBerwaldÝþ,KŠâ½n3.2Œ
∂g
kh
∂y
k
∂f
2
1
∂x
h
=
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
= 0,
eF
1
´fBerwaldÝþ,=
1
E
ij
= 0,d(4.1)k
(
∂g
kh
∂y
k
∂
2
F
2
1
∂y
i
∂y
j
+
∂
2
g
kh
∂y
j
∂y
k
∂F
2
1
∂y
i
+
∂
2
g
kh
∂y
i
∂y
k
∂F
2
1
∂y
j
+
∂
3
g
kh
∂y
i
∂y
j
∂y
k
F
2
1
)
∂f
2
2
∂x
h
= 0,(4.15)
(4.15)ü>Óž†y
k
¿,2'uy
k
‡©,¿A^(3.24)k
(
∂
2
g
kh
∂y
j
∂y
k
∂F
2
1
∂y
i
+
∂
2
g
kh
∂y
i
∂y
k
∂F
2
1
∂y
j
+2
∂
3
g
kh
∂y
i
∂y
j
∂y
k
F
2
1
)
∂f
2
2
∂x
h
= 0,(4.16)
(4.16)†(4.15)Š,Œ
∂g
kh
∂y
k
∂f
2
2
∂x
h
∂
2
F
2
1
∂y
i
∂y
j
−
∂
3
g
kh
∂y
i
∂y
j
∂y
k
∂f
2
2
∂x
h
F
2
1
= 0,(4.17)
(4.17)ü>Óž†y
k
¿
∂
2
g
kh
∂y
i
∂y
j
∂f
2
2
∂x
h
= 0,(4.18)
(4.18)ªü>'uy
k
‡©,Œ
∂
3
g
kh
∂y
i
∂y
j
∂y
k
∂f
2
2
∂x
h
= 0,(4.19)
r(4.19)“£(4.17)
∂g
kh
∂y
k
∂f
2
2
∂x
h
= 0,
Ón,Šâ(4.2)Œ
∂g
γµ
∂v
γ
∂f
2
1
∂u
µ
= 0.
DOI:10.12677/pm.2021.1171561397nØêÆ
"††
¿©5,F
1
ÚF
2
´fBerwaldÝþ,K
1
E
ij
=
2
E
αβ
= 0,(4.20)
²w/,Šâ(4.14)Œ
∂
2
g
kh
∂y
i
∂y
k
∂f
2
1
∂x
h
=
∂
2
g
γµ
∂v
β
∂v
γ
∂f
2
1
∂u
µ
= 0,
∂
3
g
kh
∂y
i
∂y
j
∂y
k
∂f
2
1
∂x
h
=
∂
3
g
γµ
∂v
α
∂v
β
∂v
γ
∂f
2
1
∂u
µ
= 0,(4.21)
r(4.14),(4.20)Ú(4.21)“\(3.19)E
ij
= 0.
ÓnŒyE
iβ
= E
βi
= E
αβ
= 0.nþ¤ã,E
AB
= 0,=F´fBerwaldÝþ.
½n4.3.F´FinslerÝþF
1
ÚF
2
V LÈ.XJ
∂g
kh
∂y
k
∂f
2
1
∂x
h
=0½
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
=0,@oäk•
•²þBerwald-ÇVLÈFinslerÝþ´fBerwaldÝþ.
y².F´FinslerÝþF
1
ÚF
2
VLÈ.Šâ(2.5)k
E
AB
=
1
2
(n+1)cF
Y
A
Y
B
,(4.22)
l
E
iβ
= E
βi
=
1
2
(n+1)cF
y
i
v
β
,(4.23)
Ù¥c= c(x,u)´MþIþ¼ê.
qd(3.20)•
E
iβ
= E
βi
= −
1
8f
2
2
∂
2
g
kh
∂y
i
∂y
k
∂f
2
1
∂x
h
∂F
2
2
∂v
β
−
1
8f
2
1
∂
2
g
γµ
∂v
β
∂v
γ
∂f
2
2
∂u
µ
∂F
2
1
∂y
i
,(4.24)
¤±
1
8f
2
2
∂
2
g
kh
∂y
i
∂y
k
∂f
2
1
∂x
h
∂F
2
2
∂v
β
+
1
8f
2
1
∂
2
g
γµ
∂v
β
∂v
γ
∂f
2
2
∂u
µ
∂F
2
1
∂y
i
= −
1
2
(n+1)cF
y
i
v
β
,(4.25)
XJ
∂g
γµ
∂v
γ
∂f
2
2
∂u
µ
= 0,@o(4.25)Œz•
1
8f
2
2
∂
2
g
kh
∂y
i
∂y
k
∂f
2
1
∂x
h
=
1
8
(n+1)c
f
2
1
f
2
2
F
3
∂F
2
1
∂y
i
,(4.26)
(4.26)ü>Óž'uv
λ
‡©
c(n+1)
F
5
f
4
1
f
2
2
∂F
2
1
∂y
i
∂F
2
2
∂v
λ
= 0,
Ïdc= 0,òÙ“\(4.22)ŒE
AB
= 0,=F´fBerwaldÝþ.
DOI:10.12677/pm.2021.1171561398nØêÆ
"††
Ä7‘8
I[g,䮀7(No.11761069)"
ë•©z
[1]Chen, B.Y.(1981) Geometryof SubmanifoldsandItsApplications.ScienceUniversityofToky-
o,III,Tokyo.
[2]Kozma,L.,Peter,I.R.andShimada,H.(2006)OntheTwistedProductofFinslerManifolds.
ReportsonMathematicalPhysics,57,375-383.
https://doi.org/10.1016/S0034-4877(06)80028-5
[3]Peyghan,E.,Tayebi,A.andFar,L.N.(2013)OnTwistedProductsFinslerManifolds.ISRN
Geometry,2013,ArticleID:732432.https://doi.org/10.1155/2013/732432
[4]Nibaruta,G., Karimumuryango,M., Nibirantiza, A.andNdayirukiye,D.(2020) TwistedProd-
uctsBerwaldMetricsofPolarType.DifferentialGeometry-DynamicalSystems,22,183-193.
[5]Berwald,L.(1926)UntersuchungderKr¨ummungallgemeinermetrischerR¨aumeaufGrund
desinihnenherrschendenParallelismus.MathematischeZeitschrift,25,40-73.
https://doi.org/10.1007/BF01283825
[6]Berwald,L.(1928)Parallel´ubertragunginallgemeinenR¨aumen.AttiDelCongressoInter-
nazionaleDeiMatematiciBolognaDelAlDeSettembreDi,4,263-270.
[7]Matsumoto,M.(1986)FoundationofFinslerGeometryandSpecialFinslerSpaces.Kaiseisha
Press,Otsu,Japan.
[8]Shen, Z. (2001) Differential Geometry of Spray and Finsler Spaces. Springer, The Netherlands.
[9]Chen,X.andShen,Z.(2005)OnDouglasMetrics.PublicationesMathematicae,66,503-503.
[10]Yang,Z.,He,Y.andZhang,X.(2020)S-CurvatureofDoublyWarpedProductofFinsler
Manifolds.ActaMathematicaSinica,36,95-101.
[11]Bao,D.,Chern,S.S.andShen,Z.(2000)AnIntroductiontoRiemann-FinslerGeometry.
Springer-Verlag,NewYork.
[12]!˜W,!§¬.y“¥dVAÛÐÚ[M].®:p˜Ñ‡,2013.
[13]Peyghan, E., Tayebi, A. and Najafi,B. (2012) DoublyWarpedProduct FinslerManifolds with
SomeNon-RiemannianCurvatureProperties.AnnalesPoloniciMathematici,105,293-311.
https://doi.org/10.4064/ap105-3-6
DOI:10.12677/pm.2021.1171561399nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.