设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2021,11(7),1400-1415
PublishedOnlineJuly2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.117157
š
à
g
Burgers
•
§
i
ù
Ð
Š
6
Ä
¯
K
)
ì
C
-
½
5
ÜÜÜîîî
ŒŒŒ
§§§
ooo
þ
°
“
‰
Œ
Æ
§
þ
°
Email:1914939880@qq.com
Â
v
F
Ï
µ
2021
c
6
12
F
¶
¹
^
F
Ï
µ
2021
c
7
14
F
¶
u
Ù
F
Ï
µ
2021
c
7
21
F
Á
‡
©
Ì
‡
ï
Ä
š
à
g
Burgers
•
§
…
ܯ
K
§
Ð
Š
•
i
ù
Ð
Š±
Ï
6
Ä
ž
§
Ä
Å
(
ì
C
-
½
5
"
·
‚
u
y
-
Å
)
6
Ä
§
3
k
•
ž
m
T
E
•
-
Å
)
§
3
?
¿
ž
•
t>T
§
§
†
m
G
E
•
±
Ï
¼
ê
§
…
3
L
∞
‰
ê
¿Â
e
P
~
–
0
"
A
O
/
§
6
Ä
-
Å
3
-
Å
ü
ý
{
Ä
§
6
Ä
D
Õ
Å
)
3
L
∞
‰
ê
¿Â
e
P
~
–
0
"
'
…
c
š
à
g
Burgers
•
§
§
-
Å
§
D
Õ
Å
§
±
Ï
6
Ä
§
2
Â
A
‚
AsymptoticStabilityofShockWavesand
RarefactionWavesunderPeriodic
PerturbationsforInhomogeneous
BurgersEquation
ZhaoxiangZhang,YueLi
ShanghaiNormalUniversity,Shanghai
Email:1914939880@qq.com
©
Ù
Ú
^
:
Üî
Œ
,
o
.
š
à
g
Burgers
•
§
i
ù
Ð
Š
6
Ä
¯
K
)
ì
C
-
½
5
[J].
n
Ø
ê
Æ
,2021,11(7):
1400-1415.
DOI:10.12677/pm.2021.117157
Üî
Œ
§
o
Received:Jun.12
th
,2021;accepted:Jul.14
th
,2021;published:Jul.21
st
,2021
Abstract
In this paper we study large time behaviors toward shock waves and rarefaction waves
underperiodicperturbationsforinhomogeneousBurgersequation. Weshowthatfor
shockwaves, afterafinitetime,theperturbedshockactuallyconsistsoftwoperiodic
functionscontactingeachotheratashock,andthisshockcurveoscillatesonboth
sidesofthebackgroundshockcurve. Bothofperturbedshockwavesandperturbed
rarefactionwavestendtozerointhe
L
∞
norm.
Keywords
InhomogeneousBurgersEquation,ShockWaves,RarefactionWaves,Periodic
Perturbations,GeneralizedCharacteristics
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
©
ï
Ä
X
e
Ð
Š
¯
K
Œ
ž
m
1
•
u
t
+(
u
2
2
)
x
=
−
u,x
∈
(
−∞
,
+
∞
)
,t>
0
,
(1.1)
u
(
x,
0) =
¯
u
l
+
ω
0
(
x
)
,x<
0
,
¯
u
r
+
ω
0
(
x
)
,x>
0
,
(1.2)
Ù
¥
¯
u
l
,
¯
u
r
•
~
ê
,
ω
0
(
x
)
´
±
Ï
•
p
(
>
0)
¼
ê
.
•
•
B
O
Ž
,
·
‚
-
1
p
Z
p
0
ω
0
(
x
)
dx
≡
0
.
DOI:10.12677/pm.2021.1171571401
n
Ø
ê
Æ
Üî
Œ
§
o
•
§
(1.1)
´
X
e
š
à
g
Å
ð
Æ
•
§
A
Ï
œ
¹
u
t
+
f
(
u
)
x
=
g
(
u
)
,x
∈
(
−∞
,
+
∞
)
,t>
0
,
(1.3)
Ù
¥
f
(
u
)
∈
C
2
(
R
)
…
f
00
(
u
)
>
0,
g
:
R
→
R
•
1
w
¼
ê
.
é
u
˜
„
Ð
Š
u
(
x,
0) =
u
0
(
x
)
,
(1.4)
·
‚
•
¯
K
(1.3)(1.4)
=
B
Ð
Š
1
w
,
Ù
)
•
Œ
U
du
A
3
k
•
ž
m
S
ƒ
»
.
Ï
d
3
Ï
~
œ
¹
e
(1.3)(1.4)
1
w
)
´
Ø
•
3
.
·
‚
•
Ä
(1.3)(1.4)
f
)
.
X
J¼
ê
u
(
x,t
)
´
¯
K
(1.3)(1.4)
f
)
,
¿
…
é
A
¤
k
t>
0
,u
(
x,t
)
÷
v
e
¡
^
‡
u
(
x
−
,t
)
≥
u
(
x
+
,t
)
,
(1.5)
@
o
·
‚
¡
u
(
x,t
)
´
¯
K
(1.3)(1.4)
)
.
,
é
u
¯
K
(1.3)(1.4), Kruzkov
3
[1]
¥
|
^
Ê
5
ž
”
{
y
²
é
u
?
¿
Û
Ü
k
.
C
Ð
Š
,
¯
K
(1.3)(1.4)
•
3
•
˜
Œ
N
N
N
)
.
A
O
/
,
‘
Ø
‡
L
‚
5
O
•
ž
,
é
?
¿
Û
Ü
k
.
C
Ð
Š
u
0
,
¯
K
(1.3)(1.4)
3
BV
˜
m
¥
k
•
˜
Œ
N
N
N
)
.
g
(
u
) = 0
ž
,
¯
K
(1.3)(1.4)
)
ì
C
/
®
²
2
•
/
ï
Ä
.
~
X
,
u
0
(
x
)
∈
L
∞
∩
L
1
ž
,
)
3
L
∞
‰
ê
¿Â
e
±
t
−
1
„
Ç
P
~
–
0.
u
0
(
x
)
k
.
¿
ä
k
;
|
8
ž
,
)
3
L
1
‰
ê
¿Â
e
±
t
−
1
/
2
„
Ç
ª
u
N
−
Å
,
„
[2][3].
Ð
Š
ä
k
±
Ï
5
ž
, Glimm
Ú
Lax[4]
y
²
)
±
t
−
1
„
Ç
P
~
–
Ð
Š
3
˜
‡
±
Ï
þ
²
þ
.
é
u
i
ù
¯
K
,
"
[5]
y
²
‰
i
ù
Ð
Š±
Ï
6
Ä
,
-
Å
)
6
Ä
±
t
−
1
„
Ç
ª
u
-
Å
)
,
D
Õ
Å
)
6
Ä
3
L
∞
‰
ê
¿Â
e
±
t
−
1
/
2
„
Ç
ª
u
D
Õ
Å
)
.
3
"
Ä
:
þ
,
[6]
‰
i
ù
Ð
Š
Ø
Ó
±
Ï
6
Ä
,
¿
y
²
-
Å
6
Ä
ƒ
é
u
-
Å
)
£
.
D
Õ
Å
)
6
Ä
3
L
∞
‰
ê
¿Â
e
±
t
−
1
/
2
„
Ç
ª
u
D
Õ
Å
)
.
g
(
u
)
6
= 0
ž
,
š
à
g
¯
K
(1.3)(1.4)
•
k
X
Œ
þ
ï
Ä
.Lyberopoulos [7]
y
²
3
g
(
u
) =
u
œ
¹
e
,
e
Ð
Š
´
ë
Y
±
Ï
¼
ê
,
3
˜
‡
±
Ï
þ
þ
Š
•
"
,
¿
…
f
(0) =
f
0
(0) =0
,uf
0
(
u
)
>
0
,u
6
=
0,
@
o
¯
K
(1.3)(1.4)
)
ª
u
1
Å
)
…
Å
„
•
"
. Fan[8]
ï
Ä
•
\
˜
„
‘
,
3
g
(
u
)
ä
kk
•
‡
"
:
…
•
3
~
ê
M
0
>
0,
¦
é
?
¿
|
u
|
>M
0
Ñ
k
ug
(
u
)
<
0
b
^
‡
e
,
e
Ð
Š
´
Û
Ü
C
k
.
±
Ï
¼
ê
,
@
o
¯
K
(1.3)(1.4)
)
‡
o
Â
ñ
u
g
(
u
)
,
‡
"
:
,
‡
o
Â
ñ
u
Å
„
•
f
0
(
a
2
n
+1
)
1
Å
)
,
Ù
¥
a
2
n
+1
L
«
g
(
u
)
1
2
n
+1
‡
"
:
.
²
[9]
3
d
Ä
:
þ
é
‘
‡
¦
?
1
~
f
,
•
Ä
g
(
u
)
∈
C
(
R
)
ä
kk
•
‡
"
:
¿
…
3
a
2
n
+1
N
C
Ø
‡
L
‚
5
O
•
,
y
²
e
Ð
Š
´
Û
Ü
C
k
.
±
Ï
¼
ê
¿
…
þ
Š
u
a
2
n
+1
,
@
o
¯
K
(1.3)(1.4)
)
ª
u
Å
„
•
f
0
(
a
2
n
+1
)
1
Å
)
.
6
Ä
ω
0
(
x
) = 0
ž
,
¯
K
(1.1)(1.2)
•
i
ù
¯
K
.Mascia[10]
:
¯
u
l
>
¯
u
r
ž
,(1.1)(1.2)
)
•
-
Å
)
{
¡
µ
-
Å
)
,
L
ã
X
e
.
u
S
(
x,t
) =
¯
u
l
e
−
t
,x<S
(
t
)
,
¯
u
r
e
−
t
,x>S
(
t
)
,
(1.6)
Ù
¥
-
Å
-
‚
S
(
t
) = (1
−
e
−
t
)(¯
u
l
+ ¯
u
r
)
/
2
.
DOI:10.12677/pm.2021.1171571402
n
Ø
ê
Æ
Üî
Œ
§
o
¯
u
l
<
¯
u
r
ž
,(1.1)(1.2)
)
•
D
Õ
Å
)
{
¡
µ
D
Õ
Å
)
,
L
ã
X
e
,
u
R
(
x,t
) =
¯
u
l
e
−
t
,x<
(1
−
e
−
t
)¯
u
l
,
˜
u
(
x,t
)
,
(1
−
e
−
t
)¯
u
l
<x<
(1
−
e
−
t
)¯
u
r
,
¯
u
r
e
−
t
,x>
(1
−
e
−
t
)¯
u
r
,
(1.7)
Ù
¥
˜
u
(
x,t
)
d
[10]
¥
½
Â
2.4
‰
Ñ
.
·
‚
u
y
t
→∞
ž
,
µ
-
Å
)
†
m
ü
à
±
e
−
t
„
Ç
P
~
–
0,
µ
-
Å
-
‚
ª
u
†
‚
x
= (¯
u
l
+ ¯
u
r
)
/
2.
µ
D
Õ
Å
)
ü
à
±
e
−
t
„
Ç
P
~
–
0,
´
¥
m
Ü
©
˜
u
(
x,t
)
v
k
w
«
L
ˆ
ª
,
Ã
{
ä
)
ì
C
5
.
®
k
(
J
L
²
,
ü
‡
ý
š
‚
5
Å
ð
Æ
•
§
|
±
Ï
Ð
Š
¯
K
)
¬
ª
u
~
Š
,
i
ù
Ð
Š±
Ï
6
Ä
)
ª
u
µ)
;
é
u
²
ï
Æ
•
§
,
±
Ï
Ð
Š
¯
K
)
ª
u
~
Š
½
ö
1
Å
)
,
ù
L
²
‘
é
¯
K
k
Ÿ
K
•
.
©
•
Ä
²
ï
Æ
•
§
i
ù
Ð
Š
±
Ï
6
Ä
¯
K
)
•
ž
m
5
,
ï
Ä
Ù
)
†
µ
)
ƒ
m
'
X
,
&
¢
‘
é
)
(
K
•
.
é
u
Cauchy
¯
K
(1
.
1)(1
.
2),
:
½
n
1.1
é
u
¯
u
l
>
¯
u
r
,
X
J
±
Ï
¼
ê
ω
0
(
x
)
3
˜
‡
±
Ï
(0
,p
]
þ
C
k
.
,
¿
…
•
3
•
˜˜
:
a
∈
(0
,p
]
,
¦
ω
0
(
a
−
)
≤
0
≤
ω
0
(
a
+)
,
@
o
•
3
k
•
ž
m
T
s
Ú
•
˜
-
‚
X
(
t
)
∈
Lip(0
,
+
∞
)
,
¦
é
?
Û
t>T
s
,
Cauchy
¯
K
(1
.
1)(1
.
2)
)
÷
v
u
(
x,t
) =
u
l
(
x,t
)
,x<X
(
t
)
,
u
r
(
x,t
)
,x>X
(
t
)
.
(1.8)
t
→
+
∞
ž
,
sup
x<X
(
t
)
|
u
(
x,t
)
|
+sup
x>X
(
t
)
|
u
(
x,t
)
|→
0
.
A
O
/
,
(¯
u
l
−
¯
u
r
)(1
−
e
−
t
)
/p
´
êž
,
6
Ä
-
Å
†
µ
-
Å
ƒ
,
=
X
(
t
)=
S
(
t
)
.
:
‡
ê
†
Ð
Š
ƒ
'
,
(¯
u
l
−
¯
u
r
)=
Np,N
•
êž
,
6
Ä
-
Å
ª
u
µ
-
Å
.
Np<
(¯
u
l
−
¯
u
r
)
<
(
N
+1)
p
ž
,
§
‚
•
3
N
‡
:
.
(¯
u
l
−
¯
u
r
)
<p
ž
,
§
‚
Ø
•
3
:
.
½
n
1.2
é
u
¯
u
l
<
¯
u
r
,
X
J
±
Ï
¼
ê
ω
0
(
x
)
3
˜
‡
±
Ï
(0
,p
]
þ
C
k
.
,
¿
…
•
3
•
˜˜
:
a
∈
(0
,p
]
,
¦
ω
0
(
a
−
)
≤
0
≤
ω
0
(
a
+)
.
@
o
t
→
+
∞
ž
,
Cauchy
¯
K
(1
.
1)(1
.
2)
)
u
(
x,t
)
3
L
∞
‰
ê
¿Â
e
P
~
–
0
.
2.
2
Â
A
n
Ø
Ä
k
·
‚
0
˜
e
2
Â
A
‚
n
Ø
,
ù
Ñ
Œ
±
3
[8][9][11]
¥
é
.
3
«
m
[
a,b
]
þ
˜
^
Lipschitz
-
‚
¡
•
'
u
(1.1)
)
u
(
x,t
)
A
‚
,
X
J
é
A
¤
k
t
∈
[
a,b
],
k
˙
ξ
(
t
)
∈
[
f
0
(
u
(
ξ
(
t
)+
,t
))
,f
0
(
u
(
ξ
(
t
)
−
,t
))]
.
é
?
¿
(¯
x,
¯
t
)
∈
(
R
(0
,
+
∞
)),
–
•
3
˜
‡
½
Â
3
0
≤
s
≤
¯
t
þ
•
2
Â
A
ξ
(
t
;¯
x,
¯
t
),
¦
DOI:10.12677/pm.2021.1171571403
n
Ø
ê
Æ
Üî
Œ
§
o
ξ
(
¯
t
;¯
x,
¯
t
) =¯
x
.
²
¡
þ
¤
k
²
L
:
(¯
x,
¯
t
)
•
A
Ñ
•
›
3
•
Ú
•
Œ
•
2
Â
A
¤
Ü
¤
Ï
¥
.
·
‚
^
ξ
−
(
t
;¯
x,
¯
t
)
,ξ
+
(
t
;¯
x,
¯
t
)
©
OL
«
•
Ú
•
Œ
•
2
Â
A
.
t>
¯
t
ž
•
3
•
˜
c
•
A
,
X
ã
1
¤
«
.
½
Â
3
[
a,b
]
þ
A
ξ
(
·
),
e
é
A
¤
k
t
∈
[
a,b
]
Ñ
÷
v
u
(
ξ
−
(
t
)
,t
) =
u
(
ξ
+
(
t
)
,t
),
K
¡
•
ý
A
.
'
u
•
§
(1.3)
2
Â
A
,
·
‚
k
±
e
n
‡
5
Ÿ
,
•
õ
[
!
Œ
±
ë
•
[11].
Figure1.
Forward/backwardcharacteristic
ã
1.
c
•
/
•
2
Â
A
Ú
n
2.1
X
J
ξ
: [
a,b
]
→
R
´
˜
^A
,
@
o
é
u
A
¤
k
t
∈
[
a,b
]
,
Ñ
k
˙
ξ
(
t
) =
f
0
(
u
(
ξ
(
t
)
±
,t
))
,
u
(
ξ
(
t
)+
,t
) =
u
(
ξ
(
t
)
−
,t
)
ž
,
˙
ξ
(
t
) =
f
(
u
(
ξ
(
t
)+
,t
))
−
f
(
u
(
ξ
(
t
)
−
,t
))
u
(
ξ
(
t
)+
,t
)
−
u
(
ξ
(
t
)
−
,t
)
,
u
(
ξ
(
t
)+
,t
)
<u
(
ξ
(
t
)
−
,t
)
ž
.
(2.1)
Ú
n
2.2
e
ξ
: [
a,b
]
→
R
´
˜
^
ý
A
,
@
o
•
3
˜
‡
¼
ê
v
: [
a,b
]
→
R
÷
v
˙
ξ
(
t
) =
f
0
(
v
(
t
))
,
˙
v
(
t
) =
g
(
v
(
t
))
,
(2.2)
¿
…
é
u
A
¤
k
t
∈
(
a,b
)
,
Ñ
k
v
(
t
) =
u
(
ξ
(
t
)+
,t
) =
u
(
ξ
(
t
)
−
,t
)
.
Ú
n
2.3
4
Ú
4
Œ
•
A
ξ
−
(
t
)
Ú
ξ
+
(
t
)
Ñ
´´
ý
A
.
§
‚
©
O
Ï
L
¦
)
(2
.
2)
3
t
=
¯
t
ž
•
±
(¯
x,u
(¯
x
−
,
¯
t
))
Ú
(¯
x,u
(¯
x
+
,
¯
t
))
•
Ð
Š
•
¯
K
,
…
u
3
à:
?
÷
v
,
u
(
ξ
−
(0)
−
,
0)
≤
u
(
ξ
−
(0)+
,
0)
,u
(
ξ
−
(
¯
t
)
−
,
¯
t
)
≥
u
(
ξ
−
(
¯
t
)+
,
¯
t
)
,
u
(
ξ
+
(0)
−
,
0)
≤
u
(
ξ
+
(0)+
,
0)
,u
(
ξ
+
(
¯
t
)
−
,
¯
t
)
≥
u
(
ξ
+
(
¯
t
)+
,
¯
t
)
.
í
Ø
2.1
(1)
e
ü
^
Ø
Ó
ý
A
ƒ
,
K
d
ž
)
-
Å
,
@
o
T
:
7
´
ù
ü
^
ý
A
ª
:
.
(2)
¯
t>
0
ž
,
4
•
A
ξ
−
(
t
)
Ú
4
Œ
•
A
ξ
+
(
t
)
-
Ü
…
=
u
(¯
x
−
,
¯
t
) =
u
(¯
x
+
,
¯
t
)
.
(3)
é
?
¿
ü
^
l
x
¶
Ñ
u
4
c
•
A
ξ
−
(
t
)
Ú
4
Œ
c
•
A
ξ
+
(
t
)
,
X
J
§
‚
3
,
˜
ž
•
t
0
>
0
ƒ
,
@
o
§
‚
3
t>t
0
-
Ü
.
DOI:10.12677/pm.2021.1171571404
n
Ø
ê
Æ
Üî
Œ
§
o
Ú
n
2.4
-
ξ
(
t
)
Ú
˜
ξ
(
t
)
•
©
O
†
(1
.
1)
‘
k
Û
Ü
C
k
.
Ð
Š
u
(
x,
0)
Ú
˜
u
(
x,
0)
)
u
(
x,t
)
Ú
˜
u
(
x,t
)
ƒ
'
ü
^
4
Š
•
A
,
X
ã
2
¤
«
,
§
‚
l
½:
(¯
x,
¯
t
)
∈
R
(0
,
+
∞
)
Ñ
u
.
e
˜
ξ
(0)
<ξ
(0)
,
@
o
¤
á
X
e
ª
Figure2.
Minimalbackwardcharacteristic
ã
2.
•
•
A
Z
ξ
(0)
˜
ξ
(0)
(
u
(
x,
0)
−
˜
u
(
x,
0))
dx
=
Z
¯
t
0
(
−
e
t
[
u
(
ξ
(
t
)
,t
)
−
˜
u
(
ξ
(
t
)
,t
)]
˙
ξ
(
t
)+
e
t
[
f
(
u
(
ξ
(
t
)
,t
))
−
f
(˜
u
(
ξ
(
t
)
,t
)))])
dt
+
Z
¯
t
0
(
e
t
[
u
(
˜
ξ
(
t
)
,t
)
−
˜
u
(
˜
ξ
(
t
)
,t
)]
˙
˜
ξ
(
t
)
−
e
t
[
f
(
u
(
˜
ξ
(
t
)
,t
))
−
f
(˜
u
(
˜
ξ
(
t
)
,t
)))])
dt.
(2.3)
y
½
Â
«
•
Ω := (
x,t
)
|
0
≤
t
≤
¯
t,
˜
ξ
(
t
)
≤
x
≤
ξ
(
t
).
Ä
k
ò
(1.1)
=
†
•
(
e
t
u
)
t
+(
e
t
f
(
u
))
x
= 0
.
(2.4)
-
u
=
u
(
x,t
)
−
˜
u
(
x,t
),
¿
ò
Ù
3
Ω
þ
È
©
,
$
^
Green
ú
ª
´
(2.3).
Ú
n
2.5
e
Ð
Š
u
0
3
[0
,p
]
þ
C
k
.
¿
…
±
p
•
±
Ï
,
-
u
´
¯
K
(1
.
1)(1
.
4)
)
.
@
o
(1)
é
u
?
¿
t>
0
,
u
(
·
,t
)
´
±
p
•
±
Ï
¼
ê
.
(2)
é
u
z
‡
½
T>
0
,
1
p
Z
p
0
u
(
x,T
)
dx
=
e
−
T
p
Z
p
0
u
0
(
x
)
dx.
(2.5)
y
(1)
½
Â
v
(
x,t
) =
u
(
x
+
p,t
).
é
u
z
‡
φ
∈
C
1
0
(
R
×
(0
,
+
∞
)),
X
J
˜
φ
(
x,t
) =
φ
(
x
−
p,t
),
@
o
ZZ
t>
0
vφ
t
+
f
(
v
)
φ
x
+
vφdxdt
+
Z
t
=0
u
0
φdx
=
ZZ
t>
0
u
(
x
+
p,t
)
φ
t
+
f
(
u
(
x
+
p,t
))
φ
x
+
u
(
x
+
p,t
)
φdxdt
=
ZZ
t>
0
u
(
x,t
)
˜
φ
t
+
f
(
u
(
x,t
))
˜
φ
x
+
u
(
x,t
)
˜
φdxdt
=0
.
DOI:10.12677/pm.2021.1171571405
n
Ø
ê
Æ
Üî
Œ
§
o
Ï
d
,
v
•
´
T
¯
K
)
.
u
´
d
)
•
3
•
˜
5
•
u
(
x,t
)
≡
v
(
x,t
).
(2)
½
Â
Ý
/
«
•
Ω=
{
(
x,t
)
|
0
≤
x
≤
p,
0
≤
t
≤
¯
t
}
.
ò
(2.4)
3
Ω
þ
È
©
.
$
^
Green
ú
ª
Ú
(1)
0 =
ZZ
Ω
(
e
t
u
(
x,t
))
t
+(
e
t
f
(
u
(
x,t
)))
x
dxdt
=
I
−
e
t
u
(
x,t
)
dx
+
e
t
f
(
u
(
x,t
))
dt
=
Z
p
0
−
u
(
x,
0)
dx
+
Z
T
0
e
t
f
(
u
(
p,t
))
dt
+
Z
p
0
e
T
u
(
x,T
)
dx
−
Z
T
0
e
t
f
(
u
(0
,t
))
dt
=
Z
p
0
−
u
(
x,
0)
dx
+
Z
p
0
e
T
u
(
x,T
)
dx.
y
.
.
-
R
(
u
(
·
,t
)) =
{
u
(
x
±
,t
) :
x
∈
R
,t>
0
}
,
Ù
¥
u
÷
v
Ú
n
2.5
^
‡
.
'
u
R
(
u
(
·
,t
))
·
‚
k
X
e
ü
‡
5
Ÿ
,
Ù
y
²
Œ
±
3
[8]
¥
é
.
Ú
n
2.6
R
(
u
(
·
,t
))
´
˜
‡
4
«
m
.
Ú
n
2.7
e
R
(
u
(
·
,t
))=[
α
(
t
)
,β
(
t
)]
,
@
o
é
?
¿
γ
∈
(
α
(
t
)
,β
(
t
))
,
•
3
˜
‡
ë
Y
:
x
0
∈
R
¦
u
(
x
0
,t
) =
γ
.
·
‚
P
u
l
(
x,t
)
,u
r
(
x,t
)
,u
(
x,t
)
•
(1.1)
©
O
‘
k
X
e
Ð
Š
)
:
u
l
(
x,
0) =¯
u
l
+
ω
0
(
x
)
,x
∈
R
,
u
r
(
x,
0) =¯
u
r
+
ω
0
(
x
)
,x
∈
R
,
u
(
x,
0) =
¯
u
l
+
ω
0
(
x
)
,x<
0
,
¯
u
r
+
ω
0
(
x
)
,x>
0
.
d
Fan [8]
¥
½
n
1.1
Œ
•
,
t
→
+
∞
ž
,
|
u
l
(
x,t
)
|→
0
,
|
u
r
(
x,t
)
|→
0
.
(2.6)
e
ω
0
(
x
)
÷
v
"
þ
Š
^
‡
,
@
o
d
Ú
n
2.5(2)
•
,
3
½
T>
0
ž
•
k
1
p
Z
p
0
u
l
(
x,T
)
dx
=
e
−
T
p
Z
p
0
u
l
(
x,
0)
dx
=¯
u
l
e
−
T
.
qd
Ú
n
2.6
•
,
R
(
u
(
·
,T
))
´
˜
‡
4
«
m
.
Ï
d
¯
u
l
e
−
T
3
T
«
m
S
.
|
^
u
(
·
,T
)
±
Ï
5
Ú
Ú
n
2.7,
·
‚
í
ä
•
3
ë
Y
:
x
0
∈
(0
,p
],
¦
u
(
x
0
,T
) =¯
u
l
e
−
T
.
Ú
n
2.8
b
:
(¯
x,
¯
t
)
∈
R
×
(0
,
+
∞
)
÷
v
u
l
(¯
x,
¯
t
)=¯
u
l
e
−
¯
t
,
l
T
:
Ñ
u
Š
4
Š
•
A
ξ
(
t
)
.
u
´
t>
¯
t
ž
,
ξ
(
t
)
•
´
k
½
Â
,
¿
…
÷
v
u
l
(
ξ
(
t
)
,t
) =¯
u
l
e
−
t
.
DOI:10.12677/pm.2021.1171571406
n
Ø
ê
Æ
Üî
Œ
§
o
y
æ
^
‡
y
{
.
¿
©
>
0,
b
3
t
=
¯
t
+
ž
•
,
u
(
ξ
(
t
)
,t
)
6
=¯
u
l
e
−
t
.
´
•
3
x
0
∈
(
ξ
(
t
)
−
p/
2
,ξ
(
t
)+
p/
2),
¦
u
(
x
0
,t
) =¯
u
l
e
−
t
.
l
T
:
Ñ
u
Š
4
Š
•
A
η
(
t
),
X
ã
3
¤
«
.
du
ξ
(
t
)
,η
(
t
)
´
÷
v
Ú
n
2.2
,
Ï
d
ξ
(
t
) =
ξ
(0)+¯
u
l
(1
−
e
−
t
)
,t
∈
(0
,
¯
t
]
,
η
(
t
) =
η
(0)+ ¯
u
l
(1
−
e
−
t
)
,t
∈
(0
,
¯
t
+
]
,
…
÷
X
ξ
(
t
)
k
u
(
ξ
(
t
)
,t
) =¯
u
l
e
−
t
,
÷
X
η
(
t
)
k
u
(
η
(
t
)
,t
) =¯
u
l
e
−
t
.
Figure3.
Specialcharacteristic
ã
3.
A
Ï
A
y
3
·
‚
•
I
‡
y
²
ξ
(0) =
η
(0)
=
Œ
.
du
3
(0
,p
]
S
•
k
•
˜˜
:
a
÷
v
ω
0
(
a
−
)
≤
0
≤
ω
0
(
a
+)
,
…
d
Ú
n
2.3
•
¯
u
l
+
ω
0
(
ξ
(0)
−
) =
u
(
ξ
(0)
−
,
0)
≤
¯
u
l
≤
u
(
ξ
(0)+
,
0) =¯
u
l
+
ω
0
(
ξ
(0)+)
,
¯
u
l
+
ω
0
(
η
(0)
−
) =
u
(
η
(0)
−
,
0)
≤
¯
u
l
≤
u
(
η
(0)+
,
0) =¯
u
l
+
ω
0
(
η
(0)+)
,
η
(0)=
ξ
(0) +
Np
,
Ù
¥
N
•
ê
.
w
,
t
∈
(0
,
¯
t
)
ž
,
ξ
(
t
)
²
1
u
η
(
t
),
=
η
(
¯
t
)=
ξ
(
¯
t
) +
Np
.
-
→
0,
d
A
Lipschitz
ë
Y5
η
(
¯
t
+
)
→
η
(
¯
t
).
du
η
(
¯
t
)
∈
(
ξ
(
¯
t
)
−
p/
2
,ξ
(
¯
t
) +
p/
2),
Ï
d
N
= 0,
=
η
(0) =
ξ
(0).
y
.
.
Ú
n
2.9
¯
u
l
>
¯
u
r
ž
,
u
(
x,t
) =
u
l
(
x,t
)
,x<X
+
(
t
)
,
u
r
(
x,t
)
,x>X
−
(
t
)
,
(2.7)
Ù
¥
X
−
(
t
)
•
l
:
Ñ
u
'
u
u
4
c
•
A
,
X
+
(
t
)
•
l
:
Ñ
u
'
u
u
4
Œ
c
•
A
.
y
Ø
”
˜
„
5
,
·
‚
y
²
x<X
+
(
t
)
œ
¹
.
é
u
?
Û
½
(¯
x,
¯
t
)
…
¯
x<X
+
(
¯
t
)
,
¯
t>
0.
·
‚
Ä
k
y
²
u
(¯
x
+
,
¯
t
) =
u
l
(¯
x
+
,
¯
t
).
L
:
(¯
x
+
,
¯
t
)
©
O
Š
'
u
)
u,u
l
4
Œ
•
A
ξ
+
(
t
)
Ú
η
+
(
t
),
X
ã
4
¤
«
.
Ï
•
4
Œ
•
A
´
ý
A
,
DOI:10.12677/pm.2021.1171571407
n
Ø
ê
Æ
Üî
Œ
§
o
Figure4.
Perturbedshockwave
ã
4.
6
Ä
-
Å
)
ξ
+
(
t
)
Ú
η
+
(
t
)
3
[0
,
¯
t
]
þ
÷
v
X
e
'
X
ª
˙
ξ
+
(
t
) =
f
0
(
v
(
t
))
,
˙
v
(
t
) =
−
v
(
t
)
,
Ú
˙
η
+
(
t
) =
f
0
(˜
v
(
t
))
,
˙
˜
v
(
t
) =
−
˜
v
(
t
)
,
¿
…
é
u
A
¤
k
t
∈
(0
,
¯
t
),
Ñ
k
v
(
t
) =
u
(
ξ
+
(
t
)+
,t
) =
u
(
ξ
+
(
t
)
−
,t
)
,
˜
v
(
t
) =
u
l
(
η
+
(
t
)+
,t
) =
u
l
(
η
+
(
t
)
−
,t
)
.
du
t>
0
ž
,
l
?
¿
:
Ñ
u
c
•
A
´
•
˜
,
ξ
+
(
t
)
†
X
(
t
)
Ø
ƒ
,
=
ξ
+
(0)
<
0.
e
¡
æ
^
‡
y
{
:
e
u
(¯
x
+
,
¯
t
)
>u
l
(¯
x
+
,
¯
t
),
=
v
(
¯
t
)
>
˜
v
(
¯
t
).
du
v
(
t
) =
v
(
¯
t
)
e
−
(
¯
t
−
t
)
,
˜
v
(
t
) =˜
v
(
¯
t
)
e
−
(
¯
t
−
t
)
,
v
(
t
)
>
˜
v
(
t
).
d
f
à
5
´
˙
ξ
+
(
t
) =
f
0
(
v
(
t
))
>f
0
(˜
v
(
t
)) =˙
η
+
(
t
)
.
(2.8)
•
Ä
ù
ü
^
4
Œ
•
A
Ñ
´
l
(¯
x,
¯
t
)
Ñ
u
,
Ï
d
ξ
+
(0)
<η
+
(0).
|
^
Ú
n
2.4
´
Z
¯
t
0
e
t
[
u
l
(
ξ
+
(
t
)
,t
)
−
u
(
ξ
+
(
t
)
,t
)]
˙
ξ
+
(
t
)
−
e
t
[
f
(
u
l
(
ξ
+
(
t
)
,t
)))
−
f
(
u
(
ξ
+
(
t
)
,t
))]
dt
−
Z
¯
t
0
e
t
[
u
l
(
η
+
(
t
)
,t
)
−
u
(
η
+
(
t
)
,t
)]˙
η
+
(
t
)
−
e
t
[
f
(
u
l
(
η
+
(
t
)
,t
)))
−
f
(
u
(
η
+
(
t
)
,t
))]
dt
=
Z
η
+
(0)
ξ
+
(0)
u
l
(
x,
0)
−
u
(
x,
0)
dx.
(2.9)
η
+
(0)
≤
0
ž
, (2.9)
m
ý
u
0;
η
+
(0)
>
0
ž
, (2.9)
m
ý
u
R
η
+
(0)
0
(¯
u
l
−
¯
u
r
)
dx>
0.
|
^
f
à
5
Ø
J
u
y
, (2.8)
†
ý
´
š
,
Ï
d
η
+
(0)
≤
0,
•
Ò
´
`
é
u
?
¿
t
∈
(0
,
¯
t
),
Ñ
k
u
l
(
ξ
+
(
t
)
,t
) =
u
(
ξ
+
(
t
)
,t
) =
v
(
t
)
,
u
l
(
η
+
(
t
)
,t
) =
u
(
η
+
(
t
)
,t
) =˜
v
(
t
)
.
DOI:10.12677/pm.2021.1171571408
n
Ø
ê
Æ
Üî
Œ
§
o
d
ž
η
+
(
t
)
•
´
†
u
k
'
•
A
.
´
ξ
+
(
t
)
´
l
(¯
x,
¯
t
)
Ñ
u
'
u
u
4
Œ
•
A
,
ù
†
ξ
+
(0)
<η
+
(0)
w
,
g
ñ
.
Ï
d
u
(¯
x
+
,
¯
t
)
≤
u
l
(¯
x
+
,
¯
t
).
Ó
n
,
b
u
(¯
x
+
,
¯
t
)
<u
l
(¯
x
+
,
¯
t
)
•
´
Ø
¤
á
.
Ï
d
u
(¯
x
+
,
¯
t
) =
u
l
(¯
x
+
,
¯
t
).
d
(¯
x,
¯
t
)
?
¿
5
,
=
y
x<X
+
(
t
)
ž
,
u
(¯
x
+
,
¯
t
) =
u
l
(¯
x
+
,
¯
t
).
a
q
,
l
(¯
x,
¯
t
)
Ñ
u©
O
‰
Ú
)
u,u
l
k
'
4
•
A
ξ
−
(
t
)
Ú
η
−
(
t
),
u
´
Œ
y
u
(¯
x
−
,
¯
t
) =
u
l
(¯
x
−
,
¯
t
).
(
Ü
þ
ã
?
Ø
,
·
‚
x<X
+
(
t
)
ž
,
é
?
¿
t>
0,
Ñ
k
u
(
x,t
) =
u
l
(
x,t
).
y
.
.
í
Ø
2.2
e
¯
u
l
<
¯
u
r
,
@
o
u
(
x,t
) =
u
l
(
x,t
)
,x<X
l
+
(
t
)
,
u
r
(
x,t
)
,x>X
r
−
(
t
)
,
(2.10)
Ù
¥
X
r
−
(
t
)
•
l
:
Ñ
u
'
u
u
r
4
c
•
A
,
X
l
+
(
t
)
•
l
:
Ñ
u
'
u
u
l
4
Œ
c
•
A
.
y
-
u
l
(
x,t
= 0) =
u
(
x,t
= 0)
,x<
0
,
¯
u
l
−
¯
u
r
+
u
(
x,t
= 0)
,x>
0
,
u
r
(
x,t
= 0) =
¯
u
r
−
¯
u
l
+
u
(
x,t
= 0)
,x<
0
,
u
(
x,t
= 0)
,x>
0
.
ò
Ù
“
\
Ú
n
2.9
=
y
.
3.
y
²
½
n
1.1
Ä
k
y
²
-
Å
-
‚
•
˜
5
:
e
é
?
¿
t
∈
[0
,
+
∞
)
Ñ
k
X
−
(
t
)
≡
X
+
(
t
),
d
Ú
n
2.9,
Œ
á
=
¦
(1.8).
e
é
?
¿
t
∈
[0
,
+
∞
)
Ñ
k
X
−
(
t
)
<X
+
(
t
),
@
o
3
X
−
(
t
)
<x<X
+
(
t
)
þ
ð
k
u
l
(
x,t
)=
u
r
(
x,t
).
ù
p
‡
¦
X
+
(
t
)
−
X
−
(
t
)
<p
,
Ä
K
e
•
3
t
0
>
0
¦
ª
¤
á
,
u
´
d
Ú
n
2.5(2)
á
•
Ñ
g
ñ
.
½
¯
t>
0,
?
¯
x
∈
(
X
−
(
¯
t
)
,X
+
(
¯
t
)).
l
(¯
x,
¯
t
)
Ñ
u
‰
'
u
u
l
(
x,t
)
4
•
A
ξ
(
t
).
d
Ú
n
2.3
•
,
ξ
(
t
)
3
t
∈
[0
,
¯
t
]
þ
´
ý
A
,
˙
ξ
(
t
) =
f
0
(
v
(
t
))
,
˙
v
(
t
) =
g
(
v
(
t
))
,
…
v
(
¯
t
) =
u
l
(¯
x
−
,
¯
t
)
.
DOI:10.12677/pm.2021.1171571409
n
Ø
ê
Æ
Üî
Œ
§
o
?
˜
Ú
,
é
u
A
¤
k
t
∈
(0
,
¯
t
),
Ñ
k
v
(
t
) =
u
l
(
ξ
(
t
)+
,t
) =
u
l
(
ξ
(
t
)
−
,t
)
,
…
u
l
(
ξ
(0)
−
,
0)
≤
u
l
(
ξ
(0)+
,
0).
b
ξ
(
t
)
†
X
−
(
t
)
u
:
(
X
−
(
τ
)
,τ
)
,τ>
0(
†
X
+
(
t
)
ƒ
œ
¹
a
q
).
u
´
ξ
(
t
)
3
(
τ,
¯
t
)
þ
•
´
'
u
u
r
ý
A
.
-
t
0
=(
τ
+
¯
t
)
/
2
,x
0
=
ξ
(
t
0
),
Ø
J
u
y
,
u
l
(
x
0
−
,t
0
)=
u
l
(
x
0
+
,t
0
).
u
´
l
:
(
x
0
,t
0
)
Ñ
u
Š
'
u
u
r
4
Š
•
A
η
(
t
).
e
¡
ò
©
œ
¹
?
Ø
:
(1)
e
ξ
(
t
)
Ú
η
(
t
)
3
[0
,t
0
]
þ
Ø
-
Ü
,
@
o
ù
w
,
†
í
Ø
2.1
g
ñ
.
(2)
e
ξ
(
t
)
Ú
η
(
t
)
3
[0
,τ
)
þ
Ø
-
Ü
,
3
[
τ,t
0
]
þ
-
Ü
.
du
3
[0
,t
0
]
þ
,
ξ
(
t
)
•
:
(
x
0
,t
0
)
Ñ
u
'
u
u
l
4
Š
•
A
,
η
(
t
)
´
l
:
(
x
0
,t
0
)
Ñ
u
'
u
u
r
4
Š
•
A
.
u
l
(
x
0
,t
0
) =
u
r
(
x
0
,t
0
),
ù
†
Ú
n
2.2
g
ñ
.
(3)
e
ξ
(
t
)
Ú
η
(
t
)
3
[0
,t
0
]
þ
-
Ü
,
ù
`
²
3
[0
,t
0
]
þ
ξ
(
t
)
Q
´
'
u
u
l
(
x,t
)
4
•
A
,
•
´
'
u
u
r
(
x,t
)
ý
•
A
.
Ï
d
,
ω
0
(
ξ
(0))
7
•
m
ä:
.
Ä
K
,
¯
u
l
+
ω
0
(
ξ
(0)) =
u
l
(
ξ
(0)
,
0) =
u
r
(
ξ
(0)
,
0) =¯
u
r
+
ω
0
(
ξ
(0))
,
w
,
g
ñ
.
q
3
(
X
−
(
t
)
,X
+
(
t
))
þ
k
Ø
Œ
‡
:
,
l
ù
:
Ñ
u©
O
Š
4
•
A
,
§
‚
†
x
¶
u
Ø
Œ
‡
:
…
þ
3
˜
‡
±
Ï
S
.
du
ù
:
þ
•
m
ä:
,
w
,
†
ω
0
(
x
)
3
[0
,p
]
þ
C
k
.
g
ñ
.
n
Ü
þ
ã
©
Û
,
7
½
•
3
,
‡
¿
©
T
s
>
0,
¦
t>T
s
ž
ð
k
X
−
(
t
) =
X
+
(
t
).
u
´
·
‚
y
²
(1.8).
e
5
´
'
u
6
Ä
-
Å
-
‚
X
(
t
)
Ú
µ
-
Å
-
‚
S
(
t
)
ƒ
m
'
X
(
Ø
:
5
¿
Ð
Š
u
l
(
x,
0) =¯
u
l
+
ω
0
(
x
)
Ú
¯
ω
= 0,
|
^
Ú
n
2.5
Œ
,
é
?
¿
t>
0,
1
p
Z
p
0
u
l
(
x,t
)
dx
=
e
−
t
p
Z
p
0
u
l
(
x,
0)
dx
=¯
u
l
e
−
t
.
d
Ú
n
2.6
Ú
Ú
n
2.7
´
,
•
3
x
0
∈
(
−∞
,X
−
(
T
))
Ú
x
00
∈
(
X
+
(
T
)
,
+
∞
),
¦
u
(
x
0
,T
)=
¯
u
l
e
−
T
,u
(
x
00
,T
) =¯
u
r
e
−
T
.
l
(
x
0
,T
)
Ú
(
x
00
,T
)
Ñ
u©
O
‰
'
u
u
4
Š
•
A
ξ
(
t
)
Ú
η
(
t
),
X
ã
5
¤
«
,
§
‚
÷
v
Figure5.
Perturbedshockcurve
ã
5.
6
Ä
-
Å
-
‚
DOI:10.12677/pm.2021.1171571410
n
Ø
ê
Æ
Üî
Œ
§
o
ξ
(
t
)
<X
−
(
t
)
,η
(
t
)
>X
+
(
t
)
.
|
^
(2.2)
Œ
ξ
(
t
) =
ξ
(0)+¯
u
l
(1
−
e
−
t
)
,t
∈
[0
,T
]
,
η
(
t
) =
η
(0)+ ¯
u
r
(1
−
e
−
t
)
,t
∈
[0
,T
]
,
(3.1)
Ù
¥
u
(
ξ
(0)
−
,
0)
≤
¯
u
l
≤
u
(
ξ
(0)+
,
0)
Ú
u
(
η
(0)
−
,
0)
≤
¯
u
r
≤
u
(
η
(0)+
,
0).
d
ω
0
(
x
)
b
^
‡
,
-
ξ
(0) =
a
−
N
1
p,N
1
•
ê
,
η
(0) =
a
+
N
2
p,N
2
•
š
K
ê
.
.
(3.2)
½
Â
F
/
«
•
:
Ω(
T
)
,
{
(
x,t
) : 0
≤
t
≤
T,ξ
(
t
)
≤
x
≤
η
(
t
)
}
.
(3.3)
3
Ω(
T
)
¥
,
d
‚
ú
ª
Œ
0 =
ZZ
Ω
(
e
t
u
(
x,t
))
t
+(
e
t
f
(
u
(
x,t
)))
x
dxdt
=
Z
η
(0)
ξ
(0)
−
u
(
x,
0)
dx
+
Z
η
(
T
)
ξ
(
T
)
e
T
u
(
x,T
)
dx
+
Z
T
0
−
e
t
u
(
η
(
t
)
,t
)˙
η
(
t
)+
e
t
f
(
u
(
η
(
t
)
,t
))
dt
+
Z
T
0
e
t
u
(
ξ
(
t
)
,t
)
˙
ξ
(
t
)
−
e
t
f
(
u
(
ξ
(
t
)
,t
))
dt
,
I
1
+
I
2
+
I
3
+
I
4
.
|
^
|
η
(0)
−
ξ
(0)
|
•
±
Ï
ê
,
´
I
1
=
Z
0
η
(0)
(¯
u
r
+
ω
0
(
x
))
dx
+
Z
ξ
(0)
0
(¯
u
l
+
ω
0
(
x
))
dx
=
ξ
(0)¯
u
l
−
η
(0)¯
u
r
.
(3.4)
Š
³
|
Ñ
C
†
t
0
=
t,x
0
=
x
−
¯
u
l
(1
−
e
−
t
)
,
u
0
(
x
0
,t
0
) =
u
(
x
−
¯
u
l
(1
−
e
−
t
)
,t
)
−
¯
u
l
e
−
t
.
N
´
y
u
0
(
x
0
,t
0
)
E
÷
v
•
§
(1.1),
Ù
•
´
T
•
§
)
,
…
é
u
?
¿
½
t
0
>
0
1
p
Z
p
0
u
0
(
x
0
,t
0
)
dx
0
=
1
p
Z
p
0
u
(
x
0
,t
0
)
−
¯
u
l
e
−
t
0
dx
0
= 0
.
Ó
n
,
-
x
0
=
x
−
¯
u
r
(1
−
e
−
t
)
ž
•
k
a
q
(
Ø
.
Ï
d
,
1
‘
U
•
I
2
=
Z
X
(
T
)
ξ
(
T
)
e
T
u
l
(
x,T
)
dx
+
Z
η
(
T
)
X
(
T
)
e
T
u
r
(
x,T
)
dx
=
Z
X
(
T
)
ξ
(
T
)
e
T
[
u
0
(
x
−
¯
u
l
(1
−
e
−
T
)
,T
)+¯
u
l
e
−
T
]
dx
+
Z
η
(
T
)
X
(
T
)
e
T
[
u
0
(
x
−
¯
u
r
(1
−
e
−
T
)
,T
)+¯
u
r
e
−
T
]
dx
=
X
(
T
)(¯
u
l
−
¯
u
r
)
−
¯
u
l
ξ
(
T
)+ ¯
u
r
η
(
T
)+
e
T
Z
X
(
T
)
−
¯
u
l
(1
−
e
−
T
)
X
(
T
)
−
¯
u
r
(1
−
e
−
T
)
u
0
(
y,T
)
dy.
.
(3.5)
DOI:10.12677/pm.2021.1171571411
n
Ø
ê
Æ
Üî
Œ
§
o
X
I
3
+
I
4
=
Z
T
0
−
e
t
u
(
η
(
t
)
,t
)˙
η
(
t
)+
e
t
f
(
u
(
η
(
t
)
,t
))
dt
+
Z
T
0
e
t
u
(
ξ
(
t
)
,t
)
˙
ξ
(
t
)
−
e
t
f
(
u
(
ξ
(
t
)
,t
))
dt
=
Z
T
0
−
e
t
¯
u
r
e
−
t
f
0
(¯
u
r
e
−
t
)
dt
+
Z
T
0
e
t
¯
u
l
e
−
t
f
0
(¯
u
l
e
−
t
)
dt
−
Z
T
0
e
t
[
f
(¯
u
l
e
−
t
)
−
f
(¯
u
r
e
−
t
)]
dt
=
Z
T
0
¯
u
r
f
0
(¯
u
r
e
−
t
)
dt
+
Z
T
0
¯
u
l
f
0
(¯
u
l
e
−
t
)
dt
−
Z
T
0
e
t
[
f
(¯
u
l
e
−
t
)
−
f
(¯
u
r
e
−
t
)]
dt.
.
(3.6)
5
¿
ξ
(
t
) =
ξ
(0)+¯
u
l
(1
−
e
−
t
)
,η
(
t
) =
η
(0)+ ¯
u
r
(1
−
e
−
t
),
(
Ü
(3.4)(3.5)(3.6)
Œ
X
(
T
)
−
S
(
T
) =
e
T
¯
u
l
−
¯
u
r
Z
X
(
T
)
−
¯
u
r
(1
−
e
−
T
)
X
(
T
)
−
¯
u
l
(1
−
e
−
T
)
u
0
(
y,T
)
dy.
é
u
?
Û
ê
N
,
e
(¯
u
l
−
¯
u
r
)(1
−
e
−
T
) =
Np
,
@
o
X
(
T
) =
S
(
T
).
X
e
(
Ø
(1)
(¯
u
l
−
¯
u
r
) =
Np,N
•
êž
,
6
Ä
-
Å
ª
u
µ
-
Å
.
(2)
Np<
(¯
u
l
−
¯
u
r
)
<
(
N
+1)
p
ž
,
6
Ä
-
Å
†
µ
-
Å
•
3
N
‡
:
.
(3)
(¯
u
l
−
¯
u
r
)
<p
ž
,
6
Ä
-
Å
†
µ
-
ÅØ
•
3
:
.
4.
y
²
½
n
1.2
-
X
r
−
(
t
)
•
l
:
Ñ
u
'
u
u
r
4
c
•
A
,
d
Ú
n
2.8
•
,
•
3
ü
^
†
u
r
ƒ
'
A
,
¦
a
−
p
+ ¯
u
r
(1
−
e
−
t
)
≤
X
r
−
(
t
)
≤
a
+¯
u
r
(1
−
e
−
t
)
,
∀
t>
0
.
Ó
n
•
3
ü
^
†
u
l
ƒ
'
A
,
¦
a
−
p
+ ¯
u
l
(1
−
e
−
t
)
≤
X
l
+
(
t
)
≤
a
+¯
u
l
(1
−
e
−
t
)
,
∀
t>
0
.
-
ξ
(
t
) =
a
−
p
+¯
u
l
(1
−
e
−
t
)
,η
(
t
) =
a
+¯
u
r
(1
−
e
−
t
).
d
í
Ø
2.2
•
,
x<ξ
(
t
)
ž
,
u
(
x,t
) =
u
l
(
x,t
),
x>η
(
t
)
ž
,
u
(
x,t
)=
u
r
(
x,t
).
¤
±
é
?
¿
t>
0
,x
∈
(
ξ
(
t
)
,η
(
t
)),
l
(
x,t
)
Ñ
u
4
Š
•
A
†
ξ
(
t
)
,η
(
t
)
Ã
:
.
¯¢
þ
,
u
(
ξ
(
t
)
,t
)=
u
l
(
ξ
(
t
)
,t
)
≡
¯
u
l
e
−
t
.
X
J
•
3
(
ξ
(
t
)
,η
(
t
))
ƒ
m
˜
:
(¯
x,
¯
t
),
¦
l
T
:
Ñ
u
'
u
u
4
•
A
γ
−
(
t
)
†
ξ
(
t
)
ƒ
u
:
(
ξ
(
τ
)
,τ
),
Ù
¥
τ>
0,
u
´
f
0
(
u
(
ξ
(
τ
)+
,τ
))
>f
0
(¯
u
l
e
−
τ
),
d
f
à
5
,
u
(
ξ
(
τ
)+
,τ
)
>
¯
u
l
e
−
t
.
w
,
g
ñ
.
Ó
n
Œ
y
,
é
?
¿
t>
0,
l
(
x,t
)
Ñ
u
4
Œ
•
A
γ
+
(
t
)
†
η
(
t
)
Ã
:
.
X
ã
6
¤
«
.
•
Ä
γ
±
(
t
)
´
ý
A
,
|
^
(2.2)
Œ
γ
±
(
t
)=
γ
±
(0)+
C
(1
−
e
−
t
)
,t
∈
[0
,
¯
t
],
Ù
¥
C
´
†
u
(¯
x
±
,
¯
t
)
k
'
~
ê
.
¿
…
3
t
∈
(0
,
¯
t
)
þ
,
k
u
(
γ
±
(
t
)
,t
) =
v
(
t
) =
Ce
−
t
.
A^
þ
ã
(
Ø
,
é
?
¿
½
t>
0
·
‚
k
DOI:10.12677/pm.2021.1171571412
n
Ø
ê
Æ
Üî
Œ
§
o
Figure6.
Perturbedrarefactionwave
ã
6.
6
Ä
D
Õ
Å
)
(1)
e
x<ξ
(
t
),
@
o
d
(1.7)(2.6)
Œ
•
,
t
¿
©
Œ
ž
|
u
(
x,t
)
−
u
R
(
x,t
)
|
=
|
u
l
(
x,t
)
−
¯
u
l
e
−
t
|→
0
.
(2)
e
ξ
(
t
)
<x<
¯
u
l
(1
−
e
−
t
),
du
γ
±
(
t
)
†
ξ
(
t
)
Ã
:
,
·
‚
a
−
p
+ ¯
u
l
(1
−
e
−
t
)
≤
γ
±
(0)+
C
(1
−
e
−
t
)
≤
¯
u
l
(1
−
e
−
t
)
.
du
γ
±
(0)
∈
(
a
−
p,p
),
þ
ª
Œ
U
¤
−
p
+ ¯
u
l
(1
−
e
−
t
)
≤
C
(1
−
e
−
t
)
≤
p
−
a
+¯
u
l
(1
−
e
−
t
)
.
Ø
ª
ü
ý
Ó
Ø
±
(1
−
e
−
t
),
2
~
¯
u
l
,
−
p
1
−
e
−
t
≤
C
−
¯
u
l
≤
p
−
a
1
−
e
−
t
.
Ø
ª
ü
ý
Ó
¦
e
−
t
,
du
÷
X
A
‚
ð
k
v
(
t
) =
Ce
−
t
,
Œ
−
p
e
t
−
1
≤
v
(
t
)
−
¯
u
l
e
−
t
≤
p
−
a
e
t
−
1
.
d
(¯
x,
¯
t
)
?
¿
5
,
·
‚
|
u
(
x,t
)
−
u
R
(
x,t
)
|≤
p
e
t
−
1
.
(3)
e
¯
u
l
(1
−
e
−
t
)
<x<
¯
u
r
(1
−
e
−
t
),
@
o
u
R
(
x,t
) =˜
u
(
x,t
).
du
é
J
‰
Ñ
˜
u
(
x,t
)
w
«
L
ˆ
ª
,
·
‚
d?
•
é
u
(
x,t
)
?
1
O
¯
u
l
(1
−
e
−
t
)
≤
γ
±
(0)+
C
(1
−
e
−
t
)
≤
¯
u
r
(1
−
e
−
t
)
.
du
γ
±
(0)
∈
(
a
−
p,p
),
þ
ª
Œ
U
¤
−
a
+ ¯
u
l
(1
−
e
−
t
)
≤
C
(1
−
e
−
t
)
≤
p
−
a
+¯
u
r
(1
−
e
−
t
)
.
DOI:10.12677/pm.2021.1171571413
n
Ø
ê
Æ
Üî
Œ
§
o
Ø
ª
ü
ý
Ó
¦
e
−
t
/
(1
−
e
−
t
),
÷
X
A
‚
ð
k
−
a
e
t
−
1
+ ¯
u
l
e
−
t
≤
v
(
t
)
≤
p
−
a
e
t
−
1
+ ¯
u
r
e
−
t
.
d
(¯
x,
¯
t
)
?
¿
5
,
·
‚
|
u
(
x,t
)
|≤
Me
−
t
,M>
0
•
~
ê
.
(4)
e
¯
u
r
(1
−
e
−
t
)
<x<η
(
t
),
†
1
«
œ
¹
a
q
,
Œ
|
u
(
x,t
)
−
u
R
(
x,t
)
|≤
p
e
t
−
1
.
(5)
e
x>η
(
t
),
†
1
˜
«
œ
¹
a
q
,
Œ
|
u
(
x,t
)
−
u
R
(
x,t
)
|
=
|
u
r
(
x,t
)
−
¯
u
r
e
−
t
|→
0
.
y
.
.
ë
•
©
z
[1]Kruzkov,S.N.(1970)FirstOrderQuasilinearEquationsinSeveralIndependentVariables.
MatematicheskiiSbornik(NS)
,
10
,217.
https://doi.org/10.1070/SM1970v010n02ABEH002156
[2]Hopf,E.(1950)The Partial Differential Equationut +uux=
xx.
CommunicationsonPure
andAppliedMathematics
,
3
,201-230.https://doi.org/10.1002/cpa.3160030302
[3]Lax,P.D.(1957)HyperbolicSystemsofConservationLawsII.
CommunicationsonPureand
AppliedMathematics
,
10
,537-566.https://doi.org/10.1002/cpa.3160100406
[4]Glimm,J.andLax,P.D.(1970)DecayofSolutionsofSystemsofNonlinearHyperbolicCon-
servationLaws,Vol.101.AmericanMathematicalSociety.
[5]Xin, Z.P.,Qian,Y.and Yuan,Y. (2019)Asymptotic Stability of Shock Waves and Rarefaction
Waves under Periodic Perturbationsfor1
−
d
Convex Scalar Conservation Laws.
SIAM Journal
onMathematicalAnalysis
,
51
,2971-2994.https://doi.org/10.1137/18M1192883
[6]Yuan,Q.andYuan,Y.(2020)OnRiemannSolutionsunderDifferentInitialPeriodicPer-
turbationsatTwoInfinitiesfor1-dScalarConvexConservationLaws.
JournalofDifferential
Equations
,
268
,5140-5155.https://doi.org/10.1016/j.jde.2019.11.008
[7]Lyberopoulos,A.N.(1990)AsymptoticOscillationsofSolutionsofScalarConservationLaws
withConvexityundertheActionofaLinearExcitation.
QuarterlyofAppliedMathematics
,
48
,755-765.https://doi.org/10.1090/qam/1079918
DOI:10.12677/pm.2021.1171571414
n
Ø
ê
Æ
Üî
Œ
§
o
[8]Fan,H.andJack,K.H.(1993)Large-TimeBehaviorinInhomogeneousConservationLaws.
ArchiveforRationalMechanicsandAnalysis
,
125
,201-216.
https://doi.org/10.1007/BF00383219
[9]
²
#
,
L
.
š
à
g
Burgers
•
§
±
Ï
)
Œ
ž
m
1
•
[J].
ê
Æ
Ô
n
Æ
,2015,35(1):1-14.
[10]Mascia,C.andSinestrari,C.(1997)ThePerturbedRiemannProblemforaBalanceLaw.
AdvancesinDifferenceEquations
,
2
,779-810.
[11]Dafermos, C.M. (2005)Hyperbolic Conservation LawsinContinuum Physics.Springer, Berlin.
https://doi.org/10.1007/3-540-29089-3
DOI:10.12677/pm.2021.1171571415
n
Ø
ê
Æ