设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2021,10(7),2428-2441
PublishedOnlineJuly2021inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2021.107255
Hele-Shaw6.Darcy-Cahn-Hilliard•
§|)ïÄ
‹‹‹‰‰‰§§§ÆÆÆ“““
oA“‰ŒÆêÆ‰ÆÆ§oA¤Ñ
ÂvFϵ2021c619F¶¹^Fϵ2021c711F¶uÙFϵ2021c722F
Á‡
©édDarcy•§ÚCahn-Hilliard•§ÍÜ¤üƒHele-Shaw6*Ñ.¡.?1ï
Ä"3d.¥§Darcy•§¥ƒ på‘ÚCahn-Hilliard•§¥6NpÑ$‘
ÍÜüƒ•§§©é•§|¥š‚5‘3÷v•˜„b^‡e§ïÄ•§|f)•
35Ú•˜59)UþO"
'…c
Íܧ•35§•˜5§UþO
StudyonDarcy-Cahn-Hilliard
EquationsofHele-Shaw
Flow
XiangyuXiao,ZhilinPu
SchoolofMathematicalScience,SichuanNormalUniversity,ChengduSichuan
Received:Jun.19
th
,2021;accepted:Jul.11
th
,2021;published:Jul.22
nd
,2021
©ÙÚ^:‹‰,Æ“.Hele-Shaw6.Darcy-Cahn-Hilliard•§|)ïÄ[J].A^êÆ?Ð,2021,10(7):
2428-2441.DOI:10.12677/aam.2021.107255
‹‰§Æ“
Abstract
Inthispaper,westudythetwophaseHele-Shawflow,whichconsistsoftheCahn
HilliardequtionandtheDarcyequation.Inthismodel,anextraphaseinducedforce
termintheDarcyequationiscoupledwithafluidinducedtransportterminthe
Cahn-Hilliardequation.Asthenon-lineartermsatisfiesthemoregeneralcondition,
weshowtheexistenceoftheweaksolution,energyestimate,andtheuniqueness.
Keywords
Coupled,Existence,Uniqueness,EnergyEstimate
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.0
3ÕmY©mü¬²†ƒm§˜«½õ«Ê56N3ü²1²†ƒm$ħHele-
Shaw6ÄK´6N3ü²†m…ú6Ä"3ü ²†m6N„Ý÷vÔ‚©Ù§6Äk^§
´R†u²†••µþ©þ•"§¤±l²†þ•*žÿ6Ä´Ã^§ÏŒ±^5
[²†²¡pÃ^6Ä"Ï~rù«C˜¡•Hele-Shaw[œ[1–3]§•ÐdHele-ShawO
^uïÄ‘³6"Hele-Shaw6ÄŒ±^5CqïĈ«6N寝K§ÏdéHele-Shaw6Ä
ïÄäk-‡y¢¿Â"
î‚êÆnØŒ±•ïÄ.¡ÄåÆ[4]Jø•Ï"
du3ˆÜ½Æ¥JÑ6NmY²þ„ݧÏdHele-Shaw6››•§†Ãʳ6›
›•§Ú6NÏLõš0Ÿ››•§´˜—§äN5`§Ò´ü‡ãHele-Shaw6/ª•
u= −
1
12η
(∇p−ρg),(x,t) ∈Ω
T
\Γ
t
.(1)
divu= 0,(x,t) ∈Ω
T
\Γ
t
.(2)
[p] = γκ,(x,t) ∈Γ
t
.(3)
DOI:10.12677/aam.2021.1072552429A^êÆ?Ð
‹‰§Æ“
[u·n] = 0,(x,t) ∈Γ
t
.(4)
Ù¥Ω ⊂R
2
´‡k.«•§Ω
T
= Ω×(0,T),Γ
t
“Ltž•6Nƒm.¡"u L«6N„ݶ
pL«6NØå¶[p]L«pÏL.¡Γ
t
C§n“L{•þ¶η´Êݶ§3Γ
t
ü>ŒUk
ØÓжg´ü ŸþÚå¶ρ´6NŸþ—ݧ§ÓŒ±3.¡ü>ØÓŠ"
•§(1)•ˆÜ½Æ[5,6]¶•§(2)L«6NØŒØ ¶•§(3)Ú(4)©O“ LL¡Üå²ïÚŸ
þ²ïêÆ£ã§=´L«6N.¡>.^‡"(3)ªq ¡Š´.Ê.d-^‡§Ù¥γ´
ÃþjL¡ÜåXê§κ´.¡Γ
t
²þ-Ç"
3.¡þ§L¡•3Üå§¿…3üzL§¥§6N.¡ŒU¬u)g§Yä§3
Ú•˜ÿÀCz"•ŽÑù(J§·‚/Ï*Ñ.¡nØ[7]§§´^5)û
£Ä.¡¯K,˜«•{§*Ñ.¡nØ•Ð´Š•ïÚCq-—ƒƒC•{
uÐ"3TnØ¥§k•þÝŠ.¡§Ø´b|.¡§ù«*:ŒJ
ˆPoisson,Gibbs,RayleighÚKorteweg<[8]"T•{¦^˜‡9ϼꧧ¡•ƒ|¼
ê[9,10]§ ¿^5•«/ƒ 0§…3l.¡ «•N ƒ ¥ØÓŠ".¡Œ±†ƒ
¼êY²8ƒ'é"˜„5`§‘X.¡°Ýªu"§*Ñ.¡.òÂñ˜ƒA
b.¡."
3©¥§¤ïÄHele-Shaw*Ñ.¡.Xe¤«
u= −∇p−γϕ∇µ,(x,t) ∈Ω
T
.(5)
divu= 0,(x,t) ∈Ω
T
.(6)
ϕ
t
+u·∇ϕ−ε∆µ= 0,(x,t) ∈Ω
T
.(7)
µ= −ε∆ϕ+
1
ε
f(ϕ)(x,t) ∈Ω
T
.(8)
é•§(5)−(8)\þ>.^‡ÚЊ^‡µ
∂p
∂n
=
∂µ
∂n
=
∂ϕ
∂n
= 0,(x,t) ∈∂Ω
T
.(9)
ϕ(·,0) = ϕ
0
(·),x∈Ω.(10)
Ù¥Ω
T
= Ω×(0,T)¶∂Ω
T
= ∂Ω×(0,T),∂Ω“LΩ>.
éš‚5‘f(s),b÷ve^‡µ
f(0) = 0,
·
f(s) ≥c
0
(c
0
≥0),
f(s)s≥c
1
F(s)−c
2
(c
1
>0,c
2
≥0),
F(s) ≥−c
3
(c
3
≥0).
Ù¥F(s)=
R
s
0
f(s)ds.~Xf(s)=
2p+1
P
i=1
a
i
s
i
(a
2p+1
>0)÷vþã5Ÿ"w´„§f(s)=s
3
+sÒ
DOI:10.12677/aam.2021.1072552430A^êÆ?Ð
‹‰§Æ“
÷vþã^‡"
5¿µ3kHele-Shaw¯K¥§Ω´˜‡‘•;3©¥§·‚•ÄΩ⊂R
d
(d=
2,3),…´˜‡k.«•§Ï•n‘¯KäkêÆ¿Â§¿…3)Ôþ•kA^§•þu(x,t)∈
R
d
“L„ݧIþp(x,t)∈R“L3:(x,t)ž—N·ÜÔØå§Cþµ(x,t),ϕ(x,t)∈R“Lƒ
|¼êÚzƳ"•§£5¤¥γ"žÿ§T•§Ò´ˆÜ•§[11]§•§£7¤Ú£8¤
vké6‘u·∇ϕž§•§ÒC•Cahn-Hilliard•§[12]"
•§(5)−(10)´dLee,Lowengrub,andGoodmanJÑBHSCH.A~"¦‚y²BHSCH
XÚ[13])ÂñuHele-Shaw.(1)−(4))"·‚5¿(5)¥Ørp†BHSCH.¥
ØrpkØÓ'~"•¼aq'~Øå§ÏL˜p=p+γϕµ§Œ ±{ü/3.¥Ú\-#
½ÂØå"·‚ò•§|(5)−(10)¡•DCH(Darcy-Cahn-Hilliard)XÚ"
½ÂXeCahn-HilliardUþ•§
J
ε
(ϕ) =
Z
Ω

ε
2
|∇ϕ|
2
+
1
ε
F(ϕ)

dx.(11)
†NõÑÑ.¡.aq[14]§DCHXÚ•´‡ÑÑXÚ§§÷vXeUþÑÑ5Ƶ
dJ
ε
(ϕ)
dt
+εk∇µk
2
L
2
+
1
γ
kuk
2
L
2
= 0.(12)
þãUþ•§3DCHXÚêÆ©Ûå–'-‡Š^"
©´3[15]Ä:þŠ•˜„b^ ‡"·‚ ò?ØÐ>НK(5)-(10)f)•3•˜5§
f)˜5Ÿ"
IO˜mL
p
(Ω),H
q
(Ω)‰ê©O^k·k
L
p
,k·k
H
q
L«§Z
∗
“LBanach˜mZéó˜
m"ÎÒ(·,·)“L˜mL
2
(Ω)þSȧÎÒh·,·i“L˜mH
1
(Ω)Ú˜mH
1
(Ω)
∗
éóȧ˜
mL
2
0
(Ω)“L˜mL
2
(Ω)f˜m§¿…3>.þŠ•""©¥§cÚC“L†p,µ,ϕ,uÚεÃ'
~ê¶XJ~êÚεk'{§·‚^C= C(ε)5L«§Ù¥0 <ε<1"
2.PDE©Û
·‚ò3p,µ,ϕ§ò•§|C/µ
div(∇p+γϕ∇µ) = 0,(x,t) ∈Ω
T
.(13)
ϕ
t
−ε∆µ−div(ϕ[∇p+γϕ∇µ]) = 0,(x,t) ∈Ω
T
.(14)
¤±§©ïÄ ‡©•§/ªÒ´•§(13),(14)Ú•§(8):µ=−ε∆ϕ+
1
ε
f(ϕ)±9Ð>Š
^‡(9),(10):
div(∇p+γϕ∇µ) = 0,(x,t) ∈Ω
T
,
ϕ
t
−ε∆µ−div(ϕ[∇p+γϕ∇µ]) = 0,(x,t) ∈Ω
T
,
DOI:10.12677/aam.2021.1072552431A^êÆ?Ð
‹‰§Æ“
µ= −ε∆ϕ+
1
ε
f(ϕ)(x,t) ∈Ω
T
,
∂p
∂n
=
∂µ
∂n
=
∂ϕ
∂n
= 0,(x,t) ∈∂Ω
T
,
ϕ(·,0) = ϕ
0
(·),x∈Ω.
·‚½ÂXe/ªf)[15]µ
½Â2.1bϕ
0
∈H
1
(Ω),XJn-ê|(p,µ,ϕ)÷ve^‡µ
p∈L
2d
d+1
((0,T);H
1
(Ω)∩L
2
0
(Ω).(15)
µ∈L
2
((0,T);H
1
(Ω)).(16)
∇p+γϕ∇µ∈L
2
((0,T);L
2
(Ω)).(17)
ϕ∈L
∞
((0,T);H
1
(Ω)).(18)
ϕ
t
∈L
2d
d+1
((0,T);(H
1
(Ω))
∗
).(19)
¿…é¤kt∈(0,T),±eѤáµ
(∇p+γϕ∇µ,∇q) = 0∀q∈H
1
(Ω).(20)
hϕ
t
,vi+ε(∇µ,∇v)+(ϕ[∇p+γϕ∇µ],∇v) = 0∀v∈H
1
(Ω).(21)
(µ,ψ)−ε(∇ϕ,∇ψ)−
1
ε
(f(ϕ),ψ) = 0∀ψ∈H
1
(Ω).(22)
…÷vЊ^‡ϕ(0)=ϕ
0
Kn-ê|(p,µ,ϕ)¡••§(13),(14)±9•§(8)(9),(10)˜‡f
)"
e¡?Ø)•35.
½n2.1E(t) = J
ε
(ϕ),eЊ^‡÷vE(0) ≤C
0
ž§K•§•3½Â2.1¥f)"
y².|^³7Cq•{§=^k•‘%CÕ‘§·‚éϕ,p,µEÑCq)§·‚ò¦
^H
1
(Ω)˜|k•‘Ä•þ{ω
i
}
i=1...m
§ùÄ•þ¤Ü¤˜m·‚P•W
m
,Ù¥·‚
ép
m
,ϕ
m
,µ
m
: [0,T] →W
m
,
p
m
=
X
m
i=1
p
i,m
ω
i
ϕ
m
=
X
m
i=1
ϕ
i,m
ω
i
,
µ
m
=
X
m
i=1
µ
i,m
ω
i
.
¤±·‚µ
(∇p
m
+γϕ
m
∇µ
m
,∇q) = 0∀q∈H
1
(Ω).(23)
DOI:10.12677/aam.2021.1072552432A^êÆ?Ð
‹‰§Æ“

d
dt
ϕ
m
,v

+ε(∇µ
m
,∇v)+(ϕ
m
[∇p
m
+γϕ
m
∇µ
m
],∇v) = 0∀v∈H
1
(Ω).(24)
(µ
m
,ψ)−ε(∇ϕ
m
,∇ψ)−
1
ε
(f(ϕ
m
),ψ) = 0∀ψ∈H
1
(Ω).(25)
3•§(23)¥-q=ω
i
,i=1,2...m¿Óž¦±
p
i,m
γ
,,¦Ú¶3•§(24)¥-v=ω
i
,i=
1,2...m,¿Óž¦±µ
i,m
,2¦Ú¶ 3•§(25)¥-ψ=ω
i,
i=1,2....m§Óž¦±
d
dt
ϕ
i,m
§2¦Ú§
•òn‡ªfÜ¿µ
d
dt

εk∇ϕ
m
k
2
L
2
+
1
ε
((F(ϕ
m
),1)

+εk∇µ
m
k
2
L
2
+
1
γ
k∇p
m
+γϕ
m
∇µ
m
k
2
L
2
= 0.(26)
·‚3þ¡•§ü>Ӟȩ§Kµ
E
1
(t)+
Z
t
0
εk∇µ
m
k
2
L
2
+
Z
t
0
1
γ
k∇p
m
+γϕ
m
∇µ
m
k
2
L
2
= E
1
(0).(27)
Ù¥E
1
(t) =
R
Ω
h
ε
2
|∇ϕ
m
|
2
+
1
ε
F(ϕ
m
)
i
dx"
Ún2.1bE(t)=J
ε
(ϕ),E
1
(t)=J
ε
(ϕ
m
),,Ù¥m´k•ê§…W
m
´H
1
(Ω)¥˜|k•‘
Ä•þ¤Ü¤˜m§E(0) ≤C
0
ž,KE
1
(0) ≤C
0
"
(ÜÚn2.1§|^•§(27)Œk∇ϕ
m
k
2
L
2
≤C
0
,
R
t
0
k∇µ
m
k
2
L
2
≤C
0
R
t
0
ku
m
k
2
L
2
≤C
0
,2ÏL
'X∇p
m
=−u
m
−γϕ
m
∇µ
m
§Äkéud=2,3ŠâSobolevi\½nµH
1
(Ω)→L
6
(Ω),2
dYoungØªÚþãOŒ
R
t
0
k∇p
m
k
2
L
3
2
≤C
1
,Ùg3•§(25),-ψ= ∆ϕ
m
,·‚Œ
εk∆ϕ
m
k
2
L
2
≤
1
2
k∇µ
m
k
2
L
2
+
1
2
k∇ϕ
m
k
2
L
2
−
c
0
ε
k∇ϕ
m
k
2
L
2
,
?˜Úµ
εk∆ϕ
m
k
2
L
2
≤
1
2
k∇µ
m
k
2
L
2
+
1
2
k∇ϕ
m
k
2
L
2
≤C
0
.(28)
dGagliardo-NirenbergØª§·‚kkϕ
m
k
L
∞
≤Ck∆ϕ
m
k
1
2d
L
2
kϕ
m
k
2d−1
2d
L
6
(d= 2,3)d
k∇p
m
k
2d
d+1
L
2
≤Cku
m
k
2d
d+1
L
2
+Ckϕ
m
k
2d
d+1
L
∞
k∇µ
m
k
2d
d+1
L
2
≤Cku
m
k
2
L
2
+Ckϕ
m
k
2d
L
∞
+Ck∇µ
m
k
2
L
2
,
du
kϕ
m
k
2d
L
∞
≤Ck∆ϕ
m
k
L
2
kϕ
m
k
2d−1
L
6
≤Ck∆ϕ
m
k
2
L
2
+C
4
kϕ
m
k
4d−1
H
1
.
2ÏLsup
t∈(0,T)
k∇ϕ
m
k
2
L
2
≤C
0
,µ
R
t
0
kϕ
m
k
2
L
2
≤C
T
,Ù¥C
T
´˜‡†Tk'~ê"
·‚2éþãªfÓžét¦È©§¿dþãOµ
R
t
0
k∇p
m
k
4d
2d+1
L
2
≤C
2
,C
2
†C
0
,C
1
d,Tk
'"2ÏL•§(24),é?¿v∈H
1
(Ω)Œµ
hd
t
ϕ
m
,vi= −ε(∇µ
m
,∇v)+(ϕ
m
u
m
,∇v) ≤[εk∇µ
m
k
L
2
+kϕ
m
k
L
∞
ku
m
k
L
2
]k∇vk
L
2
.
DOI:10.12677/aam.2021.1072552433A^êÆ?Ð
‹‰§Æ“
Šâéó˜m‰ê½Â§•kd
t
ϕ
m
k
(H
1
(Ω))
∗
≤C
3
,¦È©
R
t
0
kd
t
ϕ
m
k
2
(H
1
(Ω))
∗
≤C
3
,C
3
´˜‡~
ê"
Šâg‡˜m5Ÿ§Ïd·‚(J•3ϕ,p,µ,u§¦ϕ∈L
∞
((0,T);H
1
(Ω)),¦p∈
L
2d
d+1
((0,T);H
1
(Ω))∩L
2
0
(Ω),¦µ∈L
2
((0,T);H
1
(Ω)),Šâ‚55ku=∇p+ γϕ∇µ,X
ku∈L
2
((0,T);L
2
(Ω))k:
ϕ
m
→ϕ
p
m
→p
µ
m
→µ
u
m
→u.
Šâ‚55§·‚kµ
(∇p+γϕ∇µ,∇q) = 0,
ŒdV‚››Âñ½n·‚kµ
hϕ
t
,vi+ε(∇µ,∇v)+(ϕ[∇p+γϕ∇µ],∇v) = 0
(µ,ψ)−ε(∇ϕ,∇ψ)−
1
ε
(f(ϕ),ψ) = 0.
e¡?1UþO:
½n2.2bϕ
0
∈H
1
(Ω),f(ϕ)∈L
2
((0,T);H
1
(Ω)),Ω⊂R
d
(d=2,3)´˜‡Lipschitz«•§±
9J
ε
(ϕ
0
)≤C
0
,e(p,µ,ϕ)´•§(20) −(22)˜|f)§éuu=−(∇p+ γϕ∇µ)é¤kt∈
(0,T),•3˜‡Ø•6uε~êC= C(E(0)) >0k
Z
Ω
ϕ(x,t)dx=
Z
Ω
ϕ
0
(x)dx.(29)
E(t)+
Z
t
0

εk∇µ(s)k
2
L
2
+
1
γ
ku(s)k
2
L
2

ds= E(0) <∞.(30)
max
0≤s≤t
kϕ(s)k
2
H
1
≤
2C
0
ε
+
2c
3
ε
2
|Ω|.(31)
Z
t
0
kµ(s)k
2
H
1
ds≤
C
0
ε
+
c
3
ε
2
|Ω|.(32)
Z
t
0


µ(s)−ε
−1
f(ϕ(s))


2
L
2
ds≤
3
2
C
0
+
3c
3
2ε
|Ω|.(33)
Z
t
0
kϕ
t
(s)+u(s)·∇ϕ(s)k
(H
1
)
∗
ds≤
√
Cε.(34)
Z
t
0
kϕ
t
(s)k
2
(W
1,3
)
∗
ds≤C(
q
C
0
ε+c
3
|Ω|+
√
2(C
0
ε+c
3
|Ω|
ε
3
2
).(35)
DOI:10.12677/aam.2021.1072552434A^êÆ?Ð
‹‰§Æ“
ùpE(t) = J
ε
(ϕ(t)),Ù¥J
ε
(·)´Uì•§(11)5½Â"
y².•§(29)´3•§(21)¥-v=1=Œ"••§(30),·‚©•ü«œ¹5‰µ
1˜«AÏœ¹§ϕ
t
∈L
2
((0,T);H
1
(Ω))ž§·‚3•§(20)¥½q=
p
γ
,3•§(21)¥
½v= µ§3•§(22)¥½ψ= −ϕ
t
,¿rnöƒ\·‚µ
d
dt

εk∇ϕk
2
L
2
+
1
ε
(F(ϕ),1)

+εk∇µk
2
L
2
+
1
γ
k∇p+γϕ∇µk
2
L
2
= 0.
3•§ü>Óž«m(0,t)þȩҌ•§(30)"
éu˜„œ¹ϕ
t
∈L
2d
d+1
((0,T);(H
1
(Ω))
∗
),XJdž·‚2-ψ= −ϕ
t
{§3•§(22)¥Òv
k¿Â§Ï·‚3ùpò^Steklov²þ{Eâ[16]"éut∈(0,T),δ>0´?¿ê§
½ÂϕSteklov²þϕ
δ
µ
ϕ(·,t) = S
δ
+
(ϕ)(·,t) =
1
δ
Z
t+δ
t
ϕ(·,s)ds∀t∈(0,T).
éuvδ,
ϕ
δ
t
(·,t) := (ϕ
δ
(·,t))
t
=
ϕ(·,t+δ)−ϕ(·,t)
δ
.
Ïd§éuz˜‡t∈(0,T−δ),kϕ
δ
t
(·,t) ∈H
1
(Ω)§Uì²þ{(ØÒkµ
S
δ
+
(ϕ
t
) = (S
δ
+
(ϕ))
t
= ϕ
δ
t
.(36)
@o·‚y3òS
δ
+
A^•§(20)−(22)¥§¿^s†t,·‚kµ
(∇p
δ
+γ(ϕ∇µ)
δ
,∇q) = 0∀q∈H
1
(Ω).(37)
(ϕ
δ
t
,v)+ε(∇µ
δ
,∇v)+((ϕ[∇p+γϕ∇µ])
δ
,∇v) = 0∀v∈H
1
(Ω).(38)
(µ
δ
,ψ)−ε(∇ϕ
δ
,∇ψ)−
1
ε
((f(ϕ))
δ
,ψ) = 0∀ψ∈H
1
(Ω).(39)
3•§(39)¥-ψ= −ϕ
t
,3•§(38)¥-v= µ
δ
,3•§(37)¥-q=
p
δ
γ
,¿òn‡•§ƒ\§
d
dt
J
ε
(ϕ
δ
)+ε


∇µ
δ


2
L
2
+
1
γ



∇p
δ
+γ(ϕ∇µ)
δ



2
L
2
= R
δ
(t).(40)
Ù¥
R
δ
(t) =
1
ε
(f(ϕ
δ
)−(f(ϕ))
δ
−(∇p
δ
+γ(ϕ∇µ)
δ
,ϕ∇µ
δ
−(ϕ∇µ)
δ
)
+(ϕ
h
∇p
δ
+γ(ϕ∇µ)
δ
i
−(ϕ[∇p+γϕ∇µ])
δ
,∇µ
δ
).
DOI:10.12677/aam.2021.1072552435A^êÆ?Ð
‹‰§Æ“
3•§(40)ü>ÓžétÈ©§·‚kµ
J
ε
(ϕ
δ
(s))+
R
s
0
(ε


∇µ
δ
(t)


2
L
2
+
1
γ



∇p
δ
(t)+γ(ϕ∇µ)
δ
(t)



2
L
2
)dt
= J
ε
(ϕ
δ
(0))+
R
s
0
R
δ
(t)dt∀s∈(0,T).
5¿§éz˜‡½ε>0,duf(ϕ)∈L
2
((0,T);H
1
(Ω))¿…f(·)´‡ëY¼ê§¤±
kf(ϕ) ∈L
2
((0,T);H
1
(Ω)),-δ→0
+
,¿(ÜSteklov²þ5Ÿ§·‚kµ
lim
δ→0
+
Z
s
0
R
δ
(t)dt= 0,
J
ε
(ϕ(s))+
Z
s
0
(εk∇µ(t)k
2
L
2
+
1
γ
k∇p(t)+γ(ϕ(t)∇µ(t)k
2
L
2
)dt= J
ε
(ϕ(0).
Ïd§(30),l(30)¥•E(t)´'užmëY¼ê"
|^(30)§Ú·‚b:
F(s) ≥−c
3
,c
3
≥0.(41)
·‚k
R
Ω
F(s)dx≥−c
3
|Ω|(c
3
≥0)§KŒ•§(31)"•§(32)Œd•§(30)†"•
§(33)Œd•§(22),•§(31),(32)±9HolderØªÚb^‡
·
f(s)≥c
0
"d˜m'Xµ
H
1
(Ω) ⊂L
2
(Ω)
∼
=
L
2
(Ω) ⊂(H
1
(Ω))
∗
Ú•§(21)Œ
hϕ
t
+u(s)·∇ϕ(s),vi= −ε(∇µ,∇v),
ŠâHolderØªµ
|hϕ
t
+u(s)·∇ϕ(s),vi|= ε|(∇µ,∇v)|≤εk∇µk
L
2
k∇vk
L
2
.
•2Š âéó‰ê±9d‰ê•§(34)"••§(35)§| ^•§(21)ÚSobolev
i\½nµd= 2,3,kH
1
(Ω) →L
6
(Ω),éuv∈W
1,3
(Ω),
hϕ
t
,vi= −ε(∇µ,∇v)+(ϕu,∇v)
≤εk∇µk
L
2
k∇vk
L
2
+kϕk
L
6
kuk
L
2
k∇vk
L
3
≤C[εk∇µk
L
2
+kϕk
H
1
kuk
L
2
]k∇vk
L
3
≤C

εk∇µk
L
2
+
√
2C
0
ε+2c
3
|Ω|
ε

.
•|^d‰êÚéó‰ê·‚(J[17]"
e50f)„kÙ¦K5"
DOI:10.12677/aam.2021.1072552436A^êÆ?Ð
‹‰§Æ“
Ún2.2bϕ
0
∈H
1
(Ω),f(ϕ)∈L
2
((0,T);H
1
(Ω))±9«•Ω⊂R
d
(d=2,3)´˜‡Lipschitz«
•,en-|(p,ϕ,µ)´½Â2.1˜|f),Kϕ∈L
2
((0,T);H
2
(Ω))"
y².·‚ò•§(22)-#¤Xe
ε(∇ϕ,∇ψ) = (µ−
1
ε
f(ϕ),ψ)∀ψ∈H
1
(Ω).(42)
ùpϕ´‡aquPoisson•§,¿äkàgNeumann>.^‡˜‡f)§Ùmà‘¼ê•g= µ−
1
ε
f(ϕ)§duf(ϕ) ∈L
2
((0,T);H
1
(Ω)),¤±mà¼êg∈L
2
((0,T);H
1
(Ω)),ϕ∈L
2
((0,T);H
2
(Ω)"
e¡·‚?Øf)•˜5µ
½n2.3bϕ
0
∈H
1
(Ω)ÚJ
ε
(ϕ
0
) ≤C
0
, Ù¥C
0
Ø•6uε,¿…Ω ⊂R
d
(d= 2,3)´˜‡Lipschitz«
•§±9f(ϕ) ∈L
2
((0,T);H
1
(Ω)),˜|f)(p,µ,ϕ) ÷vK^‡∇p+γϕ∇µ∈L
12
6−d
((0,T);L
2
(Ω)),
µ∈L
12
6−d
((0,T);H
1
(Ω)),ϕ
t
∈L
2
((0,T);(H
1
(Ω)
∗
))ž§Ù¥p´˜‡k•ê§Kù|f)´•˜
"
y².b(p
i
,µ
i
,ϕ
i
),i=1,2´ü|f)§½Âu
i
=−∇p
i
−γϕ
i
∇µ
i
,i=1,2,-p=p
1
−p
2
,u=
u
1
−u
2
,µ= µ
1
−µ
2
,ϕ= ϕ
1
−ϕ
2
,(p
1
,µ
1
,ϕ
1
),(p
2
,µ
2
,ϕ
2
)÷véA•§(20)−(22)§òö(Üå
5§·‚•§µ
(u,∇q) = 0∀q∈H
1
(Ω).(43)
hϕ
t
,vi+ε(∇µ,∇v)−(ϕ
1
u+ϕu
2
,∇v) = 0∀v∈H
1
(Ω).(44)
(µ,ψ)−ε(∇ϕ,∇ψ)−
1
ε
(f(ϕ
1
)−f(ϕ
2
),ψ) = 0∀ψ∈H
1
(Ω).(45)
du•§(29),·‚Œ|^
R
Ω
ϕ(x,t)dx=0,∀t∈(0,T),•ŒÏL˜m²£d(J"
3•§(44)¥§-v=ϕ,3•§(45)¥§-ψ=µ,òöÜ¿§2ÏL•§(u
2
,∇(ϕ
2
))=0=
(u,∇(ϕ
1
ϕ)),·‚µ
1
2
d
dt
kϕk
2
L
2
+kµk
2
L
2
= −(u·∇ϕ
1
,ϕ)+
1
ε
(g(ϕ
1
,ϕ
2
)ϕ,µ).(46)
Ù¥g(ϕ
1
,ϕ
2
)´ÏLf(ϕ
1
)−f(ϕ
2
)ü‡õ‘ªÏLng•úª5§=g(ϕ
1
,ϕ
2
) =
f(ϕ
1
)−f(ϕ
2
)
ϕ
1
−ϕ
2
|^SchwarzØªÚGagliardo-NirenbergØª[18]§k
kϕk
L
∞
≤Ck∆ϕk
d
4
L
2
kϕk
4−d
4
L
2
(d= 2,3).
3•§(46)¥k
d
dt
kϕk
2
L
2
+2kµk
2
L
2
≤2kuk
L
2
k∇ϕ
1
k
L
2
kϕk
L
∞
+
2
ε
kg(ϕ
1
,ϕ
2
)k
L
∞
kϕk
L
2
kµk
2
L
2
≤
ε
4γ
kuk
2
L
2
+
C
ε
k∇ϕ
1
k
2
L
2
k∆ϕk
d
2
L
2
kϕk
4−d
2
L
2
+
2
ε
kg(ϕ
1
,ϕ
2
)k
L
∞
kϕk
L
2
kµk
L
2
≤
ε
4γ
kuk
2
L
2
+
ε
2
16
k∆ϕk
2
L
2
+C(ε)k∇ϕ
1
k
8
4−d
L
2
kϕk
2
L
2
+kµk
2
L
2
+
1
ε
2
kg(ϕ
1
,ϕ
2
)k
2
L
∞
kϕk
2
L
2
.
DOI:10.12677/aam.2021.1072552437A^êÆ?Ð
‹‰§Æ“
Ù¥éumà,˜‘kg(ϕ
1
,ϕ
2
)k
L
∞
,Äkéu
g(ϕ
1
,ϕ
2
) =
2p+1
X
k=1
(ϕ
k−1
1
+ϕ
k−2
1
ϕ
2
+....+ϕ
1
ϕ
k−1
2
+ϕ
k
2
).
·‚kµ
kg(ϕ
1
,ϕ
2
)k
L
∞
≤
2p+1
X
k=1
kϕ
1
k
k−1
L
∞
+kϕ
1
k
k−2
L
∞
kϕ
2
k
1
L
∞
+......+kϕ
2
k
k−1
L
∞
.
duϕ∈L
∞
(0,T;H
1
(Ω)),Ïdϕ∈L
∞
(0,T;L
∞
(Ω)),Kkϕk
L
∞
≤sup
t∈(0,T)
kϕk
L
∞
≤C,Ù¥C´˜‡
~ê§Ïkg(ϕ
1
,ϕ
2
)k
L
∞
≤C
p
,ùpC
p
´˜‡†pk'~ê"
ÏL(30)
d
dt
kϕk
2
L
2
+kµk
2
L
2
≤
ε
4γ
kuk
2
L
2
+
ε
16
k∆ϕk
2
L
2
+C(ε,p)kϕk
2
L
2
.(47)
Ù¥C(ε,p) =
C
p
2
ε
2
>0
3•§(39)¥-ψ= ∆ϕ,
εk∆ϕk
2
L
2
= −(µ,∆ϕ)+
1
ε
(g(ϕ
1
,ϕ
2
)ϕ,∆ϕ)
≤
ε
2
k∆ϕk
2
L
2
+
1
ε
kµk
2
L
2
+
C
p
2
ε
2
kϕk
2
L
2
.
,
ε
2
4
k∆ϕk
2
L
2
≤
1
2
kµk
2
L
2
+C(ε,p)kϕk
2
L
2
.(48)
Ù¥C(ε,p) >0
5¿
u= u
1
−u
2
= −∇p−γ(ϕ
1
∇µ
1
−ϕ
2
∇µ
2
) = −∇p−γϕ
1
∇µ−γϕ∇µ
2
.
3•§(37)¥-q= p
1
γ
kuk
2
L
2
= −
1
γ
(u,∇p)−(u,ϕ
1
∇µ)−(u,ϕ∇µ
2
)
= −(ϕ
1
u,∇µ)−(ϕu,∇µ
2
).
(49)
3•§(38)¥-v= µ,Œ
hϕ
t
,µi+εk∇µk
2
L
2
= (ϕ
1
u+ϕu
2
,∇µ).(50)
e5é•§(39)A^dA‰âŲþŽ{S
δ
+
§Kkµ

µ
δ
,ψ

−ε(∇ϕ
δ
,∇ψ)−
1
ε
(f(ϕ
1
)−f(ϕ
2
)
δ
,ψ) = 0∀ψ∈H
1
(Ω).
DOI:10.12677/aam.2021.1072552438A^êÆ?Ð
‹‰§Æ“
-ψ= −ϕ
δ
t
,þ¡•§Œ
−(µ
δ
,ϕ
δ
t
)+
ε
2
d
dt


∇ϕ
δ


2
L
2
+
1
ε
(f(ϕ
1
)−f(ϕ
2
))
δ
,ϕ
δ
t
) = 0.
éδ4•δ→0
+
,|^dA‰âŲþŽf5Ÿ§k
−hϕ
t
,µi+
ε
2
d
dt
k∇ϕk
2
L
2
+
1
ε
hϕ
t
,f(ϕ
1
)−f(ϕ
2
)i= 0.(51)
•r•§(49),(50),(51)\å5§¿|^(u
2
,∇(ϕµ))=(u,∇(ϕµ
2
))=0ÚYoungØª±
9Gagliardo-NirenbergØª
1
γ
kuk
2
L
2
+εk∇µk
2
L
2
+
ε
2
d
dt
k∇ϕk
2
L
2
+
1
ε
hϕ
t
,f(ϕ
1
)−f(ϕ
2
)i
= −(u
2
·∇ϕ,µ)+(u·∇ϕ,µ
2
)
≤C(ku
2
k
L
2
kµk
H
1
+kuk
L
2
kµ
2
k
H
1
)(k∆ϕk
d
6
L
2
k∇ϕk
6−d
6
L
2
≤
1
4γ
kuk
2
L
2
+
ε
2
kµk
2
H
1
+
ε
16
k∆ϕk
2
L
2
+C(ε)(ku
2
k
12
6−d
L
2
+kµ
2
k
12
6−d
H
1
)k∇ϕk
2
L
2
.
Ïd§
3
4γ
kuk
2
L
2
+
ε
2
k∇µk
2
L
2
+
ε
2
d
dt
k∇ϕk
2
L
2
+
1
ε
hf(ϕ
1
)−f(ϕ
2
),ϕ
t
i
≤
ε
16
k∆ϕk
2
L
2
+
ε
2
kµk
2
L
2
+C(ε)(ku
2
k
6−d
12
L
2
+kµ
2
k
12
6−d
H
1
)k∇ϕk
2
L
2
.
e5éf(ϕ
1
)−f(ϕ
2
)A^.‚KF¥Š½n§¿dš‚5‘b^‡kf(ϕ
1
)−f(ϕ
2
)=
·
f(η)ϕ≥c
0
ϕ,þªŒµ
3
4γ
kuk
2
L
2
+
ε
2
k∇µk
2
L
2
+
ε
2
d
dt
k∇ϕk
2
L
2
+
c
0
2ε
d
dt
kϕk
2
L
2
≤
ε
2
16
k∆ϕk
2
L
2
+
ε
2
kµk
2
L
2
+C(ε)(ku
2
k
12
6−d
L
2
+kµ
2
k
12
6−d
H
1
)k∇ϕk
2
L
2
.
(52)
ò•§(47),(48)±9•§(53)εƒ\å5§kµ
d
dt


c
0
2
+1

kϕk
2
L
2
+
ε
2
2
k∇ϕk
2
L
2

+
ε
2
8
k∆ϕk
2
L
2
+
ε
2γ
kuk
2
L
2
+
1−ε
2
2
kµk
2
L
2
+
ε
2
2
k∇µk
2
L
2
≤C(ε)(ku
2
k
12
6−d
L
2
+kµ
2
k
12
6−d
H
1
)k∇ϕk
2
L
2
+C(ε,p)kϕk
2
L
2
.
(53)
(ܽnb^‡§•§(53)Œ¤µ
d
dt
((
c
0
2
+1)kϕk
2
L
2
+
ε
2
2
k∇ϕk
2
L
2
)+
ε
2
8
k∆ϕk
2
L
2
+
ε
2γ
kuk
2
L
2
+
1−ε
2
2
kµk
2
L
2
+
ε
2
2
k∇µk
2
L
2
≤a(t)(kϕk
2
L
2
+k∇ϕk
2
L
2
).
(54)
DOI:10.12677/aam.2021.1072552439A^êÆ?Ð
‹‰§Æ“
Ù¥a(t) = C(ε)(ku
2
k
12
6−d
L
2
+kµ
2
k
12
6−d
H
1
)+C(ε,p)
é•§(54)ü>ÓžétÈ©(0,t),µ
(
c
0
2
+1)kϕk
2
L
2
+
ε
2
2
k∇ϕk
2
L
2
≤
Z
t
0
a(s)(kϕ(s)k
2
L
2
+k∇ϕ(s)k
2
L
2
)dt.(55)
ÏLGronwallØª§·‚µ
(
c
0
2
+1)kϕk
2
L
2
+
ε
2
2
k∇ϕk
2
L
2
≤

(
c
0
2
+1)kϕ(0)k
2
L
2
+
ε
2
2
k∇ϕ(0)k
2
L
2

exp
(
Z
T
0
a(s)ds
)
.(56)
d½nb^‡Œ•§
R
T
0
a(s)ds<∞,Ïdkϕ(t) = 0,é?¿t∈(0,T),¤±½ny²¤"
ë•©z
[1]Li,J.,Li,X.C.andLiao,S.J.(2019)StabilityandHysteresisofFaradayWavesinHele-Shaw
Cells.JournalofFluidMechanics,871,694-716.https://doi.org/10.1017/jfm.2019.335
[2]Singare,A.A.,Kale,B.S.andBhole,K.S.(2018)ExperimentalCharacterizationofMeso-
MicroFractalsfromNanoparticleSeededResininLiftingPlateHele-ShawCell.Materials
Today:Proceedings,5,24213-24220.https://doi.org/10.1016/j.matpr.2018.10.216
[3]Klaasen,B.,Verhaeghe,F.,Blanpain,B.andFransaer,J.(2015) ObservingNitrogenBubbles
inLiquidZincinaVerticalHele-ShawCell.MetallurgicalandMaterialsTransactionsB,46,
621-634.https://doi.org/10.1007/s11663-014-0281-y
[4]Valentine,M.L.,Waterland, M.K.,Fathizadeh,A.,Elber,R. andBaiz,C.R. (2021)Interfacial
Dynamics inLipidMembranes:The EffectsofHeadgroupStructures.TheJournalofPhysical
ChemistryB,125,1343-1350.https://doi.org/10.1021/acs.jpcb.0c08755
[5]Song,Y.-Q.,Khan,S.A.,Imran,M.,Waqas,H.,Khan,S.U.,Khan,M.I.,Qayyum,S.and
Chu,Y.-M.(2021)ApplicationsofModifiedDarcyLawandNonlinearThermalRadiationin
BioconvectionFlowofMicropolarNanofluidoveranOffCenteredRotatingDisk.Alexandria
EngineeringJournal,60,4607-4618.https://doi.org/10.1016/j.aej.2021.03.053
[6]Jacobs,M., Kim,I. and Tong,J. (2021) Darcy’s Law with a Source Term. ArchiveforRational
MechanicsandAnalysis,239,1349-1393.https://doi.org/10.1007/s00205-020-01595-3
[7]Saylor,D.M.,Forrey,C.,Kim,C.S.andWarren,J.A.(2016)DiffuseInterfaceMethodsfor
ModelingDrug-ElutingStentCoatings.AnnalsofBiomedicalEngineering,44,548-559.
https://doi.org/10.1007/s10439-015-1375-7
[8]McFadden, G.B.(2002)Phase-Field ModelsofSolidification.Contemporary Mathematics, 295,
107-145.
DOI:10.12677/aam.2021.1072552440A^êÆ?Ð
‹‰§Æ“
[9]Cahn,J.W.andHilliard,J.E.(1958)FreeEnergyofaNonuniformSystemI.InterfacialFree
Energy.TheJournalofChemicalPhysics,28,258-267.https://doi.org/10.1063/1.1744102
[10]Lowengrub,J.andTruskinovsky,I.(1998)Cahn-HilliardFluidsandTopolpgicalTransitions.
ProceedingsoftheRoyalSocietyA,454,2617-2654.https://doi.org/10.1098/rspa.1998.0273
[11]œ7ª,oœ.õš0Ÿ¥Darcy•§|)(-½5[J].úôŒÆÆ,2021,48(3):
298-303.
[12]Zhao,X.P., Liu,F.N. andMeng,H.C. (2021)GlobalWell-Posedness ofSolutionsfor theSixth
OrderConvectiveCahn-HilliardEquation.JournalofMathematicalResearchwithApplica-
tions,41,150-160.
[13]Lee,H.-G.,Lowengrub,J.andGoodman,J.(2002)ModelingPinch-OffandReconstruction
inaHele-ShawCell.I.TheModelsandTheirCalibration.PhysicsofFluids,14,492-513.
https://doi.org/10.1063/1.1425843
[14]Anderson,D.M.,McFadden,G.B.andWheeler,A.A.(1998)Diffuse-InterfaceMethodsin
FluidMechanics.AnnualReviewofFluidMechanics,30,139-165.
https://doi.org/10.1146/annurev.fluid.30.1.139
[15]Feng,X.B.andWise,S.(2012)AnalysisofaDarcy-Cahn-HilliardDiffuseInterfaceModelfor
theHele-ShawFlowandItsFullyDiscreteFiniteElementApproximation.SIAMJournalon
NumericalAnalysis,50,1320-1343.https://doi.org/10.1137/110827119
[16]Novikov,R.G.andTaimanov,I.A.(2018)DarbouxMoutard TransformationsandPoincarW—
SteklovOperators.ProceedingsoftheSteklovInstituteofMathematics,302,315-324.
https://doi.org/10.1134/S0081543818060160
[17]Ü-˜.•¼©Û9ÙA^[M].®:‰ÆÑ‡,2018.
[18]Agueh, M.(2006)SharpGagliardo-NirenbergInequalities andMass Transport Theory.Journal
ofDynamicsandDifferentialEquations,18,1069-1093.
https://doi.org/10.1007/s10884-006-9039-9
DOI:10.12677/aam.2021.1072552441A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.