设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2021,10(7),2529-2552
PublishedOnlineJuly2021inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2021.107264
'u3DØŒØNavier-Stokes•§H
1
K5
5P
¤¤¤²²²
∗
§§§www
þ°“‰ŒÆ§þ°
ÂvFϵ2021c621F¶¹^Fϵ2021c711F¶uÙFϵ2021c723F
Á‡
ùŸØ©Ì‡ïÄ3DØŒØNavier-Stokes•§)H
1
K5.Äk,Ø©‰Ñ¿•[y²
3DØŒØNavier-Stokes•§)ÛÜ·½5Ún.Ùg,A^þã)ÛÜ·½5Ún,1˜,
Œ±î‚y²)3Щêâœ/žÛK5.1,éu•ŒŒU¤kU
0
Ú•ŒŒU¤
kF,y²Ñ3DØŒØNavier-Stokes•§)H
1
K5.Ø©rNØ= 镌ŒUU
0
Ú,˜
½Fù˜œ/,)äkH
1
K5,…镌ŒUU
0
Ú•ŒŒUFù˜œ/,)ÓäkH
1

K5"
'…c
H
1
K5§ÛÜ·½5Ún§3DØŒØNavier-Stokes•§
ANoteontheH
1
Regularityof3D
IncompressibleNavier-StokesEquation
ChengmingYang
∗
,ZhenqiongCui
ShanghaiNormalUniversity,Shanghai
∗ÏÕŠö"
©ÙÚ^:¤²,w .'u3D ØŒØNavier-Stokes•§H
1
K55P[J].A^êÆ?Ð,2021,10(7):2529-
2552.DOI:10.12677/aam.2021.107264
¤²§w
Received:Jun.21
st
,2021;accepted:Jul.11
th
,2021;published:Jul.23
rd
,2021
Abstract
Inthispaper,wemainlystudytheH
1
regularityofthesolutionof3Dincompressible
Navier-Stokesequations.Firstly,thelocalwell-fitlemmaforsolutionsof3Dincom-
pressible Navier-Stokesequationsisgiven andprovedindetail.Secondly,by applying
thelocalwell-fitlemmaofthesolutionmentionedabove,firstly,theglobalregularity
ofthesolutioninthecaseofsmallinitialdatacanbeprovedstrictly.Second,theH
1
regularityofthesolutionof3DincompressibleNavier-Stokesequationsisprovedfor
allpossibleU
0
andallpossibleF.Inthispaper,itisemphasizedthatthesolution
isH
1
regularnotonlyforthemaximumpossibleU
0
andafixedF,butalsoforthe
maximumpossibleU
0
andthemaximumpossibleF.
Keywords
H
1
Regularity, TheLocalWell-FitLemma,3DIncompressibleNavier-StokesEquations
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
Navier-Stokes•§´¦)6N6įKÄ.,T•§2•^uʘ‰Æ!í–Æ!
œhó’!lfNÔnÆnØïÄ.Ù¥,n‘˜m¥N-S•§|1w)•35¯
K½•Ô‡Z$cŒøJKƒ˜:=é¤kU
0
ÚF,•§´Ääk˜‡ÛK),Ïdn
‘N-S•§)K5¯K´ ‡©•§nØ¥˜‡âѯK.†3DØŒØNavier-Stokes•§Ø
Ó,Ladyzhenskaya[1]ÚTemam[2][3] [4]ÑÑ2DØŒØNavier-Stokes•§é¤kU
0
ÚF,•§
•3˜‡ÛK).éu3DØŒØNavier-Stokes•§,ЩêâU
0
ÚF¿©ž,•§•3˜
‡ÛK),ë„Temam[4].
镌ŒUU
0
(A
1
2

v
0
||
2
≤η
−2
1
,||A
1
2

ω
0
||
2
≤
p
η
−2
3
)Ú,˜½Fù˜œ/,3DØŒØNavier-
Stokes•§3Ä«•þ)äkH
1
K5,äN·‚Œ±ë•©z[1].Ø©ÉT©zéu,
Ó3Ä«•þ•Ä3DØŒØNavier-Stokes•§,·‚Œ±éu•ŒŒUU
0
(A
1
2

v
0
||
2
≤
DOI:10.12677/aam.2021.1072642530A^êÆ?Ð
¤²§w
η
−2
1
,||A
1
2

ω
0
||
2
≤
p
η
−2
3
)Ú•ŒŒUF(||MP

f||
2
∞
≤η
−2
2
,||(I−M)P

f||
2
∞
≤
r
3
η
−2
4
)§)äkH
1
K5.
©1˜!‰Ñƒ'ý•£,äNSNŒ±ë•©z[1][2][5][6].1!,‰Ñ7‡b
^‡Ú·‚3y²L§‘-‡Øª.1n!,y²3DØŒØNavier-Stokes•§)ÛÜ
·½5Ún,ÛÜ·½5Ún3©¥åXš~-‡Š^.Ùg,·‚î‚y²)3Щê
âœ/žÛK5,•,(ÜÚn(4.2)ÚÚn(4.3),·‚Ñéu•ŒŒUU
0
(A
1
2

v
0
||
2
≤
η
−2
1
,||A
1
2

ω
0
||
2
≤
p
η
−2
3
)Ú•ŒŒUF(||MP

f||
2
∞
≤η
−2
2
,||(I−M)P

f||
2
∞
≤
r
3
η
−2
4
),)äkH
1

K5.
2.ý•£
©3˜‡k.«•Ω ⊂R
3
þ•Ä3DØŒØNavier-Stokes•§



U
t
−ν∆U+(U·V)+∇P= F,
∇·U= 0,
(2.1)
Ù¥Ω´Ä«•,=Ω=Ω

=Q
2
×(0,),Q
2
´R
3
¥˜‡k.«•,>0´˜‡ëê.AO
,bQ
2
= (0,l
1
)×(0,l
2
),Ù¥l
1
,l
2
>0,≤l
2
≤l
1
,0 <≤1,¿…·‚„b(2.1))U÷v
eã±Ï>.^‡



U(y+l
i
e
i
,t) = U(y,t),i= 1,2,
U(y+y
3
) = U(y,t),
Ù¥{e
1
,e
2
,e
3
}´R
3
¥IOÄ.,,bFÚU
0
÷v
Z
Ω

Fdy=
Z
Ω

U
0
dy= 0.
•zù‡¯K,ÏLšòzCþO†,Œ±ò«•Cz•§½¯K=z•«•½•
§Cz¯K.Ùg,½Â"ÑÝ"þŠ˜m,òz•§Ä–¤ "ÑÝ"þŠ˜mþuЕ§
uЕ§.
u
0
+νA

u+B

(u,u) = P

f.(2.2)
ùÜ©äNSNŒ±ë•©z[5]
3.b^‡Ú-‡Øª
Äk,b



||A
1
2

v
0
||
2
≤η
−2
1
,
||A
1
2

w
0
||
2
≤
p
η
−2
3
.



||MP

f||
2
∞
≤η
−2
2
,
||(I−M)P

f||
2
∞
≤
r
3
η
−2
4
.
(3.1)
DOI:10.12677/aam.2021.1072642531A^êÆ?Ð
¤²§w
Ùg,e¡b^‡P•(H1)
(1)−1 ≤p≤0,−2 ≤r≤0,
(2)→0ž§
1
4
η
−1
i
→0,i= 1,2.
(3)→0ž§
1
8
η
−1
i
→0,i= 3,4.
(4)éu0 <≤1,
1
4
Q()´k..
Ù¥
Q() = |ln(2C
2
5
ν
−2

2+
r
3
−p
η
−2
4
η
2
3
)|,
…0 <≤1ž§η
i
()žk.üN¼ê,i= 1,2,3,4.
e¡b^‡P•H(a,b)
(5)½a>0,@o→0
+
,ž§k




5
8
η
−2
e
aη
−4
→0,
η
−2
→0,
(3.2)
Ù¥
η
−2
def
=max(4η
−2
1
+k
2
1
η
−4
3
+k
2
2

2+
r
3
η
−2
4
,1),
…éu0 <≤1,
5
8
e
2aη
−4
2
´k.,(~êk
1
Úk
2
3Ún(4.2)k½Â)
(6)½b>0§@oéu?¿λ,0 <λ<1,•3
4
= 
4
(b,λ) >0,¦
η
−2
2
e
bη
−4
2
≤λ(4η
−2
1
+k
2
1
η
−4
3
),0 <<
4
.
(7)→0§¼ê
4+
2r
3
η
−4
4
(lnη
−4
+1)´k..
e¡‰Ñ-‡Oªµ
λ
1
||u||
2
≤||A
1
2

u||
2
,u∈D(A
1
2

),(3.3)
||ω||
2
≤C
2
5

2
||A
1
2

ω||
2
,ω∈V
1

,Mω= 0,(3.4)
Ù¥C
5
Ø•6.
4.̇(J9Ùy²
Ún4.1()ÛÜ·½5)u
0
∈D(A
1
2

)Úf∈L
∞
(0,T;H

),@o•3˜‡T
∗
,0<T
∗
<∞,¦
(2.3)3(0,T
∗
)þ•3˜‡•˜)u,÷vu∈C([0,T
∗
],V
1

)∩L
2
(0,T
∗
;V
2

)Úu
t
∈L
2
(0,T
∗
;H

).
XJN>1¿…||A
1
2

u
0
||
2
+||P

f||
2
∞
≤NR
2
0
,@o•3T
N
,¦||A
1
2

u(t)||
2
≤NR
2
0
,0 ≤T
N
≤T
∗
.
DOI:10.12677/aam.2021.1072642532A^êÆ?Ð
¤²§w
y².(2.2)ª†A

uŠSÈ,¦^-‡Oª[5]ÚYoungØªŒ±
1
2
d
dt
||A
1
2

u||
2
+ν||A

u||
2
≤|(P

f,A

u)|+|(B

(u,u),A

u)|
≤||P

f||||A

u||+C
8
(Ω)||A
1
2

u||
3
2
||A

u||
1
2
≤
ν
4
||A

u||
2
+
1
ν
||P

f||+
27
4ν
3
C
4
8
||A
1
2

u||
6
+
ν
4
||A

u||
2
,
=k
d
dt
||A
1
2

u||
2
+ν||A

u||
2
≤
2
ν
||P

f||
∞
+
27
2ν
3
C
4
8
||A
1
2

u||
6
.(4.1)
l0tÈ©,
||A
1
2

u(t)||
2
≤||A
1
2

u
0
||
2
+
2
ν
||P

f||
∞
+
27
2ν
3
C
4
8
Z
t
0
||A
1
2

u||
6
ds.(4.2)
2A^AÏ/ªGronwallØª[7],
||A
1
2

u(t)||
2
≤(||A
1
2

u
0
||
2
+
2
ν
||P

f||
∞
t)[1−2
Z
t
0
27
2ν
3
C
4
8
||A
1
2

u(t)||
2
+
2
ν
||P

f||
∞
ds]
−
1
2
.
·‚-
T
∗∗∗
= sup

t∈[0,T]




2
Z
t
0
27
2ν
3
C
4
8
||A
1
2

u(t)||
2
+
2
ν
||P

f||
∞
ds<1

,
Ïdk
||A
1
2

u(t)||
2
≤||A
1
2

u
0
||
2
+
2
ν
||P

f||
∞
t.
®•||A
1
2

u
0
||
2
+||P

f||
2
∞
≤NR
2
0
§@o•3T
N
0
>0§¦
||A
1
2

u
0
||
2
+
2
ν
||P

f||
2
∞
T
N
0
≤NR
2
0
,
•,
T
N
= min{T
N
0
,T
∗∗∗
},
¤±•3T
N
,¦
||A
1
2

u(t)||
2
≤NR
2
0
,[0,T
N
].
½n4.1(êâK5)
3?¿˜‡k.«•Ω⊂R
3
þ•Äeã¯K
U
0
+νAU+B(U,U) = PF,(4.3)
DOI:10.12677/aam.2021.1072642533A^êÆ?Ð
¤²§w
Ù¥PL«L
2
(Ω)"ÑݘmÝKŽf,(4.3)÷vDirechlet>.^‡,…FØ•6t,X
J(4.17)Щêâ¿©,@o(4.17)k˜‡ÛK).
y².(4.3)ª†AUŠSÈ,¦^-‡Oª[5]ÚYoungØªŒ±
1
2
d
dt
||A
1
2
U||
2
L
2
(Ω)
+ν||AU||
2
L
2
(Ω)
≤|(PF,AU)|+|(B(U,U),AU)|
≤||PF||
L
2
(Ω)
||AU||
L
2
(Ω)
+C
8
(Ω)||A
1
2
U||
3
2
L
2
(Ω)
||AU||
1
2
L
2
(Ω)
≤
ν
4
||AU||
2
L
2
(Ω)
+
1
ν
||PF||
L
2
(Ω)
+
27
4ν
3
C
4
8
||A
1
2
U||
6
L
2
(Ω)
+
ν
4
||AU||
2
L
2
(Ω)
,
=k
d
dt
||A
1
2
U||
2
L
2
(Ω)
+λ
1
ν||A
1
2
U||
2
L
2
(Ω)
≤
d
dt
||A
1
2
U||
2
L
2
(Ω)
+ν||AU||
2
L
2
(Ω)
≤
2
ν
||PF||
L
2
(Ω)
+
27
2ν
3
C
4
8
||A
1
2
U||
6
L
2
(Ω)
.
-R
2
0
=||A
1
2
U
0
||
2
L
2
(Ω)
+||PF||
2
L
2
(Ω)
,½N >max(1,
4
λ
1
ν
2
),éþãN>1,k||A
1
2
U
0
||
2
L
2
(Ω)
+
||PF||
2
L
2
(Ω)
≤NR
2
0
,|^Lamma(4.1),•3T
N
¦
||A
1
2
U(t)||
2
L
2
(Ω)
≤NR
2
0
,0 ≤t≤T
N
.(4.4)
Ø”b[0,T
∞
)´¦(4.4)ª¤á•Œžm«m,eã?Ø·‚3[0,T
∞
)þ?1
d
dt
||A
1
2
U||
2
L
2
(Ω)
+λ
1
ν||A
1
2
U||
2
L
2
(Ω)
≤
2
ν
||PF||
2
L
2
(Ω)
+
27
2ν
3
C
4
8
||A
1
2
U||
6
L
2
(Ω)
,
du(4.3)Щêâ¿©,·‚Œ±b
27
2ν
3
C
4
8
NR
2
0
≤
λ
1
ν
2
,

d
dt
||A
1
2
U||
2
L
2
(Ω)
+
λ
1
ν
2
||A
1
2
U||
2
L
2
(Ω)
≤
2
ν
||PF||
2
L
2
(Ω)
.(4.5)
A^GronwallØª,
||A
1
2
U||
2
L
2
(Ω)
≤e
−
λ
1
νt
2
(||A
1
2
U
0
||
2
L
2
(Ω)
+
Z
t
0
2
ν
||PF||
2
L
2
(Ω)
ds)
≤max(1,
4
λ
1
ν
2
)(||A
1
2
U
0
||
2
L
2
(Ω)
+||PF||
2
L
2
(Ω)
)
<NR
2
0
,
(4.6)
•,A^‡y{5y²T
max
= ∞.
DOI:10.12677/aam.2021.1072642534A^êÆ?Ð
¤²§w
Äk,Ľ1˜«œ/µT
∞
= T
max
<∞,dž,[0,T
∞
) = [0,T
max
),ϕT
max
<∞,¤±
lim
t→T
−
max
||A
1
2
U(t)||
2
L
2
(Ω)
= ∞.
=M= NR
2
0
ž,∃δ>0,∀t∈(0,T
max
),•‡T
max
−δ<t<T
max
,Òk
||A
1
2
U(t)||
2
>NR
2
0
,
=∃t
0
∈(T
max
−δ,T
max
) = (T
∞
−δ,T
∞
),¦
||A
1
2
U(t)||
2
L
2
(Ω)
>NR
2
0
,
ù†[0,T
∞
)½Âgñ.
Ùg,Ľ1«œ/µT
∞
<T
max
<∞,du||A
1
2
U(t)||
2
L
2
(Ω)
,3[0,T
max
)þ'utëY,¤
±||A
1
2
U(t)||
2
L
2
(Ω)
•3[0,T
∞
)þëY¿…
||A
1
2
U(t)||
2
L
2
(Ω)
≤NR
2
0
,[0,T
∞
).
du||A
1
2
U(t)||
2
L
2
(Ω)
3T
∞
ëY,¤±
||A
1
2
U(t)||
2
L
2
(Ω)
≤NR
2
0
,[0,T
∞
].
l(4.6)•
||A
1
2
U(t)||
2
L
2
(Ω)
<NR
2
0
,[0,T
∞
].(4.7)
é(4.7)ª|^3T
∞
ëY5,
||A
1
2
U(t)||
2
L
2
(Ω)
≤NR
2
0
,t∈(T
∞
,T
∞
+δ).
ù†[0,T
∞
)½Âgñ.
nþ¤ã,T
max
= ∞,y..
Ún4.2^‡H1Ú(3.1)¤á,@o•3k
1
,k
2
,
1
>0,éu0<≤
1
,•3T
1
=T
1
()>0,¦
u(t) ∈D(A
1
2

),0 ≤t≤T
1
…¤á







||A
1
2

v(T
1
)||
2
≤4η
−2
1
+k
2
1
η
−4
3
,
||A
1
2

w(T
1
)||
2
≤k
2
2

2+
r
3
η
−2
4
.
(4.8)
DOI:10.12677/aam.2021.1072642535A^êÆ?Ð
¤²§w
y².½Â
R
2
0
= η
−2
1
+
p
η
−2
3
+η
−4
3
+2η
−2
2
+2
r
3
η
−2
4
,
Ï•
||A
1
2

u
0
||
2
+||P

f||
2
∞
= ||A
1
2

v
0
||
2
+||A
1
2

ω
0
||
2
+||(M+I−M)P

f||
2
∞
≤||A
1
2

v
0
||
2
+||A
1
2

ω
0
||
2
+2||MP

f||
2
∞
+2||(I−M)P

f||
2
∞
≤η
−2
1
+
p
η
−2
3
+2η
−2
2
+2
r
3
η
−2
4
≤η
−2
1
+
p
η
−2
3
+2η
−2
2
+2
r
3
η
−2
4
+η
−4
3
= R
2
0
,
ÀN= max{4,
7
2
D
2
}+1 >1,A^Lemma4.1,•3T
N
>0,¦
||A
1
2

u(t)||
2
≤NR
2
0
,[0,T
N
].(4.9)
P[0,T
∞
)L«¦(4.23)¤á•Œžm«m.XJT
∞
<∞,@o
||A
1
2

u(t)||
2
= NR
2
0
.(4.10)
e5,rt•›3[0,T
∞
)þ?1?Ø
Ï•
(I−M)B

(v,v) = B

(v,v)−MB

(v,v) = B

(v,v)−B

(v,v) = 0,
@o'uω©þ•§•
dω
dt
+νA

ω= (I−M)P

f−(I−M)(B

(ω,v)+B

(v,ω)+B

(ω,ω)).(4.11)
(4.11)ª†A

ωŠSÈ,
1
2
dω
dt
||A
1
2

ω||
2
+ν||A

ω||
2
≤|((I−M)P

f,A

ω)|
+|(b

(ω,v,A

w))|
+|(b

(v,ω,A

w))|
+|(b

(ω,ω,A

w))|,
DOI:10.12677/aam.2021.1072642536A^êÆ?Ð
¤²§w
|^YoungØª
1
2
dω
dt
||A
1
2

ω||
2
+ν||A

ω||
2
≤|((I−M)P

f,A

ω)|+|(b

(ω,v,A

w))|
+|(b

(v,ω,A

w))|+|(b

(ω,ω,A

w))|
≤
ν
2
||A

ω||
2
+
1
2ν
||(I−M)P

f||
2
∞
+C
3

5
32
||A
1
2

ω||
15
32
||A
1
2

v||||A
1
2

ω||
49
32
+C
4

1
4
||A
1
2

v||||A
1
2

ω||
1
2
||A

ω||
3
2
+C
2

1
2
||A
1
2

ω||
3
2
||A

ω||
3
2
,
duMω= 0,¦^(3.4)
d
dt
||A
1
2

ω||
2
+ν||A

ω||
2
≤
1
ν
||(I−M)P

f||∞
2
+2C
15
32
5
C
3

5
8
||A
1
2

v||||A

ω||
2
+2C
1
2
5
C
4

3
4
||A
1
2

v||||A

ω||
2
+2C
1
2
5
C
2
||A
1
2

ω||||A

ω||
2
,
5¿
||A
1
2

ω||≤||A
1
2

u||,||A
1
2

v||≤||A
1
2

u||,
¤±·‚
d
dt
||A
1
2

ω||
2
+(ν−D
1

5
8
||A
1
2

u||)||A

ω||
2
≤
1
ν
||(I−M)P

f||
2
∞
,(4.12)
Ù¥D
1
= 2C
15
32
5
C
3
++2C
1
2
5
C
4
+2C
1
2
5
C
2
.
éu0 ≤t<T
∞
,|^b^‡H1
D
1

5
8
||A
1
2

u||≤D
1

5
8
N
1
2
R
0
= D
1

5
8
N
1
2
(η
−1
1
+
p
2
η
−1
3
+η
−2
3
+
√
2η
−1
2
+
√
2
r
6
η
−1
4
) →0,→0.
Ïd,∃
2
>0,¦
D
1

5
8
N
1
2
R
0
≤
ν
2
,0 <≤
2
.(4.13)
(Ü(4.12)Ú(4.13)
d
dt
||A
1
2

ω||
2
+
ν
2
||A

ω||
2
≤
1
ν
||(I−M)P

f||
2
∞
,(4.14)
|^Øª(3.4)
d
dt
||A
1
2

ω||
2
+
νC
−2
5

−2
2
||A
1
2

ω||
2
≤
1
ν
||(I−M)P

f||
2
∞
,(4.15)
DOI:10.12677/aam.2021.1072642537A^êÆ?Ð
¤²§w
^GronwallØª,
||A
1
2

ω||
2
≤e
−
R
t
0
νC
−2
5

−2
2
ds

||A
1
2

ω
0
||
2
+
Z
t
0
1
ν
||(I−M)P

f||
2
∞

≤e
νC
−2
5

−2
2
t||A
1
2

ω
0
||
2
+
2C
2
5

2
ν
2
||(I−M)P

f||
2
∞
,
(4.16)
•¦
e
νC
−2
5

−2
2
t||A
1
2

ω
0
||
2
=
2C
2
5

2
ν
2
||(I−M)P

f||
2
∞
,
=
e
νC
−2
5

−2
2
t
p
η
−2
3
=
2C
2
5

2
ν
2

r
3
η
−2
4
,(4.17)
Œ±éT
1
>0,÷v(4.17),ÏdÀT
1
= T
1
() >0,
T
1
def
=2C
2
5

2
ν
−1
Q(),
Ù¥
Q() = |ln(2C
2
5
ν
−2

2+
r
3
−p
η
−2
4
η
2
3
)|.(4.18)
•y(4,18)¤á,A÷ve¡‡¦
2C
2
5

2+
r
3
−p
η
2
3
η
−2
4
≤1,(4.19)
~X§•IÀη
4
= −ln,=Œ÷v‡¦.
Ïd,∃
3
>0,éu0 <≤
3
,•3T
1
= T
1
() >0÷v(4.19).
e5,äóT
1
<T
∞
.éuT
1
≤t<T
∞
,k
||A
1
2

ω||
2
≤e
νC
−2
5

−2
2
T
1
||A
1
2

ω
0
||
2
+
2C
2
5

2
ν
2
||(I−M)P

f||
2
∞
=
4C
−2
5

2
ν
2

r
3
η
−2
4
= k
2
2

2+
r
3
η
−2
4
,
Ù¥k
2
2
= 4C
−2
5
ν
−2
.
'uvO,·‚•›t3[0,T
1
]þ
dv
dt
+νA

v= MP

f−MB

(v,v)−MB

(ω,v)−B

(v,ω)−B

(ω,ω),(4.20)
DOI:10.12677/aam.2021.1072642538A^êÆ?Ð
¤²§w
(4.20)ª†A

vŠSÈ,
1
2
d
dt
||A
1
2

v||
2
+ν||A

v||
2
≤|(MP

f,A

v)|+|(MB

(v,v),A

v)|+|(MB

(ω,ω),A

ω)|
≤|(MP

f,A

v)|+|b

(v,v,A

v)|+|

(w,w,A

v)|,
dub

(v,ω,A

v) = b

(ω,v,A

v) = 0äN(Ø•„[1]
éþª|^YoungØª,
1
2
d
dt
||A
1
2

v||
2
+ν||A

v||
2
≤||MP

f||
2
∞
||A

v||+C
1
||v||
1
2
||A
1
2

v||||A

v||
3
2
+C
2

1
2
||A
1
2

ω||
3
2
||A

ω||
1
2
||A

v||
≤
ν
2
||A

v||
2
+
1
2ν
||MP

f||
2
∞
||
2
+C
1
||v||
1
2
||A
1
2

v||||A

v||
3
2
+C
2

1
2
||A
1
2

ω||
3
2
||A

ω||
1
2
||A

v||,
=k
d
dt
||A
1
2

v||
2
+ν||A

v||
2
≤
1
ν
||MP

f||
2
∞
+2(
ν
4
||A

v||
2
+
27
4ν
3
C
4
1
||v||
2
||A
1
2

v||
4
+
ν
4
||A

v||
2
+
1
ν
C
2
2
||A
1
2

ω||
3
||A

ω||)
≤
1
ν
||MP

f||
2
∞
+
ν
2
||A

v||
2
+
27
2ν
3
C
4
1
||v||
2
||A
1
2

v||
4
+
ν
2
||A

v||
2
+
2
ν
C
2
2
||A
1
2

ω||
3
||A

ω||,
X
d
dt
||A
1
2

v||
2
≤
1
ν
||MP

f||
2
∞
+
27
2ν
3
C
4
1
||v||
2
||A
1
2

v||
4
+
2
ν
C
2
2
||A
1
2

ω||
3
||A

ω||
= (
27
2ν
3
C
4
1
||v||
2
||A
1
2

v||
2
)||A
1
2

v||
2
+
1
ν
||MP

f||
2
∞
+
2
ν
C
2
2
||A
1
2

ω||
3
||A

ω||,
éþªA^GronwallØª,
||A
1
2

v||
2
≤e
R
t
0
27
2ν
3
C
4
1
||v||
2
||A
1
2

v||
2
ds
[||A
1
2

v
0
||
2
+
Z
t
0
1
ν
||MP

f||
2
∞
+
2
ν
C
2
2
||A
1
2

ω||
3
||A

ω||ds]
≤e
G(t)
(||A
1
2

v
0
||
2
+H(t)),
(4.21)
Ù¥
H(t) =
Z
t
0
1
ν
||MP

f||
2
∞
+
2
ν
C
2
2
||A
1
2

ω||
3
||A

ω||ds,
G(t) =
Z
t
0
27
2ν
3
C
4
1
||v||
2
||A
1
2

v||
2
ds.
DOI:10.12677/aam.2021.1072642539A^êÆ?Ð
¤²§w
y3§OH(t),0 ≤t≤T
1
.é(4.14)ªÈ©
ν
2
Z
t
0
||A

ω||
2
ds≤
t
ν
||(I−M)P

f||
2
∞
+||A
1
2

w
0
||
2
,
@o
Z
t
0
||A

ω||
2
ds≤
2t
ν
2
||(I−M)P

f||
2
∞
+
2
ν
||A
1
2

w
0
||
2
,
(4.16)ü>ng•§Øª˜Œ•
||A
1
2

ω||
6
≤(e
−νC
−2
5

−2
2
t||A
1
2

ω
0
||
2
+
2C
2
5

2
ν
2
||(I−M)P

f||
2
∞
)
3
≤4(e
−3νC
−2
5

−2
2
t||A
1
2

ω
0
||
6
+
8C
6
5

6
ν
6
||(I−M)P

f||
6
∞
),
(4.22)
é(4.22)ªÈ©
Z
t
0
||A
1
2

ω||
6
ds≤4
Z
t
0
(e
−3νC
−2
5

−2
2
t||A
1
2

ω
0
||
6
+
8C
6
5

6
ν
6
||(I−M)P

f||
2
∞
)
6
ds
≤4(
2C
2
5

2
3ν
||A
1
2

ω
0
||
6
+
8C
6
5

6
ν
6
t||(I−M)P

f||
6
∞
),
¦^H?lderØª
Z
t
0
||A
1
2

ω||
3
||A

ω||ds≤(
Z
t
0
||A

ω||ds)
1
2
(
Z
t
0
||A
1
2

ω||
6
ds)
1
2
≤2(
2t
ν
2
||(I−M)P

f||
2
∞
+
2
ν
||A
1
2

w
0
||
2
)
1
2
(
2C
2
5

2
3ν
||A
1
2

ω
0
||
6
+
8C
6
5

6
ν
6
t||(I−M)P

f||
6
∞
)
1
2
≤
4C
5

ν
(
t
1
2
ν
1
2
||(I−M)P

f||
2
∞
+||A
1
2

w
0
||)
(
1
√
3
||A
1
2

ω
0
||
3
+
2C
2
5

2
ν
5
2
t
1
2
||(I−M)P

f||
3
∞
),
@o
2C
2
2

ν
Z
t
0
||A
1
2

ω||
3
||A

ω||ds≤
8C
2
2
C
5
ν
−2

2
(
t
1
2
ν
1
2
||(I−M)P

f||
2
∞
+||A
1
2

w
0
||)
(
1
√
3
||A
1
2

ω
0
||
3
+
2C
2
5

2
ν
5
2
t
1
2
||(I−M)P

f||
3
∞
)
≤D
2
(t
1
2
||(I−M)P

f||
2
∞
+||A
1
2

w
0
||)
(||A
1
2

ω
0
||
3
+
2
t
1
2
||(I−M)P

f||
3
∞
),
DOI:10.12677/aam.2021.1072642540A^êÆ?Ð
¤²§w
Ù¥ D
2
=
8C
2
2
C
5
ν
−2
max(
1
√
3
,
2C
2
5
ν
5
2
)max(1,
1
ν
1
2
).
•
H(t) ≤
1
ν
T
1
η
−2
2
+D
2

2
(T
1
2
1

r
6
η
−1
4
+
p
2
η
−1
3
)(
3p
2
η
−3
3
+T
1
2
1

2+
r
3
η
−3
4
)
≤
2C
2
5
ν
2

2
Q()η
−2
2
+D
2
η
−4
3
+
2D
2
C
2
5
ν

2
Q()η
−4
4
+
3D
2
4
η
−4
3
+
D
2
C
4
5
ν
2

2
Q()
2
η
−4
4
+
√
2D
2
C
5
ν
1
2

3
2
Q()
1
2
η
−1
3
η
−3
4
≤E
1
()+
7
4
D
2
η
−4
3
,
Ù¥
E
1
() = D
3
(
2
Qη
−2
2
+
2
Qη
−4
4
+Q
1
2

3
2
η
−1
3
η
−3
4
+
2
Qη
−4
4
),
…
D
3
= max(
2C
2
5
ν
−2
,
2D
2
C
2
5
ν
,
√
2D
2
C
5
ν
1
2
,
D
2
C
4
5
ν
2
),
db^‡H1,ØJy→0
+
žk
E
1
() →0,
Ïd,
||A
1
2

v(t)||
2
≤e
G(t)
(η
−2
1
+E
1
()+
7
4
D
2
η
−4
3
),0 ≤t≤T
1
.
e5,OG(t)§¿`²G(t)¿©.
(2.2)ª†uŠSÈ,|^b

(u,u,u) = 0,Ú©z[8]
1
2
d
dt
||u||
2
+ν||A
1
2

u||
2
≤|(P

f,u)|
≤|(A
−
1
2

P

f,A
1
2

u)|
≤||A
1
2

u||||A
−
1
2

P

f||
∞
≤
ν
2
||A
1
2

u||
2
+
1
2ν
||A
−
1
2

P

f||
2
∞
,
=k
d
dt
||u||
2
+ν||A
1
2

u
0
||
2
≤
1
ν
||A
−
1
2

P

f||
2
∞
,(4.23)
DOI:10.12677/aam.2021.1072642541A^êÆ?Ð
¤²§w
È©
||u||
2
−||u
0
||
2
+ν
Z
t
0
||A
1
2

u
0
||
2
ds≤
t
ν
||A
−
1
2

P

f||
2
∞
≤
2t
ν
(||A
−
1
2

MP

f||
2
∞
+||A
−
1
2

(I−M)P

f||
2
∞
)
≤
2T
1
ν
(||A
−
1
2

MP

f||
2
∞
+||A
−
1
2

(I−M)P

f||
2
∞
)
≤
4C
2
5

2
Q
ν
2
(||A
−
1
2

MP

f||
2
∞
+||A
−
1
2

(I−M)P

f||
2
∞
),
¦^(3.3)†(3.4)
||u||
2
≤||u
0
||
2
+
4C
2
5

2
Q
ν
2
λ
1
||MP

f||
2
∞
+
4C
4
5

4
Q
ν
2
||(I−M)P

f||
2
∞
= ||v
0
||
2
+||ω
0
||
2
+
4C
2
5

2
Q
ν
2
λ
1
||MP

f||
2
∞
+
4C
4
5

4
Q
ν
2
||(I−M)P

f||
2
∞
≤
1
λ
1
||A
1
2

v
0
||
2
+C
2
5

2
||A
1
2

ω
0
||
2
+
4C
2
5

2
Q
ν
2
λ
1
||MP

f||
2
∞
+
4C
4
5

4
Q
ν
2
||(I−M)P

f||
2
∞
,
=k
||v||
2
≤||u||
2
≤
1
λ
1
||A
1
2

v
0
||
2
+C
2
5

2
||A
1
2

ω
0
||
2
+
4C
2
5

2
Q
ν
2
λ
1
||MP

f||
2
∞
+
4C
4
5

4
Q
ν
2
||(I−M)P

f||
2
∞
≤D
4
(||A
1
2

v
0
||
2
+
2
||A
1
2

ω
0
||
2
+
2
Q||MP

f||
2
∞
+
4
Q||(I−M)P

f||
2
∞
),
Ù¥
D
4
= max(
1
λ
1
,C
2
5
,
4C
4
5
ν
2
,
4C
2
5
ν
2
λ
1
).
|^eã(Ø
||A
1
2

v(t)||
2
≤||A
1
2

u(t)||
2
≤NR
2
0
,
·‚Œ±
G(t) =
Z
t
0
27
2ν
3
C
4
1
||v||
2
||A
1
2

v||
2
ds
≤
27
2ν
3
C
4
1
D
4
T
1
(η
−2
1
+
2+p
η
−2
3
+
2
Qη
−4
2
+
4+
r
3
Qη
−2
4
)NR
2
0
≤
27C
2
5
C
4
1
D
4
ν
4

2
Q()(η
−2
1
+
2+p
η
−2
3
+
2
Qη
−4
2
+
4+
r
3
Qη
−2
4
)(η
−2
1
+
p
η
−2
3
+η
−4
3
+2η
−2
2
+2
r
3
η
−2
4
)
≤E
2
(),
Ù¥
E
2
() = D
5

2
Q()(η
−2
1
+
2+p
η
−2
3
+
2
Qη
−4
2
+
4+
r
3
Qη
−2
4
)(η
−2
1
+
p
η
−2
3
+η
−4
3
+2η
−2
2
+2
r
3
η
−2
4
),
DOI:10.12677/aam.2021.1072642542A^êÆ?Ð
¤²§w
…
D
5
=
27C
2
5
C
4
1
D
4
ν
4
.
aq/§|^b^‡H1,ØJy
E
2
() →0as→0.
•,3N= 1+max(4,
7
2
D
2
)e,·‚À
4
>0,¦
e
E
2
()≤2
,E
1
() ≤η
−2
1
,2C
2
5

2
3
≤ν
2
,0 <≤
4
•y²T
1
<T
∞
,,·‚¦^‡y{bT
∞
=∞,@ow,kT
1
<T
∞
=∞.Ïd·‚•Ib
T
∞
≤T
1
<∞,˜•¡,k
||A
1
2

ω(T
∞
)||
2
≤||A
1
2

ω
0
||
2
+
1
2
k
2
2

2
||(I−M)P

f||
2
∞
≤
p
η
−2
3
+
1
2
k
2
2

2+
r
3
η
−2
4
≤
p
η
−2
3
+
1
2
k
2
2

2
3
+
r
3
η
−2
4
≤
p
η
−2
3
+
r
3
η
−2
4
,
…
||A
1
2

v(T
∞
)||
2
≤e
E
2
()
(η
−2
1
+E
1
()+
7
4
D
2
η
−4
3
)
≤4η
−2
1
+
7
2
D
2
η
−4
3
.
•,·‚
||A
1
2

u(T
∞
)||
2
= 4η
−2
1
+
7
2
D
2
η
−4
3
+
p
η
−2
3
+
r
3
η
−2
4
<(1+max(4,
7
2
D
2
))R
2
0
= NR
2
0
.
(4.24)
,˜•¡,XJT
∞
<∞,@o
||A
1
2

u(T
∞
)||
2
= NR
2
0
,
ù†(4.23)ªgñ.Ïd,T
1
<T
∞
.
-k
2
1
=
7
2
D
2
,k
2
2
= 4C
2
5
ν
−2
,
1
def
=
4
,·‚k
||A
1
2

v(T
1
)||
2
≤4η
−2
1
+k
2
1
η
−4
3
,
||A
1
2

ω(T
1
)||
2
≤k
2
2

2+
r
3
η
−2
4
.
DOI:10.12677/aam.2021.1072642543A^êÆ?Ð
¤²§w
y..
Ún4.3^‡H1ÚH(a,b)¤á,Ù¥aÚb¿©Œ,@o•3
0
>0¦éz‡,0<≤
0
,e
Щêâ÷vb^‡(3.1)§K•§(2.2))u(t)÷vµ0≤t≤2T
0
žku(t)∈D(A
1
2

),…
T
0
≤t≤2T
0
žk





||A
1
2

v(t)||
2
≤
1
2
(4η
−2
1
+k
2
1
η
−4
3
),
||A
1
2

w(t)||
2
≤k
2
2

2+
r
3
η
−2
4
.
(4.25)
y².·‚3Ún4.2Ä:þy²Ún4.3.½Â
R
2
0
= 1+(η
−2
+2η
−2
2
+d
1
)[1+e
2D
19
η
−4
e
4D
19
η
−4
2
]+2
r
3
η
−2
4
.
du
||A
1
2

u
0
||
2
+||P

f||
2
∞
≤||A
1
2

v
0
||
2
+||A
1
2

ω
0
||
2
+2||MP

f||
2
∞
+2||(I−M)P

f||
2
∞
≤4η
−2
1
+k
2
1
η
−4
3
+k
2
2

2+
r
3
η
−2
4
+2η
−2
2
+2
r
3
η
−2
4
≤R
2
0
,
½N= max(1,D
21
,D
22
) >1,A^Lemma4.1,•3T
N
>0,¦
||A
1
2

u(t)||
2
≤NR
2
0
t∈[0,T
N
].
P[0,T
∞
)L«¦þ¡Øª¤á•Œžm«m.eT
∞
<∞,Kk
||A
1
2

u(t)||
2
= NR
2
0
.(4.26)
(4.11)ª†A

ω,(4.13)ªÚD
1
.éu0 ≤t<T
∞
k
D
2
1

5
4
||A
1
2

u||
2
≤D
2
1
N
5
4
R
2
0
→0,as→0
ba≥2D
19
,b≥4D
19
,lb^‡H1ÚH(a,b)µ→0ª,eªªu0

5
4
R
2
0
= 
5
4
(1+η
−2
+2η
−2
2
+d
1
+η
−2
e
2D
1
9η
−4
e
4D
19
η
−4
2
+2η
−2
2
e
2D
19
η
−4
e
4D
19
η
−4
2
+d
1
e
2D
19
η
−4
e
4D
19
η
−4
2
+2
r
3
η
−2
4
).
@o,•3
5
>0,¦
D
1
N
1
2

5
8
R
0
≤
ν
2
,0 <≤
5
l(4.16)ª
||A
1
2

ω(t)||
2
≤e
−
νC
−2
5

−2
2
t||A
1
2

ω
0
||
2
+
2C
2
5

2
ν
2
||(I−M)P

f||
2
∞
≤
3
2
k
2
2

2+
r
3
η
−2
4
,
(4.27)
DOI:10.12677/aam.2021.1072642544A^êÆ?Ð
¤²§w
éþªl0tÈ©
Z
t
0
||A
1
2

ω||
2
ds≤
2
ν
||A
1
2

ω
0
||
2
+
2t
ν
2
||(I−M)P

f||
2
∞
≤max(
2k
2
2
ν
,
2
ν
2
)[
2
+t]
r
3
η
−2
4
≤D
2
9
[
2
+t]
r
3
η
−2
4
,
Ù¥0 ≤t<1.
éþªlt−1tÈ©
Z
t
t−1
||A
1
2

ω||
2
ds≤
2
ν
||A
1
2

ω(t−1)||
2
+
2
ν
2
||(I−M)P

f||
2
∞
≤max(
3
ν
k
2
2
,
2
ν
2
)
r
3
η
−2
4
≤D
2
10

r
3
η
−2
4
,
Ù¥1 ≤t<T
∞
.
Ó§È©
Z
t
0
||A
1
2

ω(s)||
6
ds≤4
Z
t
0
(e
−
3νC
−2
5

2
2
k
2
2

6+r
η
−6
4
+
8C
6
5

2
ν
6

r
η
−6
4
ds)
≤4
Z
t
0
(e
−
3νC
−2
5

2
2
k
2
2
+
1
8
k
6
2
)ds
6+r
η
−6
4
≤4k
6
2
max(
2C
2
5
3ν
,
1
8
)[
2
+t]
6+r
η
−6
4
≤D
2
11
[
2
+t]
6+r
η
−6
4
,
Ù¥0 ≤t<1.
d0 <≤1k,aq
Z
t
t−1
||A
1
2

ω(s)||
6
ds≤2D
2
11

6+r
η
−6
4
,
Ù¥1 ≤t<T
∞
.
¦^H?lderØª
Z
t
0
||A
1
2

ω||
3
||A

ω||≤(
Z
t
0
||A
1
2

ω||
6
)
1
2
(
Z
t
0
||A

ω||
2
)
1
2
≤D
9
[
2
+t]
1
2

r
6
η
−1
4
D
11
[
2
+t]
1
2

3+
r
2
η
−3
4
= D
9
D
11
[
2
+t]
3+
2r
3
η
−4
4
,
(4.28)
DOI:10.12677/aam.2021.1072642545A^êÆ?Ð
¤²§w
Ù¥0 ≤t<1.
Ó¦^H?lderØª
Z
t
t−1
||A
1
2

ω||
3
||A

ω||≤(
Z
t
t−1
||A
1
2

ω||
6
)
1
2
(
Z
t
t−1
||A

ω||
2
)
1
2
≤D
10

r
6
η
−1
4
√
2D
11

3+
r
2
η
−3
4
≤2D
10
D
11

3+
2r
3
η
−4
4
,
(4.29)
Ù¥1 ≤t<T
∞
.
e5,(4.20)ª†vŠSÈ,(Üb

(v,v,v) = 0 !(3.3)ªÚ(3.4)ª
1
2
d
dt
||v||
2
+λ
1
ν||v||
2
≤
1
2
d
dt
||v||
2
+ν||A

v||
2
≤||MPf||
∞
||v||+C
2

1
2
||A
1
2

ω||
3
2
||A

ω||
1
2
||v||
≤
1
λ
1
2
1
(||MPf||
∞
+C
2

1
2
||A
1
2

ω||
3
2
||A

ω||
1
2
),
|^YoungØª
1
2
d
dt
||v||
2
+ν||A
1
2

v||
2
≤
ν
4
||A
1
2

v||
2
+
1
νλ
1
||MPf||
2
∞
+
ν
4
||A
1
2

v||
2
+
1
νλ
1
C
2
2
||A
1
2

ω||
3
||A

ω||,
ØJyeã(Ø
d
dt
||v||
2
+ν||A
1
2

v||
2
≤
2
νλ
1
(||MPf||
2
∞
+C
2
2
||A
1
2

ω||
3
||A

ω||),
d
dt
||v||
2
+λ
1
ν||A
1
2

v||
2
≤
2
νλ
1
(||MPf||
2
∞
+C
2
2
||A
1
2

ω||
3
||A

ω||),
¦^GronwallØª
||v||
2
≤e
−λ
1
t
(||v
0
||
2
+
Z
t
0
2
νλ
1
(||MPf||
2
∞
+C
2
2
||A
1
2

ω||
3
||A

ω||))ds
≤e
−λ
1
t
||v
0
||
2
+
2
νλ
1
||MPf||
2
∞
te
−λ
1
t
+
2
νλ
1
C
2
2
e
−λ
1
t
Z
t
0
||A
1
2

ω||
3
||A

ω||ds
≤e
−λ
1
t
||v
0
||
2
+
2
(νλ
1
)
2
||MPf||
2
∞
+
2
νλ
1
C
2
2

Z
t
0
||A
1
2

ω||
3
||A

ω||ds
≤e
−λ
1
t
1
λ
1
||A
1
2

v
0
||
2
+
2
(νλ
1
)
2
||MPf||
2
∞
+
2
νλ
1
C
2
2

Z
t
0
||A
1
2

ω||
3
||A

ω||ds
≤e
−λ
1
t
1
λ
1
(4η
−2
1
+k
2
1
η
−4
3
)+
2
(νλ
1
)
2
η
−2
2
+
2
(νλ
1
)
2
C
2
2
D
9
D
11
[
2
+t]
3+
2r
3
η
−4
4
≤max(
1
λ
1
,
2
(νλ
1
)
2
,
2
(νλ
1
)
2
C
2
2
D
9
D
11
)(e
−νλ
1
t
(4η
−2
1
+k
2
1
η
−4
3
)+η
−2
2
+[
2
+t]
4+
2r
3
η
−4
4
)
= D
12
γ(,t),
DOI:10.12677/aam.2021.1072642546A^êÆ?Ð
¤²§w
Ù¥
D
12
def
=max(
1
λ
1
,
2
(νλ
1
)
2
,
2
(νλ
1
)
2
C
2
2
D
9
D
11
),
γ(,t)
def
=e
−νλ
1
t
η
−2
+η
−2
2
+[
2
+t]
4+
2r
3
η
−4
4
.
aq/,
||v||
2
−||v
0
||
2
−ν
Z
t
0
||A
1
2

v||
2
ds≤
2
νλ
1
(||MP

f||
2
∞
t+C
2
2

Z
t
0
||A
1
2

ω||
3
||A

ω||ds),
db^‡(3.1)Ú(4.28)
Z
t
0
||A
1
2

v||
2
ds≤
2t
λ
1
ν
2
||MP

f||
2
∞
+
1
ν
||v
0
||
2
+
2
λ
1
ν
2
C
2
2

Z
t
0
||A
1
2

ω||
3
||A

ω||ds
≤
2t
λ
1
ν
2
η
−2
2
+
1
νλ
1
(4η
−2
1
+k
2
1
η
−4
3
)+
2
λ
1
ν
2
C
2
2
D
9
D
11
[
2
+t]
3+
2r
3
η
−4
4
≤max(
e
νλ
1
νλ
1
,
2
λ
1
ν
2
,
2
λ
1
ν
2
C
2
2
D
9
D
11
)(e
−νλ
1
(4η
−2
1
+k
2
1
η
−4
3
)+η
−2
2
+[
2
+t]
3+
2r
3
η
−4
4
)
≤D
13
γ(,t),
Ù¥
D
13
def
=max(
e
νλ
1
νλ
1
,
2
λ
1
ν
2
,
2
λ
1
ν
2
C
2
2
D
9
D
11
).
aq/
Z
t
t−1
||A
1
2

v||
2
ds≤
2
λ
1
ν
2
||MP

f||
2
∞
+
1
ν
||v(t−1)||
2
+
2
λ
1
ν
2
C
2
2

Z
t
t−1
||A
1
2

ω||
3
||A

ω||ds
≤
1
ν
D
12
γ(,t)+
2
λ
1
ν
2
η
−2
2
+
2
λ
1
ν
2
C
2
2
2D
9
D
11
[
2
+t]
3+
2r
3
η
−4
4
≤
1
ν
(D
12
γ(,t)+
2
λ
1
ν
η
−2
2
+
2
λ
1
ν
C
2
2
2D
10
D
11

3+
2r
3
η
−4
4
)
≤
1
ν
max(D
12
,
2
λ
1
ν
+D
12
,2D
12
+
4
λ
1
ν
C
2
2
10D
11
)γ(,t)
≤D
14
γ(,t),
|^±þO§k
Z
t
0
||v||
2
||A
1
2

v||
2
ds≤sup
0≤s≤t
||v||
2
Z
t
0
||A
1
2

v||
2
ds
≤D
12
D
13
γ
2
(,t)
≤e
νλ
1
D
12
D
13
γ
2
(,t).
DOI:10.12677/aam.2021.1072642547A^êÆ?Ð
¤²§w
aq/,
Z
t
t−1
||v||
2
||A
1
2

v||
2
ds≤e
νλ
1
D
12
D
14
γ
2
(,t).
l(4.21)ª•
||A
1
2

v||
2
≤e
G(t)
(||A
1
2

v
0
||
2
+H(t)),
Ù¥
G(t) =
Z
t
0
27
2ν
3
C
4
1
||A
1
2

v||
2
||v||
2
ds
=
27
2ν
3
C
4
1
e
νλ
1
D
12
D
13
γ
2
(,t)
= D
17
γ
2
(,t),
…
H(t) =
1
ν
Z
t
0
||MP

f||
2
∞
+
2C
2
2

ν
Z
t
0
||A
1
2

ω||
3
||A

ω||
2
ds
≤
1
ν
η
−2
2
+
2C
2
2
D
9
D
11
ν
[
2
+t]
4+
2r
3
η
−4
4
.
(ÜþãO§
||A
1
2

v(t)||
2
≤e
D
17
γ
2
(,t)(
1
ν
η
−2
2
+
2C
2
2
D
9
D
11
ν
[
2
+t]
4+
2r
3
η
−4
4
+4η
−2
1
+k
2
1
η
−4
3
)
≤max(e
νλ
1
,
1
ν
,
2C
2
2
D
9
D
11
ν
)
= D
16
γ(,t)e
D
17
γ
2
(,t)
,
5¿
d
dt
||A
1
2

v||
2
≤(
27
2ν
3
C
4
1
||v||
2
||A
1
2

v||
2
)||A
1
2

v||
2
+
1
ν
||MP

f||
2
∞
+
2C
2
2

ν
||A
1
2

ω||
3
||A

ω||
2
,
éþª3t∈[1,∞)þ¦^˜—GronwallØª§
||A
1
2

v||
2
≤[
Z
t
t−1
||A
1
2

v||
2
ds+
Z
t
t−1
(
1
ν
||MP

f||
2
∞
+
2C
2
2

ν
||A
1
2

ω||
3
||A

ω||
2
)ds]e
27
2ν
3
C
4
1
e
νλ
1
D
12
D
14
γ
2
(,t)
≤[D
14
ν
2
γ(,t)+
1
ν
η
−2
2
+
4C
2
2
D
10
D
11

ν

3+
2r
3
η
−4
4
]e
27
2ν
3
C
4
1
e
νλ
1
D
12
D
14
γ
2
(,t)
≤[D
14
ν
2
γ(,t)+
1
ν
η
−2
2
+
4C
2
2
D
10
D
11
ν

4+
2r
3
η
−4
4
]e
27
2ν
3
C
4
1
e
νλ
1
D
12
D
14
γ
2
(,t)
≤(D
14
+max(
1
ν
,
4C
2
2
D
10
D
11
ν
))γ(,t)e
27
2ν
3
C
4
1
e
νλ
1
D
12
D
14
γ
2
(,t),
DOI:10.12677/aam.2021.1072642548A^êÆ?Ð
¤²§w
@o·‚





||A
1
2

v(t)||
2
≤D
16
γ(,t)e
D
17
γ
2
(,t)
||A
1
2

v(t)||
2
≤(D
14
+max(
1
ν
,
4C
2
2
D
10
D
11
ν
))γ(,t)e
27
2ν
3
C
4
1
e
νλ
1
D
12
D
14
γ
2
(,t),
…
||A
1
2

v(t)||
2
≤D
18
γ(,t)e
D
19
γ
2
(,t)
,
Ù¥D
18
= max(D
16
,D
14
+max(
1
ν
,
4C
2
2
D
10
D
11
ν
)),D
19
=
27C
4
1
2ν
3
e
νλ
1
max(D
13
,D
14
)D
12
.
·‚އéT
0
= T
0
().Ï•η→∞§→0
+
,Œ±b
2D
19
η
−4
>1,
‡¦
2D
19
e
−2νλ
1
t
η
−4
≤1.
-
T
0
def
=
1
2νλ
1
ln(2D
19
η
−4
) >0,
…
E
3
()
def
=(
2
+2T
0
())
4+
2r
3
η
−4
4
,
ØJOE
3
()Ú
3
2
k
2
2

2+
r
3
η
−2
4
E
3
() = (
2
+2T
0
())
4+
2r
3
η
−4
4
= (1+
1
νλ
1
ln(2D
19
)η
−4
)
4+
2r
3
η
−4
4
= (1+
1
νλ
1
(ln(2D
19
)+lnη
−4
))
4+
2r
3
η
−4
4
= (1+
1
νλ
1
max(ln(2D
19
,1)))(1+lnη
−4
)
4+
2r
3
η
−4
4
≤D
20
,
…
3
2
k
2
2

2+
r
3
η
−2
4
≤
3
2
k
2
2
(
4+
2r
3
η
−4
4
)
1
2
≤
3
2
k
2
2
(1+lnη
−4
)
1
2
(
4+
2r
3
η
−4
4
)
1
2
≤
3
2
k
2
2
(1+lnη
−4
)(
4+
2r
3
η
−4
4
)
1
2
≤D
21
,
DOI:10.12677/aam.2021.1072642549A^êÆ?Ð
¤²§w
…k
||A
1
2

v(t)||
2
≤D
18
γ(,t)e
D
19
γ
2
(,t)
≤D
18
(e
−νλ
1
t
η
−2
+η
−2
2
+[+t]
4+
2r
3
η
−4
4
)e
D
19
(2e
−2νλ
1
η
−4
+4η
−2
2
+4D
2
19
)
≤D
18
e
4D
19
D
2
20
(e
−νλ
1
t
η
−2
+η
−2
2
+D
20
)e
(
4D
19
η
−4
2
+1)
≤D
22
(e
−νλ
1
t
η
−2
+η
−2
2
+D
20
)e
(
4D
19
η
−4
2
+1)
,
Ïd,
||A
1
2

u(t)||
2
= ||A
1
2

v(t)||
2
+||A
1
2

ω(t)||
2
≤D
22
(e
−νλ
1
t
η
−2
+η
−2
2
+D
20
)e
2D
19
η
−4
e
4D
19
η
−4
2
+D
21
e
0
≤max(1,D
21
,D
22
)((η
−2
+η
−2
2
+D
20
)e
2D
19
η
−4
e
4D
19
η
−4
2
)
<NR
2
0
.
(4.30)
e5,·‚¦^‡y{y²2T
0
≤T
∞
.XJT
∞
= ∞,@o2T
0
≤T
∞
.
Ïd·‚bT
∞
<2T
0
<∞,
l(4.30)ª•
||A
1
2

u(T
∞
)||
2
<NR
2
0
,
ù†(4.26)ªgñ.Ïd2T
0
≤T
∞
.
•,·‚5y²(4.25)ª.•›t3[T
0
,2T
0
]þ
l(4.27)ª
||A
1
2

ω(t)||
2
≤[k
2
2
e
−
2νC
−2
5

−2
2
T
0
+
1
2
k
2
2
]
2+
r
3
η
−2
4
,
•‡ÀT
0
≥
2ln2C
2
5

2
ν
,@o∃
8
,0 <≤
8
,¦
e
−
νC
−2
5

−2
2
T
0
≤
1
2
,0 <≤
8
.
Ïd,
||A
1
2

ω(t)||
2
≤[k
2
2
e
−
νC
−2
5

−2
2
T
0
+
1
2
k
2
2
]
2+
r
3
η
−2
4
≤[
1
2
k
2
2
+
1
2
k
2
2
]
2+
r
3
η
−2
4
= k
2
2

2+
r
3
η
−2
4
,
DOI:10.12677/aam.2021.1072642550A^êÆ?Ð
¤²§w
d®•OªŒ
||A
1
2

v(t)||
2
≤D
22
(e
−νλ
1
t
η
−2
+η
−2
2
+D
20
)e
4D
19
η
−2
2
+1
≤D
22
(η
−2
2
+
1
√
2D
19
+D
20
)e
4D
19
η
−2
2
+1
≤D
22
(η
−2
2
+D
24
)e
4D
19
η
−2
2
+1
= Γ(η
−2
2
),
@ok
Γ(η
−2
2
) = D
22
η
−2
2
e
4D
19
η
−4
2
+1
+
D
22
√
2D
19
e
4D
19
η
−4
2
+1
+D
20
D
22
e
4D
19
η
−4
2
+1
.(4.31)
db^‡H(a,b),•∃
10
,fu0 <≤
10
D
22
η
−2
2
e
4D
19
η
−4
2
+1
= D
22
η
−2
2
e
4D
19
η
−4
2
e
≤
1
6
(4η
−2
1
+k
2
1
η
−4
3
).
aq/,∃
11
,éu0 <≤
11
,
D
22
√
2D
19
e
4D
19
η
−4
2
+1
≤
1
6
(4η
−2
1
+k
2
1
η
−4
3
).
aq/,∃
12
,éu0 <≤
12
,
D
20
D
22
e
4D
19
η
−4
2
+1
≤
1
6
(4η
−2
1
+k
2
1
η
−4
3
).

13
= min(
10
,
11
,
12
),¦
Γ(η
−2
2
) ≤
1
2
(4η
−2
1
+k
2
1
η
−4
3
),0 <≤
13
.
éu0 <≤
13
,k
||A
1
2

v(t)||
2
≤
1
2
(4η
−2
1
+k
2
1
η
−4
3
),T
0
≤t≤2T
0
.

0
= 
13
.y..
½n4.2(H
1
K5)
η
i
,i=1,2,3,4,r,Úp÷v^‡H1ÚH(a,b),Ù¥aÚb¿©Œ§@o•3
0
>0,k
2
>0,
Ú˜‡ëY¼êΓ∈C([0,∞),R),…é,0< ≤
0
,•3
ˆ
T
1
=
ˆ
T
1
()> 0¦é,0<
≤
0
,u
0
∈D(A
1
2

)…f∈L
∞
([0,∞),L
2
(Q
3
))÷vb^‡(3.1).@o(2.5)•3•˜)u÷
vC([0,∞),V
1

)∩L
∞
([0,∞),V
1

),=k
||A
1
2

u(t)||
2
≤K
2
1
,t≥0,
DOI:10.12677/aam.2021.1072642551A^êÆ?Ð
¤²§w
Ù¥K
1
•6ν,λ
1
,Úη
i
,i= 1,2,3,4,Ø•6t≥0.…vÚω÷v
||A
1
2

v(t)||
2
≤Γ(η
−2
2
),t≥
ˆ
T
1
,
Ù¥Γd(4.31)ª‰Ñ§…
||A
1
2

ω(t)||
2
≤k
2
2

2+
r
3
η
−2
4
,t≥
ˆ
T
1
.
y².k|^Ún(4.2),2|^ Ún(4.3),•éÚn(4.3)|^êÆ8B{,ØJy½n¤á(
ؤá.
ë•©z
[1]Ladyzhenskaya,O.A.(1975) ADynamicalSystemGenerated by theNavier-Stokes Equations.
JournalofSovietMathematics,3,458-479.https://doi.org/10.1007/BF01084684
[2]Temam,R. (2001)Navier-StokesEquations:Theoryand NumericalAnalysis.Vol.343, Amer-
icanMathematicalSociety,Providence,RI.
[3]Temam,R.(1995)Navier-StokesEquationsandNonlinearFunctionalAnalysis.Societyfor
IndustrialandAppliedMathematics,Philadelphia.
[4]Foias,C.andT´emam,R.(1987)TheConnectionbetweentheNavier-StokesEquations,Dy-
namicalSystems,andTurbulenceTheory.In:Crandall,M.G.,Rabinowitz,P.H.andTurner,
R.E.L.,Eds.,DirectionsinPartialDifferentialEquations,AcademicPress,Cambridge,MA,
55-73.https://doi.org/10.1016/B978-0-12-195255-6.50011-8
[5]Robinson,J.C.andPierre,C.(2003)Infinite-DimensionalDynamicalSystems:AnIntroduc-
tiontoDissipativeParabolicPDEsandtheTheoryofGlobalAttractors.CambridgeTextsin
AppliedMathematics.AppliedMechanicsReviews,56,B54-B55.
https://doi.org/10.1115/1.1579456
[6]Raugel,G.andSell,G.R.(1993)Navier-StokesEquationsonThin3DDomains.I.Global
Attractors and GlobalRegularity of Solutions.JournaloftheAmericanMathematicalSociety,
6,503-568.https://doi.org/10.2307/2152776
[7]Dragomir, S.S.(2003)Some GronwallType InequalitiesandApplications. Nova Science,Haup-
pauge,NY.
[8]Sell,G.R.andYou,Y.C.(2013)DynamicsofEvolutionaryEquations.Vol.143,Springer
Science+BusinessMedia,Berlin.
DOI:10.12677/aam.2021.1072642552A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.