设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(8),1475-1481
PublishedOnlineAugust2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.118165
Sylowp-f+•Ì‚+10p
n
š†+
ColemangÓ+
•••»»»CCCKKK
∗
§§§°°°???‰‰‰
†
“ŒÆêƆÚOÆ§ìÀ“
ÂvFϵ2021c630F¶¹^Fϵ2021c83F¶uÙFϵ2021c810F
Á‡
3ùŸ©Ù¥§|^+K4•5Ÿ‰Ñ˜aSylowp-f+•Ì‚+10p
n
š†+
ColemangÓ+("
'…c
K4•§ColemangÓ+§SgÓ+
OnColemanOuterAutomorphism
GroupsofNon-CommutativeGroups
ofOrder10p
n
withSylowp-Subgroup
BeingCyclicGroups
A’gaYihuo
∗
,JinkeHai
†
CollegeofMathematicsandStatistics,QingdaoUniversity,QingdaoShandong
∗1˜Šö"
†ÏÕŠö"
©ÙÚ^:•»CK,°?‰.Sylowp-f+•Ì‚+10p
n
š†+ColemangÓ+[J].nØêÆ,2021,
11(8):1475-1481.DOI:10.12677/pm.2021.118165
•»CK§°?‰
Received:Jun.30
th
,2021;accepted:Aug.3
rd
,2021;published:Aug.10
th
,2021
Abstract
Inthisnote,weusetheprojectionlimitpropertyofgroupstogivethestructureof
Colemanautomorphismgroupsforaclassofnon-commutativegroupsoforder10p
n
withSylowp-subgroupbeingcyclicgroups.
Keywords
ProjectionLimit,ColemanAutomorphism,InnerAutomorphism
Copyright
c
2021byauthor(s)andHansPublishersInc.
ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
ColemangÓØ=ék•+(kX•K•§…„†+‚¥5zf¯KkX;
—éX§Ïd<‚m©'5Ÿok•+¦§z‡ColemangÓþ•SgÓ"
¡k•+G˜‡gÓσ•G˜‡ColemangÓ§XJσ3G?¿˜‡Sylowf+þ
•›uG,‡SgÓ3Ùþ•›§@o¤kùgÓ¤Aut(G)˜‡f
+§P•Aut
Col
(G)"w,Inn(G)EAut
Col
(G)§-Out
Col
(G)=Aut
Col
(G)/Inn(G),¡Out
Col
(G)
•GColemangÓ+"
3©z[1]¥§E.C.Dadey²Out
Col
(G)´˜"+"3©z[2]¥§M.Hertweck<y²
Out
Col
(G)´†+§¿‰Ñ˜"+z‡ColemangÓþ•SgÓ˜¿©^‡"3©
z[3]¥§A.V.AntwerpenïÄäkg¥%zAü5f +k•+ColemangÓ§
y²ùa+z‡ColemangÓþ•SgÓ"3©z[4]¥§ë©=<|^ÓNnØïÄ
äkg¥%z5f+k•+ColemangÓ§•‰ÑOut
Col
(G)=1˜¿©^‡"
@o‰½˜‡k •+§XÛäNEѧColemangÓº3©z[5]¥§°?‰|^+
K4•(„[4])nØäN‰Ñ¡N+ColemangÓ+"3©z[6]¥§ ÇöÀUY|
^©z[5]¥•{äN‰Ñ2Â¡N+ColemangÓ+",§©z[7]¥‰Ñ˜
aSylowp-f+•Ì‚+10p
n
š†+("©UY|^+K4•nØ&?©z[7]
¥‰Ñ+ColemangÓ+("·‚y²Xė(Jµ
DOI:10.12677/pm.2021.1181651476nØêÆ
•»CK§°?‰
½n1G=<a>o<b>§Ù¥a
b
=a
−1
§…a
p
n
=1=b
10
§p´Œu5ƒê§
KAut
Col
(G)=Inn(G)"
½n2G=<a,b>§Ù ¥a
b
=a
r
§…a
p
n
=1=b
10
,r6≡1(modp
n
)…r
5
≡1(modp
n
),p≡
1(mod5)§p´Œu5ƒê§KAut
Col
(G)=Inn(G)"
½n3G=<a,b,c>§Ù¥a
b
=a
−1
§…a
5
=b
2
=c
p
n
=1=[a,c]=[b,c]§p´Œu5ƒ
ê§KAut
Col
(G)=Inn(G)"
©¥§GL«k•+§π(G)L«|G|ƒÏf8ܧ^ζ(G)L«G¥%§C
n
p
L«n
‡C
p
†È§C
p
i
L«p
i
Ì‚+§O
p
0
(G)L«G•Œ5p
0
−f+"Ù§PÒ´IO§ë„©
z[2,8–10]"
2.ý•£
½Â1G´k•+§N
1
,N
2
,···,N
s
•G5f+"PG
i
=G/N
i
,G
ij
=G/N
i
N
j
§-π
ij
:
G
i
→G
ij
•g,N§Ù¥1≤i,j≤s,s•ê§K¡
ˆ
G=Projlim
1≤i≤s
(G
i
,π
ij
)={(g
1
,g
2
,···,g
s
)∈
s
Y
i=1
G
i
|g
π
ij
i
=g
π
ji
j
,1≤i,j≤s}.
•+G'uÓπ
ij
K4•§{¡
ˆ
G•+GK4•"
d½Â1á=íÑXeÚn1ÚÚn2µ
Ún1PÒXþ,K
ˆ
G´G
1
×G
2
×···×G
s
f+§…G
ij
=G
ji
,G
ii
=G
i
"
Ún2P
ˆ
GG
i
þÝ•π
i
§XJπ
i
•÷Ó§K
ˆ
G=Projlim
1≤i≤s
(G
i
,π
ij
)={(g
1
,g
2
,···,g
s
)∈
s
Y
i=1
G
i
}.
dž§P
ˆ
G=Projlim
1≤i≤s
(G
i
)§=Projlim
1≤i≤s
(G
i
)=G
1
×G
2
×···×G
s
"
Ún3[5]G´k•+§N
1
,N
2
,···,N
s
•G5f+"-π
ij
:G/N
i
→G/N
i
N
j
•g,
N§÷v∩
s
i=1
N
i
=1§…é?¿p∈π(G)§–•3˜‡•Ii(1≤i≤s)¦(p,|N
i
|)=1§
KG
∼
=
ˆ
G=Projlim
1≤i,j≤s
(G
i
,π
ij
)"
Ún4[8]G•k•Œ)+§PG
i
=G/O
p
0
i
(G),G
ij
=G/O
p
0
i
(G)O
p
0
j
(G)§Ù¥π(G)=
{p
1
,···,p
n
}"-π
ij
:G
i
→G
ij
•g,N§…π
ij
pg,Óπ
∗
ij
:G
i
/ζ(G
i
)→G
ij
/ζ(G
ij
)§
KAut
Col
(G)
∼
=
Projlim
1≤i,j≤n
(G
i
/ζ(G
i
),π
∗
ij
)
∼
=
Projlim
1≤i≤n
(Inn(G
i
))"
Ún5[7]G=<a>o<b>§Ù¥a
b
=a
−1
§…a
p
n
=1=b
10
§p´Œu5ƒê§
K<a>∩<b>=1"
Ún6G=<a>o<b>§Ù¥a
b
=a
−1
§…a
p
n
=1=b
10
,p´Œu5ƒ ê§K{b
i
|i=
2,4,6,8}•G¥¤k5…•G¥%"
DOI:10.12677/pm.2021.1181651477nØêÆ
•»CK§°?‰
y²o(b
i
a
j
)=5§Ù¥0≤i<10,0≤j<p
n
"i•Ûêž,da
b
=a
−1
§
b
i
a
j
b
i
a
j
=b
i
a
j
bb
i−1
a
j
=b
i+1
a
−j
b
i−1
a
j
=b
i+1
a
−j
bb
i−2
a
j
=b
i+2
a
−j
b
i−2
a
j
=......=b
2i
;b
2i
b
i
a
j
=b
3i
a
j
;
b
3i
a
j
b
i
a
j
=b
3i
a
j
bb
i−1
a
j
=b
3i+1
a
−j
b
i−1
a
j
=......=b
4i
;
KŒ
b
4i
b
i
a
j
=b
5i
a
j
=1.
dÚn5iÃ)¶i•óêž§d(b
i
a
j
)
5
=b
5i
a
5j
=1(Óni•Ûêy²•{)9Ún5
i=2,4,6,8,j=0.
Ïd{b
i
|i=2,4,6,8}•G¥¤k5"
?ab
2
∈G,da
b
=a
−1
§
ab
2
=abb=ba
−1
b=ba
p
n
−1
b=ba
p
n
−2
ab
=ba
p
n
−2
ba
−1
=ba
p
n
−3
aba
−1
=ba
p
n
−3
ba
−2
=......=b
2
a
1−p
n
ϕa
p
n
=1§¤±a
1−p
n
=aa
−p
n
=a"ab
2
=b
2
a§Ïdb
2
•G¥%§=ζ(G)=C
5
"
3.̇½ny²
½n1G=<a>o<b>§Ù¥a
b
=a
−1
§…a
p
n
=1=b
10
§p´Œu5ƒê§K
Aut
Col
(G)=Inn(G)"
y²Ï•|π(G)|=3§dÚn6§ζ(G)=C
5
§G=<a>o<b>=(C
p
n
oC
2
)×C
5
•§
O
2
0
(G)=C
p
n
×C
5
,O
5
0
(G)=C
p
n
oC
2
,O
p
0
(G)=C
5
,
P
G
1
=G/O
2
0
(G),G
2
=G/O
5
0
(G),G
3
=G/O
p
0
(G),
K
G
1
∼
=
C
2
,G
2
∼
=
C
5
,G
3
∼
=
C
p
n
oC
2
,
l
ζ(G
1
)=C
2
,ζ(G
2
)=C
5
,ζ(G
3
)=1.
DOI:10.12677/pm.2021.1181651478nØêÆ
•»CK§°?‰
dÚn4•
Aut
Col
(G)=Projlim
1≤i≤2
(Inn(G
i
))=Inn(G
1
)×Inn(G
2
)×Inn(G
3
)
∼
=
C
p
n
oC
2
,
5¿ζ(G)=C
5
,Inn(G)=G/ζ(G)
∼
=
C
p
n
oC
2
§
Aut
Col
(G)=Inn(G).
½n2G=<a,b>§Ù ¥a
b
=a
r
§…a
p
n
=1=b
10
,r6≡1(modp
n
)…r
5
≡1(modp
n
),p≡
1(mod5)§p´Œu5ƒê§KAut
Col
(G)=Inn(G)"
y²Ï•π(G)={2,5,p},d©z[7]•§ζ(G)=C
2
"ùG=<a>o<b>=(C
p
n
o
C
5
)×C
2
§u´
O
2
0
(G)=C
p
n
oC
5
,O
5
0
(G)=C
p
n
×C
2
,O
p
0
(G)=C
2
,
P
G
1
=G/O
2
0
(G),G
2
=G/O
5
0
(G),G
3
=G/O
p
0
(G),
K
G
1
∼
=
C
2
,G
2
∼
=
C
5
,G
3
∼
=
C
p
n
oC
5
,
l
ζ(G
1
)=C
2
,ζ(G
2
)=C
5
,ζ(G
3
)=1.
dÚn4•
Aut
Col
(G)=Projlim
1≤i≤2
(Inn(G
i
))=Inn(G
1
)×Inn(G
2
)×Inn(G
3
)
∼
=
C
p
n
oC
5
,
5¿ζ(G)=C
5
,Inn(G)=G/ζ(G)
∼
=
C
p
n
oC
5
§
Aut
Col
(G)=Inn(G).
½n3G=<a,b,c>§Ù¥a
b
=a
−1
§…a
5
=b
2
=c
p
n
=1=[a,c]=[b,c]§p´Œu5ƒ
ê§KAut
Col
(G)=Inn(G)"
y²Ï•π(G)={2,5,p},d©z[7]•§ζ(G)=C
p
n
"ùG=(<a>o<b>)×<c>=
(C
5
oC
2
)×C
p
n
"u´
O
2
0
(G)=C
5
×C
p
n
,O
5
0
(G)=C
p
n
,O
p
0
(G)=C
5
oC
2
,
P
G
1
=G/O
2
0
(G),G
2
=G/O
5
0
(G),G
3
=G/O
p
0
(G),
DOI:10.12677/pm.2021.1181651479nØêÆ
•»CK§°?‰
K
G
1
∼
=
C
2
,G
2
∼
=
C
5
oC
2
,G
3
∼
=
C
p
n
,
l
ζ(G
1
)=C
2
,ζ(G
2
)=1,ζ(G
3
)=C
p
n
.
dÚn4•
Aut
Col
(G)=Projlim
1≤i≤2
(Inn(G
i
))=Inn(G
1
)×Inn(G
2
)×Inn(G
3
)
∼
=
C
5
oC
2
,
5¿ζ(G)=C
p
n
,Inn(G)=G/ζ(G)
∼
=
C
5
oC
2
,
Aut
Col
(G)=Inn(G).
Ä7‘8
I[g,䮀7(11871292)"
ë•©z
[1]Dade,E.C.(1975)Sylow-CentralizingSectionsofOuterAutomorphismGroupsofFinite
GroupsAreNilpotent.MathematischeZeitschrift,141,57-76.
https://doi.org/10.1007/BF01236984
[2]Hertweck,M.andKimmerle,W.(2002)ColemanAutomorphismsofFiniteGroups.Mathe-
matischeZeitschrift,242,203-215.https://doi.org/10.1007/s002090100318
[3]VanAntwerpen,A.(2018)ColemanAutomorphismsofFiniteGroupsandTheirMinimal
NormalSubgroups.JournalofPureandAppliedAlgebra,222,3379-3394.
https://doi.org/10.1016/j.jpaa.2017.12.013
[4]ë©=,°?‰.'uk•S˜"+ÚFrobenius+ColemangÓ[J].ìÀŒÆÆ(nÆ
‡),2017,52(10):4-6.
[5]Kimmerle,W.andRoggenkamp,K.W.(1993)ProjectiveLimitsofGroupRings.Journalof
PureandAppliedAlgebra,88,119-142.https://doi.org/10.1016/0022-4049(93)90017-N
[6]ÇöÀ,°?‰.2Â¡N+ColemangÓ+[J].ìÀŒÆÆ(nƇ),2020,55(12):
37-39.
[7]3¡ï,±•.Sylowp-f+•Ì‚+10p
n
š†+š†+[J].ÜHŒÆÆ(g,‰
Ƈ),2013,35(10):56-59.
[8]°?‰,½aû.ColemangÓ+Ý4•[J].êÆÆ,2020,63(4):281-288.
[9]M²„.k•+Ú[M].®:‰ÆÑ‡,1999.
DOI:10.12677/pm.2021.1181651480nØêÆ
•»CK§°?‰
[10]Hai,J.K.andZhu,Y.X.(2018)OnColemanAutomorphismsofExtensionsofFinite
QuasinilpotentGroupsbySomeGroups.AlgebraColloquium,25,181-188.
https://doi.org/10.1142/S1005386718000123
DOI:10.12677/pm.2021.1181651481nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.