设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(8),1517-1534
PublishedOnlineAugust2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.118171
‘ÚÑQuasi-Geostrophic•§|N
·½5
MMM
Ü“‰ŒÆêƆÚOÆ§[‹=²
ÂvFϵ2021c710F¶¹^Fϵ2021c817F¶uÙFϵ2021c824F
Á‡
©ïĘa‘ÚÑquasi-geostrophic •§|Њ¯KN·½5"ÏLÚ?˜ap$ª
äkØÓK5•I·Ü.Besov˜m§¿ÏLïáƒAÚÑŒ+3Ùþ˜—k.5O§
y²T‘ÚÑquasi-geostrophic •§|'u·Ü..Besov˜m¥˜—ЊN·
½5"
'…c
‘ÚÑQuasi-Geostrophic •§|§·Ü.Besov˜m§N·½5
GlobalWell-PosednessofTwo-Dimensional
DispersiveQuasi-GeostrophicEquations
RongShao
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Jul.10
th
,2021;accepted:Aug.17
th
,2021;published:Aug.24
th
,2021
©ÙÚ^:M.‘ÚÑQuasi-Geostrophic•§|N·½5[J].nØêÆ,2021,11(8):1517-1534.
DOI:10.12677/pm.2021.118171
M
Abstract
Thispaperisdevotedtostudyingtheglobalwell-posednessofCauchyproblemfor
thetwo-dimensionaldispersivequasi-geostrophicequations.Byintroducingakind
ofHybrid-Besovspaceswithdifferentregularityindicesathighfrequencyandlow
frequency,andbyestablishingtheuniformlyboundedestimationsofthe corresponding
dispersive operator semigroup on these newfunction spaces,the global well-posedness
of the 2D dispersive quasi-geostrophic equations is obtained for uniformly small initial
valuesinthecriticalfunctionalframework.
Keywords
Two-DimensionalDispersiveQuasi-GeostrophicEquations,Hybrid-BesovSpaces,
GlobalWell-Posedness
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.có
©ïÄXe‘ÚÑå‘‘quasi-geostrophic•§|Cauchy¯KN·½5









∂
t
θ+u·∇θ+ν|D|
α
θ+Au
2
= 0,(x,t) ∈R
2
×(0,∞),
u= R
⊥
θ= (−R
2
θ,R
1
θ),(x,t) ∈R
2
×(0,∞),
θ(0,x) = θ
0
(x),x∈R
2
,
(1.1)
Ù¥0<α≤2, ™•¼êθ(t,x) L«6N§Ý, ¼êu=(u
1
,u
2
) L«6N„Ý|; θ
0
•‰½
ЩŠ; ~êνL«*ÑXê, ~êAL«ÚÑëê; R
i
=−∂
i
|D|
−1
,i=1,2•RieszC†,
©ê‡©Žf|D|
α
½Â•:
\
|D|
α
f(ξ)= |ξ|
α
ˆ
f(ξ), Ù¥
ˆ
fL«fFourier C†. T•§|Jø
˜‡‘µeeņë6$ăpŠ^..duα=1 ‘ÚÑquasi-geostrophic •§|†
n‘^=ØŒØ Navier-Stokes•§|ƒq5, Ïd§Œ±ÀŠn‘Navier-Stokes•§˜‡
$‘.,'u•§|(1.1)•õÔnµ0Œë©z[1].
DOI:10.12677/pm.2021.1181711518nØêÆ
M
A= 0ž,•§|(1.1) òz•²;‘quasi-geostrophic•§|







∂
t
θ+u·∇θ+ν|D|
α
θ= 0,(x,t) ∈R
2
×(0,∞),
u= R
⊥
θ= (−R
2
θ,R
1
θ),(x,t) ∈R
2
×(0,∞),
θ(0,x) = θ
0
(x),x∈R
2
.
(1.2)
ŠâºÝC†ÚL
∞
4ŒŠn,α>1,α= 1,α<1 ©O¡•g.œ/,.œ/Ú‡.œ/,
„©z[2,3].3g.œ/e, Constantin ÚWu [4–6] y²Ð Š¯K(1.2) 1w)N•3
5. Wu [7–9] ©O33Lebesgue ˜m, Morrey ˜m±9àgSobolev ˜ m¥y²Њ¯K(1.2)
N·½5. 3.œ/e, Kiselev, Nazarov ÚVolberg [11] JÑ˜«#šÛÜ4ŒŠn
•{, y² 'u ˜m±Ï1wЊN·½5. †dÓž, Caffarelli ÚVasseur [12]l˜‡
ØÓ••, ÏL¿©$^DeGiorgi S“•{, ïáf)ÛK5. Š˜J´, 3‡.
œ/e, Њ¯K(1.2)'u˜„ЊN·½5½ö)´ÄÛKE,´úm.éuЊ
¯K(1.2) 'u.˜m¥ЊN·½5±9Nf)^‡K5•õïÄ(J, Œë
©z[13–19].
8c•Ž,éu‘ÚÑquasi-geostrophic•§|Њ¯K(1.1)ïÄ(Jƒé.
KiselevÚNazarov[20]$^[11] ¥•{y²α= 1 žÐНK(1.1) 'u?¿˜m±Ï1w
Њ´NK. Š˜J´, ¦‚óŠØUí2–˜mœ/.‘, Cannone, Miao Ú
Xue[21]y²A¿©Œž, Њ¯K(1.1)ÛK5.Wan ÚChen[22]y²A¿©Œ,
…ν¿©ž, Њ¯K(1.1) 1w)N·½5. Elgindi ÚWidmayer [23] |^žmP~O,
y²ν= 0 ž,Њ¯K(1.1))Œžm•35.
˜‡ég,¯K´UÄ3.˜m¥¼‘ÚÑquasi-geostrophic •§|(1.2) 'uÚÑ
ëêA˜—ЊN·½5. •d, É©z[24] éu, ©ÏL¿©mu•§|(A:,
Ú?˜ap$ªäkØÓK5•I·Ü.Besov˜m, ÏLïáƒAÚÑŒ+3Ùþ˜—k
.5O, ¿ÏL$^Littlewood-Paley nØÚBony •È©)NÚ©ÛnØÚ•{±9(Ü
ØÄ:nØ, y² ‘ÚÑquasi-geostrophic •§|(1.1) 'u.·Ü.Besov ˜m¥˜—
ЊN·½5.©Ì‡(JäNXe:
½n1.1p∈[2,4],α∈(2−
2
p
,2],K•3†AÃ'~êc, ¦ekθ
0
k
˙
B
2−α,
2
p
+1−α
2,p
≤c,
¯K(1.1) •3•˜N)
θ∈C

[0,∞;
˙
B
2−α,
2
p
+1−α
2,p

∩
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)∩
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
).
©•{Ü©|¤Xe:1!¥,·‚ò‰ÑLittlewood-PaleynØ˜Ä¯¢,¿‰
ÑÚÑŒ+G
A
(t) äNLˆª±9k.5O;1n!¥, ·‚ò$^Bony•È©)nØïá
ÚÑŒ+3·Ü.Besov˜mþ‚5ÚV‚5O; •,·‚‰Ñ̇(Jy².
3©¥,FgÚˆgþL«g'u˜mCþFp“C†,F
−1
L«ƒAFp“_C†.
i=
√
1.·‚^CL«˜‡ýé~ê,§ŠŒU‘X ˜CzCz.
DOI:10.12677/pm.2021.1181711519nØêÆ
M
2.ý•£
Äk, ·‚ò{ü0Littlewood-Paley nØ,¿‰ Ñ·Ü.Besov˜m±9ƒAChemin-
Lerner˜m½Â. •õ'uLittlewood-PaleynØÚ²;Besov˜m?Ø,Œë;Í[24].
S(R
2
) •Schwartz ˜m, S
0
(R
2
) •…O2¼ê˜m. ÀJ»•¼êϕ,ψ∈S(R
2
) ¦
ˆϕ,
ˆ
ψ÷ve5Ÿ:
suppˆϕ⊂C:= {ξ∈R
2
:
3
4
≤|ξ|≤
8
3
},
supp
ˆ
ψ⊂B:= {ξ∈R
2
: |ξ|≤
4
3
},
…
X
j∈Z
ˆϕ(2
−j
ξ) = 1∀ξ∈R
2
\{0}.
é?¿j∈Z, -ϕ
j
(x) :=2
2j
ϕ(2
j
x),ψ
j
(x) :=2
2j
ψ(2
j
x),½ÂªÇÛÜzŽf∆
j
Ú$ª äŽ
fS
j
:
∆
j
f:= ϕ
j
∗f,S
j
f= ψ
j
∗f,∀j∈Z,f∈S
0
(R
2
).
-S
0
h
(R
2
):=S
0
(R
2
)/P[R
2
], Ù¥P[R
2
] •½Â3R
2
þNõ‘ª¤¤‚5˜m. ¯¤±
•,3S
0
h
(R
2
)¥¤áXe©):
f=
X
j∈Z
∆
j
f,S
j
f=
j−1
X
k=−∞
∆
k
f.
d,dˆϕÚ
ˆ
ψ|85Ÿ,N´yªÇÛÜzŽf∆
j
Ú$ªäŽfS
j
÷vXe[5:
∆
j
∆
k
f= 0,|j−k|≥2;
∆
j
(S
k−1
f∆
k
f) = 0,|j−k|≥5.
$^Bony•È©)[25],Œ
fg= T
f
g+T
g
f+R(f,g),
Ù¥
T
f
g=
X
j∈Z
S
j−1
f∆
j
g,R(f,g) =
X
j∈Z
∆
j
f
˜
∆
j
g,
˜
∆
j
g=
X
|j
0
−j|≤1
∆
˜
j
0
g.
½Â2.1s,σ∈R,1 ≤p≤∞, ½Â·Ü.Besov˜m:
˙
B
s,σ
2,p
:=
n
f∈S
0
h
(R
2
) : kfk
˙
B
s,σ
2,p
:=sup
2
j
≤A
2
js
k∆
j
fk
L
2
+sup
2
j
>A
2
jσ
k∆
j
fk
L
p
<∞
o
.
DOI:10.12677/pm.2021.1181711520nØêÆ
M
½Â2.2s,σ∈R,1 ≤p,r≤+∞,½ÂChemin-Lerner ˜m:
˜
L
r
(0,∞;
˙
B
s,σ
2,p
) :=
n
f∈S
0
((0,∞)×R
2
) :lim
j→−∞
S
j
f= 0,
kfk
˜
L
r
(0,∞;
˙
B
s,σ
2,p
)
=sup
2
j
≤A
2
js
k∆
j
fk
L
r
(0,∞;L
2
)
+sup
2
j
>A
2
jσ
k∆
j
fk
L
r
(0,∞;L
p
)
<∞
o
.
Ún2.3 (BernsteinØª)[24]1 ≤p≤q≤+∞, é?¿β,γ∈N
3
,¤á
1)supp
ˆ
f⊆{|ξ|≤A
0
2
j
}=⇒k∂
γ
fk
L
q
≤C2
j|γ|+jn(
1
p
−
1
q
)
kfk
L
p
,
2)supp
ˆ
f⊆{A
1
2
j
≤|ξ|≤A
2
2
j
}=⇒kfk
L
p
≤C2
−j|γ|
sup
|β|=|γ|
k∂
β
fk
L
p
.
e¡,·‚‰Ñ¯K(1.1)dÈ©•§.
θ(t) = G
A
(t)θ
0
+
Z
t
0
G
A
(t−τ)∇(R
⊥
θ(τ)·θ(τ)).(2.1)
Ù¥{G
A
(t)}
t≥0
•ÚÑŒ+,ÙäNLˆª•
G
A
(t)f:= e
iAt
D
1
|D|
e
νt|D|
α
f= F
−1
h
cos

A
|ξ
1
|
|ξ|
t

e
−ν|ξ|
α
t
ˆ
f(ξ)+isin

A
|ξ
1
|
|ξ|
t

e
−ν|ξ|
α
t
ˆ
f(ξ)
i
.
•,·‚‰ÑÚÑŒ+{G
A
(t)}
t≥0
L
p
−L
p
O.
Ún2.5C´R
2
¥±0 •¥%‚, …α∈[0,2], K•3†νk'c>0,C>0, ¦
esupp
ˆ
θ
0
⊂λC, ¤á
1)é?¿λ>0,
kG
A
(t)θ
0
k
L
2
≤Ce
−cλ
α
t
kθ
0
k
L
2
;(2.2)
2)é?¿λ&AÚ1 ≤p≤∞,
kG
A
(t)θ
0
k
L
p
≤Ce
−cλ
α
t
kθ
0
k
L
p
.(2.3)
y²1)(ÜG
A
Lˆª±9Plancherel½n, Œ


G
A
(t)θ
0


L
2
=


ˆ
G
A
(t,ξ)
ˆ
θ
0
(ξ)


L
2
≤C


e
−c|ξ|
α
t
ˆ
θ
0
(ξ)


L
2
≤Ce
−cλ
α
t
kθ
0
k
L
2
.
2)(ÜG
A
Lˆª±9Fourier 5Ÿ,Œ
G
A
(t)f= F
−1
h
cos

A
|ξ
1
|
|ξ|
t

e
−ν|ξ|
α
t
ˆ
f(ξ)+isin

A
|ξ
1
|
|ξ|
t

e
−ν|ξ|
α
t
ˆ
f(ξ)
i
= F
−1
h
cos

A
|ξ
1
|
|ξ|
t

+isin

A
|ξ
1
|
|ξ|
t

e
−ν|ξ|
α
t
i
∗
ˆ
f(ξ)
DOI:10.12677/pm.2021.1181711521nØêÆ
M
e¡,·‚y²G
A
(t)k.5.φ∈D(R
2
\0),…3CNCu1. (Üθ
0
|85Ÿ,½Â
g(t,x) := F
−1

φ(λ
−1
ξ)
ˆ
G
A
(t,ξ)

(t,x)
= (2π)
−2
Z
R
2
e
ixξ
φ(λ
−1
ξ)
ˆ
G
A
(t,ξ)dξ.
Ïd,•I‡y²


g(t,·)


L
1
≤Ce
−cλ
α
t
.(2.4)
•O(2.3), ·‚òÈ©«•©•:|x|≤λ
−1
Ú|x|≥λ
−1
5©O?Ø.
Äk,•3C>0¦¤á
Z
|x|≤λ
−1


g(x,t)


dx≤C
Z
|x|≤λ
−1
Z
R
2
|φ(λ
−1
ξ)||
ˆ
G
A
(t,ξ)|dξdx≤Ce
−cλ
α
t
.(2.5)
d,½ÂŽfL:= x·
∇
ξ
i|x|
2
,=¤áL(e
ixξ
) = e
ixξ
.d©ÜÈ©úª,Œ
g(x,t) =
Z
R
2
L
N
(e
ixξ
)φ(λ
−1
ξ)
ˆ
G
A
(t,ξ)dξ
=
Z
R
2
e
ixξ
(L
∗
)
N
[φ(λ
−1
ξ)
ˆ
G
A
(t,ξ)]dξ.
$^IO¦$ޱ9êÆ8B{,N´y²•3C>0¦¤á
|∂
γ
(e
iAt
ξ
1
|ξ|
)|≤C|ξ|
−|γ|
(1+At)
|γ|
Ú
|∂
γ
(e
−ν|ξ|
α
t
)|≤C|ξ|
−|γ|
e
−ν|ξ|
α
t
.
?,Œ



(L
∗
)
N

φ(λ
−1
ξ)
ˆ
G
A
(t,ξ)




≤C|x|
−N
X
|α
1
|+|α
2
|=|α|
|α|≤N
λ
−N+|α|



(∇
N−|α|
φ)(λ
−1
ξ)∂
α
1
(e
iAt
ξ
1
|ξ|
)
×∂
α
2
(e
−ν|ξ|
α
t
)
≤C|λx|
−N
X
|α
1
|+|α
2
|=|α|
|α|≤N
λ
|α|


(∇
N−|α|
φ)(λ
−1
ξ)


|ξ|
−|α
1
|−|α
2
|
e
−ν|ξ|
α
t
(1+At)
|α
1
|
.
DOI:10.12677/pm.2021.1181711522nØêÆ
M
N= 3,é?¿λ&A, ¤á


(L
∗
)
3
(φ(λ
−1
ξ)
ˆ
G
A
(t,ξ))


≤C|λx|
−3
e
−ν|ξ|
α
t
.
Ïd,¤á
Z
|x|≥λ
−1
|g(x,t)|dx≤Ce
−cλ
α
t
λ
2
Z
|x|≥λ
−1
|λx|
−3
dx≤Ce
−cλ
α
t
.(2.6)
(Ü(2.5) Ú(2.6) =Œ(2.4)¤á.ùÒ¤(2.3) ªy².
3.‚5OÚ¦È{K
Ún3.1s,σ∈R, α∈[0,2],(p,q) ∈[1,∞].K¤ á
1)é?¿θ∈
˙
B
s−
α
q
,σ−
α
q
2,p
,kG
A
(t)θk
˜
L
q
(0,∞;
˙
B
s,σ
2,p
)
≤Ckθk
˙
B
s−
α
q
,σ−
α
q
2,p
,
2)é?¿f∈
˜
L
1
(0,∞;
˙
B
s,σ
2,p
),¤á



Z
t
0
G
A
(t−τ)f(τ)dτ



˜
L
q
(0,∞;
˙
B
s+
α
q
,σ+
α
q
2,p
)
≤Ckfk
˜
L
1
(0,∞;
˙
B
s,σ
2,p
)
.
y²1) d½Â2.2,Œ•
kG
A
(t)θk
˜
L
q
(0,∞;
˙
B
s,σ
2,p
)
=sup
2
j
≤A
2
js
k∆
j
(G
A
(t)θ)k
L
q
(0,∞;L
2
)
+sup
2
j
>A
2
jσ
k∆
j
(G
A
(t)θ)k
L
q
(0,∞;L
p
)
.(3.1)
Äk,$^Ún2.5, Œ


∆
j
(G
A
(t)(t)θ)


L
q
(0,∞;L
2
)
≤C


e
−cλ
α
t
k∆
j
θk
L
2


L
q
(0,∞)
≤C2
−
α
q
j
k∆
j
θk
L
2
.(3.2)
Ùg,ÓnŒ


∆
j
(G
A
(t)θ)


L
q
(0,∞;L
p
)
≤C


e
−cλ
α
t
k∆
j
θk
L
p


L
q
(0,∞)
≤C2
−
α
q
j
k∆
j
θk
L
p
.(3.3)
ò(3.2) Ú(3.3) “\(3.1),=


G
A
(t)θ


˜
L
q
(0,∞;B
s,σ
2,p
)
≤Ckθk
˙
B
s−
α
q
,σ−
α
q
2,p
.
DOI:10.12677/pm.2021.1181711523nØêÆ
M
2)d½Â2.2, Œ•



Z
t
0
G
A
(t−τ)f(τ)dτ



˜
L
q
(0,∞;
˙
B
s+
α
q
,σ+
α
q
2,p
)
=sup
2
j
≤A
2
j(s+
α
q
)



∆
j
(
Z
t
0
G
A
(t−τ)f(τ)dτ)



L
q
(0,∞;L
2
)
+sup
2
j
>A
2
j(σ+
α
q
)



∆
j
(
Z
t
0
G
A
(t−τ)f(τ)dτ)



L
q
(0,∞;L
p
)
.
(3.4)
Äk,$^MinkowskiØª, Ún2.5(2) ±9YoungØª, Œ



∆
j

Z
t
0
G
A
(t−τ)f(τ)dτ




L
q
(0,∞;L
2
)
≤C



Z
t
0


G
A
(t−τ)∆
j
f(τ)


L
2
dτ



L
q
(0,∞)
≤C



Z
t
0
e
−2
αj
(t−τ)


∆
j
f(τ)


L
2
dτ



L
q
(0,∞)
≤C



e
−2
αj
t



L
q
(0,∞)



∆
j
f(τ)



L
1
(0,∞;L
2
)
≤C2
−
α
q
j



∆
j
f



L
1
(0,∞;L
2
)
.(3.5)
Ùg,ÓnŒ



∆
j

Z
t
0
G
A
(t−τ)f(τ)dτ




L
q
(0,∞;L
p
)
≤C



Z
t
0


G
A
(t−τ)∆
j
f(τ)


L
p
dτ



L
q
(0,∞)
≤C



Z
t
0
e
−c2
αj
(t−τ)


∆
j
f(τ)


L
p
dτ



L
q
(0,∞)
≤C



e
−2
αj
t



L
q
(0,∞)



∆
j
f(τ)



L
1
(0,∞;L
p
)
≤C2
−
α
q
j



∆
j
f



L
1
(0,∞;L
p
)
.(3.6)
ò(3.5) Ú(3.6) “\(3.4),=y(ؤá.
Ú n3.2p∈[2,4] ,α∈(2 −
2
p
,2], R
⊥
θ,θ∈
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)∩
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
),
K•3†A,R
⊥
θ,θÃ'~êC, ¦
kR
⊥
θ·θk
˜
L
1
(0,∞;
˙
B
3−α,
2
p
+2−α
2,p
)
≤C

kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
+kθk
˜
L
∞
(0,∞;
˙
B
2,
2
p
+1
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)

.(3.7)
y²dBony•ÈŒ,
∆
j

(R
⊥
θ)θ

=
X
|k−j|≤4
∆
j
(S
k−1
(R
⊥
θ)∆
k
θ)+
X
|k−j|≤4
∆
j
(S
k−1
θ∆
k
(R
⊥
θ))+
X
k≥j−2
∆
j
(∆
k
(R
⊥
θ)
˜
∆
k
θ)
:= I
j
+II
j
+III
j
.
DOI:10.12677/pm.2021.1181711524nØêÆ
M
Ú\•I8J
j
:=

(k
0
,k) : |k−j|≤4,k
0
≤k−2

.Ké2
j
>A,N´wÑ



I
j



L
1
(0,∞;L
p
)
≤
X
J
j



∆
j
(∆
k
0
(R
⊥
θ)∆
k
θ)



L
1
(0,∞;L
p
)
≤

X
J
j,ll
+
X
J
j,lh
+
X
J
j,hh




∆
j
(∆
k
0
(R
⊥
θ)∆
k
θ)



L
1
(0,∞;L
p
)
:= I
j,1
+I
j,2
+I
j,3
,
Ù¥
J
j,ll
=

(k
0
,k) ∈J
j
: 2
k
0
≤A,2
k
≤A

,
J
j,lh
=

(k
0
,k) ∈J
j
: 2
k
0
≤A,2
k
>A

,
J
j,hh
=

(k
0
,k) ∈J
j
: 2
k
0
>A,2
k
>A

.
|^Bernstein Øª!H¨olderØª±9ŽfR
⊥
3L
p
(R
2
)(1 <p<∞)þk.Œ
I
j,1
≤C
X
(k
0
,k)∈J
j,ll
2
k
0


∆
k
0
(R
⊥
θ)


L
∞
(0,∞;L
∞
)
2
2k(
1
2
−
1
p
)


∆
k
θ


L
1
(0,∞;L
2
)
≤C
X
(k
0
,k)∈J
j,ll
2
k
0
(2−α)


∆
k
0
(R
⊥
θ)


L
∞
(0,∞;L
2
)
2
2k


∆
k
θ


L
1
(0,∞;L
2
)
2
(α−1)(k
0
−k)
2
−k(
2
p
+2−α)
≤C


R
⊥
θ


˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)


θ


˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
|k−j|≤4
X
k
0
≤k−2
2
(α−1)(k
0
−k)
2
−k(
2
p
+2−α)
≤C


R
⊥
θ


˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)


θ


˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
|k−j|≤4
2
−k(
2
p
+2−α)
≤C2
−j(
2
p
+2−α)
kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.
Óín,Œ„
I
j,2
≤C
X
(k
0
,k)∈J
j,lh
2
k
0


∆
k
0
(R
⊥
θ)


L
∞
(0,∞;L
∞
)


∆
k
θ


L
1
(0,∞;L
p
)
≤C
X
(k
0
,k)∈J
j,lh
2
k
0
(2−α)


∆
k
0
(R
⊥
θ)


L
∞
(0,∞;L
2
)
2
k(
2
p
+1)


∆
k
θ


L
1
(0,∞;L
p
)
2
(α−1)(k
0
−k)
2
−k(
2
p
+2−α)
≤C


R
⊥
θ


˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)


θ


˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
(k
0
,k)∈J
j,lh
2
(α−1)(k
0
−k)
2
−k(
2
p
+2−α)
≤C


R
⊥
θ


˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)


θ


˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
|k−j|≤4
X
k
0
≤k−2
2
(α−1)(k
0
−k)
2
−k(
2
p
+2−α)
≤C


R
⊥
θ


˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)


θ


˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
|k−j|≤4
2
−k(
2
p
+2−α)
≤C2
−j(
2
p
+2−α)
kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.
DOI:10.12677/pm.2021.1181711525nØêÆ
M
Ú
I
j,3
≤C
X
(k
0
,k)∈J
j,hh
2
2
p
k
0


∆
k
0
(R
⊥
θ)


L
∞
(0,∞;L
p
)


∆
k
θ


L
1
(0,∞;L
p
)
≤C
X
(k
0
,k)∈J
j,hh
2
k
0
(
2
p
+1−α)


∆
k
0
(R
⊥
θ)


L
∞
(0,∞;L
p
)
2
k(
2
p
+1)


∆
k
θ


L
1
(0,∞;L
p
)
2
(α−1)(k
0
−k)
2
−k(
2
p
+2−α)
≤C


R
⊥
θ


˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)


θ


˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
(k
0
,k)∈J
j,hh
2
(α−1)(k
0
−k)
2
−k(
2
p
+2−α)
≤C


R
⊥
θ


˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)


θ


˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
|k−j|≤4
X
k
0
≤k−2
2
(α−1)(k
0
−k)
2
−k(
2
p
+2−α)
≤C


R
⊥
θ


˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)


θ


˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
|k−j|≤4
2
−k(
2
p
+2−α)
≤C2
−j(
2
p
+2−α)
kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.
éu2
j
≤Aœ/, |^5Œ„


I
j


L
1
(0,∞;L
2
)
≤
X
J
j


∆
j
(∆
k
0
(R
⊥
θ)∆
k
θ)


L
1
(0,∞;L
2
)
≤

X
J
j,ll
+
X
J
j,lh
+
X
J
j,hh



∆
j
(∆
k
0
(R
⊥
θ)∆
k
θ)


L
1
(0,∞;L
2
)
:= I
j,4
+I
j,5
+I
j,6
.
|^Bernstein Øª!H¨older Øª±9ŽfR
⊥
3L
p
(R
2
)(1 <p<∞)þk.Œ
I
j,4
≤C
X
(k
0
,k)∈J
j,ll
2
k
0


∆
k
0
(R
⊥
θ)


L
∞
(0,∞;L
2
)


∆
k
θ


L
1
(0,∞;L
2
)
≤C
X
(k
0
,k)∈J
j,ll
2
k
0
(2−α)


∆
k
0
(R
⊥
θ)


L
∞
(0,∞;L
2
)
2
2k


∆
k
θ


L
1
(0,∞;L
2
)
2
(α−1)(k
0
−k)
2
−k(3−α)
≤C


R
⊥
θ


˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)


θ


˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
|k−j|≤4
X
k
0
≤k−2
2
(α−1)(k
0
−k)
2
−k(3−α)
≤C


R
⊥
θ


˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)


θ


˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
|k−j|≤4
2
−k(3−α)
≤C2
−j(3−α)
kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.
DOI:10.12677/pm.2021.1181711526nØêÆ
M
5¿p≤4…
2
p
+2−α>0ž,¤á
I
j,5
≤C
X
(k
0
,k)∈J
j,lh


∆
k
0
(R
⊥
θ)


L
∞
(0,∞;L
2p
p−2
)


∆
k
θ


L
1
(0,∞;L
p
)
≤C
X
(k
0
,k)∈J
j,lh
2
2k
0
p


∆
k
0
(R
⊥
θ)


L
∞
(0,∞;L
2
)


∆
k
θ


L
1
(0,∞;L
2
)
≤C
X
(k
0
,k)∈J
j,lh
2
k
0
(2−α)


∆
k
0
(R
⊥
θ)


L
∞
(0,∞;L
2
)
2
k(
2
p
+1)


∆
k
θ


L
1
(0,∞;L
p
)
2
(k
0
−k)(
2
p
+α−2)
2
−k(3−α)
≤C


R
⊥
θ


˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)


θ


˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
|k−j|≤4
X
k
0
≤k−2
2
(k
0
−k)(
2
p
+α−2)
2
−k(3−α)
≤C


R
⊥
θ


˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)


θ


˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
|k−j|≤4
2
−k(3−α)
≤C2
−j(3−α)
kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.
Ú
I
j,6
≤C
X
(k
0
,k)∈J
j,hh


∆
k
0
(R
⊥
θ)


L
∞
(0,∞;L
2p
p−2
)


∆
k
θ


L
1
(0,∞;L
p
)
≤C
X
(k
0
,k)∈J
j,hh
2
2k
0
(
2
p
−
1
2
)


∆
k
0
(R
⊥
θ)


L
∞
(0,∞;L
p
)


∆
k
θ


L
1
(0,∞;L
p
)
≤C
X
(k
0
,k)∈J
j,hh
2
k
0
(
2
p
+1−α)


∆
k
0
(R
⊥
θ)


L
∞
(0,∞;L
p
)
2
k(
2
p
+1)


∆
k
θ


L
1
(0,∞;L
p
)
2
(k
0
−k)(
2
p
+α−2)
2
−k(3−α)
≤C


R
⊥
θ


˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)


θ


˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
|k−j|≤4
X
k
0
≤k−2
2
(k
0
−k)(
2
p
+α−2)
2
−k(3−α)
≤C


R
⊥
θ


˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)


θ


˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
|k−j|≤4
2
−k(3−α)
≤C2
−j(3−α)
kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.
Ïd,(ÜI
j,1
∼I
j,6
O,Œ
sup
2
j
≤1
2
j(3−α)
kI
j
k
L
1
(0,∞;L
2
)
+sup
2
j
>1
2
(
2
p
+2−α)j
kI
j
k
L
1
(0,∞;L
p
)
≤Ckθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.(3.8)
aqŒ
sup
2
j
≤1
2
j(3−α)
kII
j
k
L
1
(0,∞;L
2
)
+sup
2
j
>1
2
(
2
p
+2−α)j
kII
j
k
L
1
(0,∞;L
p
)
≤Ckθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.(3.9)
DOI:10.12677/pm.2021.1181711527nØêÆ
M
-K
j
:= {(k,k
0
) : k≥j−3,|k
0
−k|≤1}.
III
j
=

X
K
j,ll
+
X
K
j,lh
+
X
K
j,hl
+
X
K
j,hh

∆
j
(∆
k
(R
⊥
θ)∆
k
0
θ)
:= III
j,1
+III
j,2
+III
j,3
+III
j,4
,
Ù¥
K
j,ll
=

(k,k
0
) ∈K
j
: 2
k
≤A,2
k
0
≤A

,
K
j,lh
=

(k,k
0
) ∈K
j
: 2
k
≤A,2
k
0
>A

,
K
j,hl
=

(k,k
0
) ∈K
j
: 2
k
>A,2
k
0
≤A

,
K
j,hh
=

(k,k
0
) ∈K
j
: 2
k
>A,2
k
0
>A

.
|^Bernstein Øª!H¨older Øª±9ŽfR
⊥
3L
p
(R
2
)(1 <p<∞)þk.Œ


III
j,1


L
1
(0,∞;L
p
)
≤C2
2j(1−
1
p
)
X
(k,k
0
)∈K
j,ll


∆
k
(R
⊥
θ)∆
k
0
θ


L
1
(0,∞;L
1
)
≤C2
2j(1−
1
p
)
kR
⊥
θk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
(k,k
0
)∈K
j,ll
2
−k(2−α)
2
−2k
0
≤C2
2j(1−
1
p
)
kR
⊥
θk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
k≥j−3
2
−k(2−α)
X
|k−j|≤1
2
−2k
0
≤C2
2j(1−
1
p
)
kR
⊥
θk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
k≥j−3
2
−k(2−α)
2
−2k
≤C2
−j(
2
p
+2−α)
kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.
9


III
j,1


L
1
(0,∞;L
2
)
≤C2
2j(1−
1
2
)
X
(k,k
0
)∈K
j,ll


∆
k
(R
⊥
θ)∆
k
0
θ


L
1
(0,∞;L
1
)
≤C2
j
X
(k,k
0
)∈K
j,ll
2
k(2−α)


∆
k
(R
⊥
θ)


L
∞
(0,∞;L
2
)
2
2k
0


∆
k
0
θ


L
1
(0,∞;L
2
)
2
−k(2−α)
2
−2k
0
≤C2
j
kR
⊥
θk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
k≥j−3
2
−k(2−α)
X
|k−k
0
|≤1
2
−2k
0
≤C2
j
kR
⊥
θk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
k≥j−3
2
−k(2−α)
2
−2k
≤C2
−j(3−α)
kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.
DOI:10.12677/pm.2021.1181711528nØêÆ
M
aq/,†íÑ


III
j,2


L
1
(0,∞;L
p
)
≤C2
j
X
(k,k
0
)∈K
j,lh
∪K
j,hl


∆
k
(R
⊥
θ)∆
k
0
θ


L
1
(0,∞;L
2p
2+p
)
≤C2
j
X
K
j,lh
2
k(2−α)


∆
k
(R
⊥
θ)


L
∞
(0,∞;L
2
)
2
k
0
(
2
p
+1)


∆
k
0
θ


L
1
(0,∞;L
p
)
2
−k(2−α)
2
−k
0
(
2
p
+1)
≤C2
j
kR
⊥
θk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
k≥j−3
2
−k(2−α)
X
|k−k
0
|≤1
2
−k
0
(
2
p
+1)
≤C2
j
kR
⊥
θk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
k≥j−3
2
−k(2−α)
2
−k(
2
p
+1)
≤C2
−j(
2
p
+2−α)
kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.
9


III
j,2


L
1
(0,∞;L
2
)
≤C2
2
p
j
X
(k,k
0
)∈K
j,lh


∆
k
(R
⊥
θ)∆
k
0
θ


L
1
(0,∞;L
2p
2+p
)
≤C2
2
p
j
kR
⊥
θk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
k≥j−3
2
−k(2−α)
X
|k−k
0
|≤1
2
−k
0
(
2
p
+1)
≤C2
2
p
j
kR
⊥
θk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
k≥j−3
2
−k(2−α)
2
−k(
2
p
+1)
≤C2
−j(3−α)
kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.
|^Bernstein Øª!H¨older Øª±9ŽfR
⊥
3L
p
(R
2
)(1 <p<∞)þk.Œ


III
j,3


L
1
(0,∞;L
p
)
≤C2
j
X
(k,k
0
)∈K
j,hl


∆
k
(R
⊥
θ)∆
k
0
θ


L
1
(0,∞;L
2p
2+p
)
≤C2
j
X
K
j,hl
2
k(
2
p
+1−α)


∆
k
(R
⊥
θ)


L
∞
(0,∞;L
p
)
2
2k
0


∆
k
0
θ


L
1
(0,∞;L
2
)
2
−k(
2
p
+1−α)
2
−2k
0
≤C2
j
kR
⊥
θk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
k≥j−3
2
−k(
2
p
+1−α)
X
|k−k
0
|≤1
2
−2k
0
≤C2
j
kR
⊥
θk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
k≥j−3
2
−2k
2
−k(
2
p
+1−α)
≤C2
−j(
2
p
+2−α)
kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.
DOI:10.12677/pm.2021.1181711529nØêÆ
M
Ú


III
j,3


L
1
(0,∞;L
2
)
≤C2
2
p
j
X
(k,k
0
)∈K
j,hl


∆
k
(R
⊥
θ)∆
k
0
θ


L
1
(0,∞;L
2p
2+p
)
≤C2
2
p
j
kR
⊥
θk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
k≥j−3
2
−k(
2
p
+1−α)
X
|k−k
0
|≤1
2
−2k
0
≤C2
2
p
j
kR
⊥
θk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
k≥j−3
2
−2k
2
−k(
2
p
+1−α)
≤C2
−j(3−α)
kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.
5¿2 ≤p≤4, Œ


III
j,4


L
1
(0,∞;L
p
)
≤C
X
(k,k
0
)∈K
j,hh


∆
k
(R
⊥
θ)∆
k
0
θ


L
1
(0,∞;L
p
2
)
≤C2
2
p
j
X
(k,k
0
)∈K
j,hh


∆
k
(R
⊥
θ)


L
∞
(0,∞;L
p
)


∆
k
0
v


L
1
(0,∞;L
p
)
≤C2
2
p
j
kR
⊥
θk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
k≥j−3
2
−k(
2
p
+1−α)
2
−k(
2
p
+1)
≤C2
−j(
2
p
+1−α)
kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.


III
j,4


L
1
(0,∞;L
2
)
≤C2
2j(
2
p
−
1
2
)
X
(k,k
0
)∈K
j,hh


∆
k
(R
⊥
θ)∆
k
0
θ


L
1
(0,∞;L
p
2
)
≤C2
2j(
2
p
−
1
2
)
X
(k,k
0
)∈K
j,hh


∆
k
(R
⊥
θ)


L
∞
(0,∞;L
p
)


∆
k
0
θ


L
1
(0,∞;L
p
)
≤C2
j(
4
p
−1)
kR
⊥
θk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
X
k≥j−3
2
−k(
2
p
+1−α)
2
−k(
2
p
+1)
≤C2
−j(3−α)
kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.
nÜIII
j,1
∼III
j,4
O,Œ
sup
2
j
≤1
2
j(3−α)
kIII
j
k
L
1
(0,∞;L
2
)
+sup
2
j
>1
2
(
2
p
+2−α)j
kIII
j
k
L
1
(0,∞;L
p
)
≤Ckθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.(3.10)
DOI:10.12677/pm.2021.1181711530nØêÆ
M
(Ü(3.8) ∼(3.10) =(3.7)¤á.
4.½n1.1y²
Ún4.1([26]) (X,k·k
X
) •Banach ˜m.B:X×X→X•V‚5Žf,…÷vé
?¿x
1
,x
2
∈X,•3~êη>0,¦kB(x
1
,x
2
)k
X
≤ηkx
1
k
X
kx
2
k
X
. XJ0<ε<
1
4η
…y∈X
÷vkyk
X
≤ε, K•§x= y+B(x,x) 3X¥•3•˜), …÷vkxk
X
≤2ε.
½n1.1y².½ÂBanach˜mX•
X=
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
(R
2
))∩
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
(R
2
)),
¿3ÙþDƒ‰ê
kθk
X
:= kθk
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
)
+kθk
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
.
½Â
B(θ,θ)(t) :=
Z
t
0
G
A
(t−τ)∇[R
⊥
θ(τ)·θ(τ)]dτ.
dÚn3.1 (2)ÚÚn3.2Œ•,é?¿θ∈X, •3~êC
1
≥0,Œ


B(θ,θ)


X
=



Z
t
0
G
A
(t−τ)∇[R
⊥
θ(τ)·θ(τ)]dτ



X
≤C
1


[R
⊥
θ(τ)·θ(τ)]


˜
L
1
(0,∞;
˙
B
3−α,
2
p
+2−α
2,p
)
≤C
1
kθk
X
kθk
X
.
¿…,dÚn3.1(1) qŒ•,é?¿θ
0
∈
˙
B
2−α,
2
p
+1−α
2,p
,•3~êC
0
>0 ¦
kG
A
(t)θ
0
k
X
≤C
0
kθ
0
k
˙
B
2−α,
2
p
+1−α
2,p
.
Ïd,dÚn4.1Œ,é?¿0≤≤
1
4C
1
±9?¿÷vkθ
0
k
˙
B
2−α,
2
p
+1−α
2,p
≤

C
0
θ
0
∈
˙
B
2−α,
2
p
+1−α
2,p
,•§(2.1)3X¥•3˜‡•˜)θ∈
˜
L
∞
(0,∞;
˙
B
2−α,
2
p
+1−α
2,p
) ∩
˜
L
1
(0,∞;
˙
B
2,
2
p
+1
2,p
)
…kθk
X
≤2.d,dIOÈ—5?Ø, Œ?˜Úy²θ∈C

0,∞;
˙
B
2−α,
2
p
+1−α
2,p

.ùÒ¤½
n1.1y².
DOI:10.12677/pm.2021.1181711531nØêÆ
M
ë•©z
[1]Held,I.,Pierrehumbert,R.,Garner,S.andSwanson,K.L.(2006)SurfaceQuasi-Geostrophic
Dynamics.JournalofFluidMechanics,282,1-20.
https://doi.org/10.1017/S0022112095000012
[2]Constantin,P.,Majda,A.J.andTabak,E.(2015)FormationofStrongFrontsinthe2-D
QuasigeostrophicThermalActiveScalar.Nonlinearity,7,1495-1533.
https://doi.org/10.1088/0951-7715/7/6/001
[3]Pedlosky,J.(1987)GeophysicalFluidDynamics.Springer,Berlin.
https://doi.org/10.1007/978-1-4612-4650-3
[4]Chen,Q.L.,Miao,C.X.andZhang,Z.F.(2007)ANewBernstein’sInequalityand2DDissi-
pativeQuasi-GeostrophicEquation.CommunicationsinMathematicalPhysics,271,821-838.
https://doi.org/10.1007/s00220-007-0193-7
[5]Cordoba,D.(1998)NonexistenceofSimpleHyperbolicBlow-UpfortheQuasi-Geostrophic
Equation.AnnalsofMathematics,148,1135-1152.https://doi.org/10.2307/121037
[6]Constantin, P.and Wu, J.H. (1999)Behavior of Solutions of 2D Quasi-Geostrophic Equations.
SIAMJournalonMathematicalAnalysis,30,937-948.
https://doi.org/10.1137/S0036141098337333
[7]Wu,J.(1997)Quasi-Geostrophic-TypeEquationswith Initial DatainMorreySpaces. Nonlin-
earity,10,1409-1420.https://doi.org/10.1088/0951-7715/10/6/002
[8]Wu,J.(1998)Quasi-GeostrophicTypeEquationswithWeakInitialData.ElectronicJournal
ofDifferentialEquations,1998,1-10.
[9]Wu,J.(2001)DissipativeQuasi-GeostrophicEquationswithL
p
Data.ElectronicJournalof
DifferentialEquations,2001,1-13.
[10]Constantin,P.,Cordoba,D.andWu,J. (2001)OntheCritical DissipativeQuasi-Geostrophic
Equation.IndianaUniversityMathematicsJournal,50,97-108.
https://doi.org/10.1512/iumj.2001.50.2153
[11]Kiselev,A.,Nazarov,F.andVolberg,A.(2007)GlobalWell-PosednessfortheCritical2D
DissipativeQuasi-GeostrophicEquation.InventionesMathematicae,167,445-453.
https://doi.org/10.1007/s00222-006-0020-3
[12]Caffarelli,L.andVasseur,V.(2010)DriftDiffusionEquationswithFractionalDiffusionand
theQuasi-GeostrophicEquation.AnnalsofMathematics,171,1903-1930.
https://doi.org/10.4007/annals.2010.171.1903
[13]Chae,D.andLee,J.(2004)GlobalWell-PosednessintheSuper-CriticalDissipativeQuasi-
GeostrophicEquations.CommunicationsinMathematicalPhysics,249,511-528.
DOI:10.12677/pm.2021.1181711532nØêÆ
M
[14]Ju,N.(2004)ExistenceandUniquenessoftheSolutiontotheDissipative2DQuasi-
GeostrophicEquationsintheSobolevSpace.CommunicationsinMathematicalPhysics,251,
365-376.https://doi.org/10.1007/s00220-004-1062-2
[15]Wu,J.(2004)GlobalSolutionsofthe2DDissipativeQuasi-GeostrophicEquationinBesov
Spaces.SIAMJournalonMathematicalAnalysis,36,1014-1030.
https://doi.org/10.1137/S0036141003435576
[16]Wu, J.(2005) TheTwo-DimensionalQuasi-Geostrophic Equationwith CriticalorSupercritical
Dissipation.Nonlinearity,18,139-154.https://doi.org/10.1088/0951-7715/18/1/008
[17]Dabkowski,M.(2011)EventualRegularityoftheSolutionstotheSupercriticalDissipative
Quasi-GeostrophicEquation.GeometricandFunctionalAnalysis,21,1-13.
https://doi.org/10.1007/s00039-011-0108-9
[18]Dong, H. (2010) DissipativeQuasi-Geostrophic Equations in Critical Sobolev Spaces:Smooth-
ing EffectandGlobalWell-Posedness. DiscreteandContinuousDynamicalSystems,26, 1197-
1211.https://doi.org/10.3934/dcds.2010.26.1197
[19]Hmidi,T. and Keraani,S. (2007) Global Solutions of the Super-Critical 2D Quasi-Geostrophic
EquationinBesovSpaces.AdvancesinMathematics,214,618-638.
https://doi.org/10.1016/j.aim.2007.02.013
[20]Kiselev,A.andNazarov,F.(2010)GlobalRegularityfortheCriticalDispersiveDissipative
SurfaceQuasi-GeostrophicEquation.Nonlinearity,23,549-554.
https://doi.org/10.1088/0951-7715/23/3/006
[21]Cannone,M.,Miao,C.andXue,L.(2013)GlobalRegularityfortheSupercriticalDissipa-
tiveQuasi-GeostrophicEquationwithLargeDispersiveForcing.ProceedingsoftheLondon
MathematicalSociety,106,650-674.https://doi.org/10.1112/plms/pds046
[22]Wan,R.H.andChen,J.C.(2017)GlobalWell-PosednessofSmoothSolutiontotheSuper-
critical SQGEquationwithLargeDispersive ForcingandSmallViscosity. NonlinearAnalysis,
164,54-66.
[23]Elgindi, T.M.andWidmayer,K.(2015)SharpDecayEstimatesforanAnisotropicLinearSemi-
groupandApplicationstotheSurfaceQuasi-GeostrophicandInviscidBoussinesqSystems.
SIAMJournalonMathematicalAnalysis,47,4672-4684.https://doi.org/10.1137/14099036X
[24]Danchin, R.(2001)Global Existence inCriticalSpacesfor Flows ofCompressibleViscousand
Heat-ConductiveGases.ArchiveforRationalMechanicsandAnalysis,160,1-39.
https://doi.org/10.1007/s002050100155
[25]Bony,J.-M.(1981)SymbolicCalculusandPropagationofSingularitiesforNonlinearPartial
DifferentialEquations.AnnalesScientifiquesdel’
´
EcoleNormaleSup´erieure,14,209-246.
https://doi.org/10.24033/asens.1404
DOI:10.12677/pm.2021.1181711533nØêÆ
M
[26]Cannone,M.(2004)HarmonicAnalysisToolsforSolvingtheIncompressibleNavier-Stokes
Equations.In:HandbookofMathematicalFluidDynamics,Vol.3,Elsevier,Amsterdam,161-
244.https://doi.org/10.1016/S1874-5792(05)80006-0
DOI:10.12677/pm.2021.1181711534nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.