设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(8),1546-1558
PublishedOnlineAugust2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.118173
˜a‘PÁÚš²;ÑÑ‘uЕ§
·½5
444ÜÜ܆††
∗
§§§444&&&§§§ÜÜÜôôô¥¥¥
•ânóŒÆ,êÆ†ÚOÆ,H•â
ÂvFϵ2021c715F¶¹^Fϵ2021c818F¶uÙFϵ2021c825F
Á‡
©Ì‡?Ø‘š²;ÑÑPÁ.uЕ§·½5¯K,·‚$^š²;Galerkin•{9
©ÛE|f)•35,Óžy²)•˜5ÚéЊëY•65"
'…c
uЕ§§PÁ‘§š²;Ñѧ·½5
TheWell-PosednessofaMemory-Type
EvolutionEquationwithNonclassical
Dissipation
XimengLiu
∗
,DiLiu,JiangweiZhang
SchoolofMathematicsandStatistics,ChangshaUniversityofScienceandTechnology,Changsha
Hunan
Received:Jul.15
th
,2021;accepted:Aug.18
th
,2021;published:Aug.25
th
,2021
∗ÏÕŠö"
©ÙÚ^:4܆,4&,Üô¥.˜a‘PÁÚš²;ÑÑ‘uЕ§·½5[J].nØêÆ,2021,11(8):
1546-1558.DOI:10.12677/pm.2021.118173
4܆
Abstract
Inthispaper,wemainlydiscussthewell-posednessproblemofaMemory-typeEvolu-
tionEquationwithnonclassicaldissipation.Theexistenceofweaksolutionisobtained
byusingtheGalerkin’smethodandanalyticaltechniques.Also,weprovetheunique-
nessofthesolutionandthecontinuousdependenceoninitialvalue.
Keywords
EvolutionEquation,Memory,NonclassicalDissipation,Well-Posedness
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
·‚•ÄXe‘kš²;ÑÑ‘ÚPÁ‘uЕ§·½5¯K:





u
tt
−M(|∇u|
2
2
)∆u−K
0
∆u+
Z
t
−∞
µ(t−s)∆u(s)ds+h(u
t
)+f(u) = g(x),
u(x,t)|
∂Ω×R
+
= 0,u(x,0) = u
0
(x),u
t
(x,0) = u
1
(x),x∈Ω.
(1)
Ù¥Ω ⊂R
N
(N≥3)´äk1w>.∂Ω k.«•;M(r) =a+br(r= |·|
2
L«L
2
(Ω)‰ê),
…a,b>0;d,h(u
t
)=αu
3
t
−βu
t
•š²;ÑÑ‘,g∈L
2
(Ω).•ïÄþã¯K,·‚Ú\PÁ
Cþ,½ÂXe:
η
t
(x,s) = u(x,t)−u(x,t−s),(x,s) ∈Ω×R
+
,t≥0.
(2)
t= 0ž,·‚k
η
0
(x,s) = u
0
(x,0)−u
0
(x,−s), (x,s) ∈Ω×R
+
.
(3)
AO/,b
K
0
=
Z
+∞
0
µ(s)ds,(4)
DOI:10.12677/pm.2021.1181731547nØêÆ
4܆
K•§(1)C•:





u
tt
−M(|∇u|
2
2
)∆u−
Z
+∞
0
µ(s)∆η
t
(s)ds+h(u
t
)+f(u) = g(x),
η
t
t
= −η
t
s
+u
t
,
(5)
‘kÐ>Š^‡:
(
u(x,t)|
∂Ω×R
+
= 0,η
t
(x,s)|
∂Ω×R
+
= 0,
u(x,t)|
t=0
= u
0
(x),u
t
(x,t)|
t=0
= u
1
(x),η
t
(x,t)|
t=0
= η
0
(x),x∈Ω.
(6)
(H
1
)'uš‚5‘fb:f: R→R,
|f(u)−f(v)|≤C
0
(1+|u|
p
+|v|
p
)|u−v|,∀u,v∈R.
(7)
Ù¥C
0
>0 •~ê,0 <p≤
4
N−2
.d,b
f(u)u≥
b
f(u) ≥0,∀u∈R.
(8)
ùp
b
f(u) =
R
u
0
f(s)ds.
(H
2
)'uPÁؼêb:
1)µ(s) ∈C
1
(R)∩L
1
(R),∀s∈R
+
,µ(s) ≥0,µ
0
(s) ≤0;
2)•3~êK
0
,δ>0,¦é∀s∈R
+
,µ(s)÷v(4) ªÚµ
0
(s)+δµ(s) ≤0.
d2)Œ•,0 ≤µ(s) ≤µ(0)e
−δs
(µ(0) 6= ∞),lim
s→∞
µ(s) = 0.
¯¤±•,3•§(1) ¥,h(u
t
) =0 ž,Ù̇^u£ãg,.¥ˆ«ÅÄy–(•)Ô
N$Äœ¹ÚÔn5Æ).Cc5,éaqu(1)•§, ®ŒõêÆö¤•Ä(„[1–5]9Ùë
•©z).2012 c,3[6]¥,Lazo•Ä[‚5•§u
tt
−M(k∇uk
2
)∆u+
R
t
0
h(t−τ)∆u(τ)dτ= 0,
Ù^Faedo-Galerkin•{ƒ'·Ü¯K•3˜‡fÛ).
2013 c,3[4]¥,Zhang<ïÄ˜‡äkš‚5ÛÜ{Zڄ݃'á— Ýš‚5Ê
5•§:
|u
t
|
ρ
u
tt
−M(k∇uk
2
)∆u+α∆
2
u−β∆u
tt
−γ∆u
t
+
Z
t
0
g(t−s)∆u(s)ds+a(x)u
t
|u
t
|
k
+bu|u|
r
= 0,
¦‚̇|^Faedo-Galerkin•{f)Û•35.
2018 c,3[5]¥,Nadia<•Ä˜aäkžCò´š‚5Ê5•§,¿|^Uþ{
)Û•35.2020c,3[1]¥,Ü<ïÄXeäkPÁ‘[‚5ÅÄ•§:
|u
t
|
ρ
u
tt
−M(k∇uk
2
)∆u−K
0
∆u−∆u
tt
+
Z
t
−∞
µ(t−s)∆u(s)ds−α∆u
t
+f(u) = h,
DOI:10.12677/pm.2021.1181731548nØêÆ
4܆
¨‚y²N f)•3•˜5ÚNáÚf•35.Óc,3[2]¥,Li<•Ä3ÛÜ
Þ{ZŠ^eÊ5ÅÄ•§,¿ïÄ)•žmÄåÆ1•.
nþ¤ã,<‚̇•Ä‘k²;ÑÑ‘(rÑÑ−∆u
t
½fÑÑu
t
)ÅÄ.•§.•§
(1)‘kš²;ÑÑ‘(h(u
t
)=αu
3
t
−βu
t
),…da•§Ì‡Ñy3R5(XÚ¥,Xˆ«Œ.
ì(XÊUœ1ì!Œ.EÍ!Œ.gÄzÅ:!]¢x ±9Ä1Ú^”).1993 c,
3[7]¥,Wang<®²•Ä‘kaq{Z‘ÅÄ•§:
ω
tt
−c
2
0
ω
xx
= f(ω
t
),
Ù¥f(ω
t
) =ω
t
−ω
3
t
.aqïĽ„©z[8].AO/,äkR5(Œ.ìlŸþ5`E
,´ëYXÚ,…äká‘gdÝ.Ïd,ïÄ‘kؽ.{Zš²;ÑÑXÚN)•3
5,´äk¢S¿Â.
©ò̇¦^š²;Faedo-Galerkin•{(Ük O•{,y²)•3•˜5ÚÙé
ЊëY•65.
2.ý•£
••Bå„,H9©,^C,C
T
L«?¿~ê,Ù3ØÓ1$–Ó˜1ь؃Ó, …C
T
L«T~ê•6uT.-|·|L«ý銽LebesgueÿÝ,|·|
p
•L
p
(Ω)(p≥2) ‰ê,|∇·|
2
L«
H
1
0
(Ω)þ‰ê.
˜m½Â:
M= L
2
µ

R
+
;H
1
0
(Ω)

=

ξ: R
+
→H
1
0
(Ω)




Z
∞
0
|∇ξ(s)|
2
2
ds<∞

.(1)
¿D±SÈÚ‰ê
hξ,ζi
M
=
Z
∞
0
µ(s)h∇ξ,∇ζids,
kξk
2
M
=
Z
∞
0
µ(s)|∇ξ|
2
2
ds.
Ù¥h·,·iL«L
2
(Ω)þSÈ.
©¤ïÄ•§ƒ˜m•:
H= H
1
0
(Ω)×L
2
(Ω)×M,
ÙD±Xe‰ê:
kz(t)k
2
H
= k(u(t),u
t
(t),η
t
)k
2
H
= |∇u(t)|
2
2
+|u
t
(t)|
2
2
+kη
t
k
2
M
.
(2)
DOI:10.12677/pm.2021.1181731549nØêÆ
4܆
3.·½5
½Â3.1(f)½Â)b^‡(H
1
)-(H
2
) ¤á,z(t)= (u(t),u
t
(t),η
t
) ´• §(1) Nf
),…Њz(0) = z
0
= (u
0
,u
1
,η
0
) ∈H.Ké∀t∈[0,T],ez(t) ÷v•§(1) ¿…
u∈L
2
([0,T];H
1
0
(Ω)),
u
t
∈L
∞
([0,T];L
2
(Ω))∩L
4
([0,T];L
4
(Ω)),
η
t
∈L
2
([0,T];M).
(3)
,,é?¿ω∈C
∞
0
(Ω),ξ∈Mk:









hu
tt
−M(|∇u|
2
2
)∆u−
Z
+∞
0
µ(s)∆η
t
(s)ds+αu
3
t
−βu
t
+f(u)−g(x),ωi= 0
hη
t
t
,ξi
M
= h−η
t
s
,ξi
M
+hu
t
,ξi
M
.
(4)
éut∈RA??¤á.
3.1.)•35
Äk,ÀS{ψ
i
}•eãDirechlet¯K
−∆ψ
j
= λ
j
ψ
j
,
ψ
j
|
∂Ω
= 0.
ƒAuAŠλ
j
A¼ê.K3∂Ω1w^‡ek{ψ
j
}
+∞
j=1
•˜mH
1
0
(Ω)˜|
Ä,…ψ
j
∈C
∞
0
(Ω).e5ÏL½Â˜mL
2
µ
(R
+
)¥˜|IOÄ{l
k
}
+∞
k=1
,·‚Œ±
{ϑ
j
}
+∞
j=1
= {l
k
ψ
j
}
+∞
k,j=1
¤L
2
µ
(R
+
;H
1
0
(Ω))þ˜|Ä.
•§(1)•3XeCq):
u
m
(x,t) =
m
X
j=1
ϕ
j
(t)ψ
j
(x),
u
mt
(x,t) = ∂
t
u
m
(x,t) =
m
X
j=1
∂
t
ϕ
j
(t)ψ
j
(x),
η
t
m
(x,t) =
m
X
j=1
κ
j
(t)ϑ
j
(x).
DOI:10.12677/pm.2021.1181731550nØêÆ
4܆
Ù¥ϕ
j
(t) = hu,ψ
j
i,κ
j
= hη
t
,ϑ
j
i
M
,…z
m
= (u
m
,u
mt
,η
t
m
)÷v























u
mtt
−M(|∇u
m
|
2
2
)∆u
m
−
Z
∞
0
µ(s)∆η
t
m
(s)ds+αu
3
mt
−βu
mt
+f(u
m
) = g
m
(x),
η
t
mt
= −η
t
ms
+u
mt
,
(u
m
,η
t
m
)|
∂Ω×R
+
= (0,0),
u
m
(0) =
m
X
j=1
ψ
j
(x)ξ
j
,u
mt
(0) =
m
X
j=1
ς
j
ψ
j
,η
t
m
(0) =
m
X
j=1
η
j
ϑ
j
.
(5)
AO/,m→∞ž,k
m
X
j=1
(u
0
,ψ
j
)ψ
j
(x) =
m
X
j=1
ξ
j
ψ
j
(x) →u
0
∈H
1
0
(Ω),
m
X
j=1
(u
1
,ψ
j
)ψ
j
(x) =
m
X
j=1
ς
j
ψ
j
(x) →u
1
∈L
2
(Ω),
m
X
j=1
hη
0
,ϑ
j
i
M
ϑ
j
(x) =
m
X
j=1
η
j
ϑ
j
(x) →η
0
∈M.
Ï•{ψ
j
(x)}
+∞
j=1
´3þã˜m¥È—5,Œ•þãÂñ´¤á.
Ún3.2b^‡(H
1
)-(H
2
) ¤á,K•3~êC
T
>0,¦(5) ª)
z
m
(t) = (u
m
(t),u
mt
(t),η
t
m
),÷v
|u
mt
|
2
2
+|∇u
m
|
2
2
+


η
t
m


2
M
+
Z
t
0
kη
s
m
k
2
M
ds+
Z
t
0
|u
mt
(s)|
4
4
ds≤C
T
.
(6)
y²:^u
mt
¦±(5)ª,¿3ΩþÈ©,Œ
1
2
d
dt
|u
mt
|
2
2
+
1
2
d
dt
Z
|∇u
m
|
2
2
0
M(s)ds+
1
2
d
dt


η
t
m


2
M
+

η
t
m
,η
t
ms

M
+α|u
mt
|
4
4
−β|u
mt
|
2
2
+
d
dt
Z
Ω
b
f(u
m
)dx−
Z
Ω
g
m
(x)u
mt
dx= 0.
(7)
-
E(t) = |u
mt
|
2
2
+
Z
|∇u
m
|
2
2
0
M(s)ds+


η
t
m


2
M
+2
Z
Ω
b
f(u
m
)dx−2
Z
Ω
g
m
(x)u
m
dx.
(8)
¤±(7)ªŒz•
1
2
d
dt
E(t)+α|u
mt
|
4
4
−β|u
mt
|
2
2
+

η
t
m
,η
t
ms

M
= 0.
(9)
Ï•
β|u
mt
|
2
2
= β
Z
Ω
|u
mt
|
2
≤β(
Z
Ω
|u
mt
|
4
)
1
2
·(
Z
Ω
1)
1
2
≤β(|u
mt
|
2
4
)·|Ω|
1
2
≤
α
2
|u
mt
|
4
4
+
β
2
2α
|Ω|.
(10)
DOI:10.12677/pm.2021.1181731551nØêÆ
4܆
db^‡(H
2
)Υ:

η
t
m
,η
t
ms

M
=
Z
∞
0
µ(s)
Z
Ω
∇η
t
m
(x,s)∇η
t
ms
(x,s)dxds=
1
2
Z
∞
0
µ(s)
d
ds


∇η
t
m
(x,s)


2
ds
= 0−
1
2
Z
∞
0
µ
0
(s)


∇η
t
m
(x,s)


2
ds≥
δ
2
kη
t
m
k
2
M
.
(11)
2dM(r) b±9^‡(H
1
)Υ:
Z
|∇u
m
|
2
2
0
M(s)ds≥a|∇u
m
|
2
2
,
(12)
Z
Ω
b
f(u
m
)dx≥0,
(13)
,,|^YoungØªÚPoinc´areØª,k
Z
Ω
g
m
(x)u
m
dx≤
ε
λ
1
|∇u
m
|
2
2
+
1
4ε
|g
m
|
2
2
.
(14)
Ù¥λ
1
´Žf−∆1˜AŠ.
é(9)ª'ut3[0,T]þÈ©,¿(Ü(10)-(14),Œ:
|u
mt
|
2
2
+

M
0
−
2ε
λ
1

|∇u
m
|
2
2
+


η
t
m


2
M
+δ
Z
t
0
kη
s
m
k
2
M
ds+α
Z
t
0
|u
mt
(s)|
4
4
ds
≤
β
2
α
|Ω|+|u
m1
|
2
2
+

M
0
−
2ε
λ
1

|∇u
m0
|
2
2
+kη
m0
k
2
M
.
(15)
εvž,-λ= min{1,M
0
−
2ε
λ
1
,δ,α}>0,K•3~êC
T
>0 Œ¦eª¤á:
|u
mt
|
2
2
+|∇u
m
|
2
2
+


η
t
m


2
M
+
Z
t
0
kη
s
m
k
2
M
ds+
Z
t
0
|u
mt
(s)|
4
4
ds≤C
T
.
(16)
y.œ
½n3.3b^‡(H
1
)–(H
2
) ¤á,…z
0
= (u
0
,u
1
,η
0
) ∈H.K•§•3Nf)
z= (u,u
t
,η
t
) ÷vu∈L
2
([0,T];H
1
0
(Ω)),u
t
∈L
∞
([0,T];L
2
(Ω))∩L
4
([0,T];L
4
(Ω))Ú
η
t
∈L
2
([0,T];L
2
µ
(R
+
;H
1
0
(Ω))).
y²µdÚn3.2,Œ•











u
m
3L
2
([0,T];H
1
0
(Ω))¥˜—k.,
u
mt
3L
∞
([0,T];L
2
(Ω))∩L
4
([0,T];L
4
(Ω))¥˜—k.,
η
t
m
3L
2
([0,T];L
2
µ
(R
+
;H
1
0
(Ω)))¥˜—k..
(17)
DOI:10.12677/pm.2021.1181731552nØêÆ
4܆
Ïd,•3{u
m
}f(EP•{u
m
}),¦













u
m
→u3L
2
([0,T];H
1
0
(Ω))¥fÂñ,
u
mt
→u
t
3L
4
([0,T];L
4
(Ω))¥fÂñ,
u
mt
→u
t
3L
∞
([0,T];L
2
(Ω))¥f*Âñ,
η
t
m
*η
t
3L
2
([0,T];L
2
µ
(R
+
;H
1
0
(Ω)))¥fÂñ.
(18)
duu
m
(t)3L
2
([0,T];H
1
0
(Ω))¥˜—k.,u
mt
(t)3L
∞
([0,T];L
2
(Ω))∩L
4
([0,T];
L
4
(Ω))⊂L
2
([0,T];L
2
(Ω))¥˜—k.,Œ•u
m
(t)•H
1
(Q
T
)¥k.8.qH
1
(Q
T
);i\
L
2
(Q
T
),K•3{u
m
(t)}f(EP•{u
m
}),÷v
u
m
*u3L
2
(Q
T
)¥rÂñ.
qd(H
1
)ÚÚn3.2 Œ
Z
T
0
Z
Ω
|f(u
m
)|
q
dxdt≤C
0
Z
T
0
(1+|u
m
(t)|
p
p
)dt
≤C
Z
T
0
(1+|u
m
(t)|
p
2p+2
)dt
≤C
Z
T
0
(1+|∇u
m
(t)|
p
2
)dt
≤ρ
0
.
Ù¥q•péóê,ρ
0
>0 •~ê.
K•âþãf(u
m
)˜—k.5,Œ
f(u
m
) *χ3L
q
([0,T];Ω)¥fÂñ.
d,•âu
m
3L
2
(Q
T
) ¥rÂñ5,Œ•u
m
→u(m→∞) 3Q
T
þA? ?Âñ.2df
ëY5,Œ
f(u
m
(x,t)) *f(u(x,t)) 3Q
T
þA??Âñ.
qL
q
(Q
T
) ⊂H
−1
(Q
T
),KdLebesgueőȩ½nŒ•,•3φ∈L
2
(0,T;H
1
0
(Ω)),¦
lim
m→∞
Z
T
0
Z
Ω
f(u
m
)φdxdt=
Z
T
0
Z
Ω
f(u)φdxdt.
Œf(u
m
) →f(u) 3H
−1
(Q
T
)¥fÂñ,df4••˜5,:χ= f(u).
φ∈C
∞
0
(0,T;C
∞
0
(Ω)),k
Z
t
0
hu
mtt
,φidτ=
Z
t
0
hM(|∇u
m
|
2
2
)∆u
m
+
Z
+∞
0
µ(s)∆η
t
m
(s)ds−h(u
mt
)−f(u
m
)+g
m
,φidτ.(19)
DOI:10.12677/pm.2021.1181731553nØêÆ
4܆
•gOþªm>z˜‘,¿(ÜYoungØª,H¨olderØª,ÚÚn3.2,Œ
Z
t
0
hM(|∇u
m
|
2
2
)∆u
m
,φidτ≤
Z
t
0
M(|∇u
m
|
2
2
)|∇u
m
|
2
|∇φ|
2
dτ
≤C
T
k∇φk
L
2
(0,T;H
1
0
(Ω))
.
(20)
Z
t
0
Z
+∞
0
µ(s)h∆η
t
m
(s),φidsdτ≤
Z
t
0
Z
+∞
0
µ(s)|∇η
t
m
(s)|
2
|∇φ|
2
dsdτ
≤K
1
2
0
Z
t
0
|∇φ|
2
kη
t
m
k
M
dτ
≤C
T
k∇φk
L
2
(0,T;H
1
0
(Ω))
.
(21)
Z
t
0
h−αu
3
mt
,φidτ≤α
Z
t
0
|u
mt
|
3
4
|φ|
4
dτ≤C
T
k∇φk
L
4
(0,T;L
4
(Ω))
≤C
T
k∇φk
L
2
(0,T;L
2
(Ω))
.
(22)
Z
t
0
hβu
mt
,φidτ≤β
Z
t
0
|u
mt
|
2
|φ|
2
dτ≤C
T
k∇φk
L
2
(0,T;L
2
(Ω))
.
(23)
Z
t
0
hf(u
m
),φidτ≤
Z
t
0
kf(u
m
)k
H
−1
kφk
0
dτ≤C
T
kφk
L
2
(0,T;H
1
0
(Ω))
.
(24)
Z
t
0
hg
m
,φidτ≤
Z
t
0
|g
m
|
2
|φ|
2
dτ≤C
T
kφk
L
2
(0,T;L
2
(Ω))
.
(25)
¤±(Ü(20)-(25),Œ
Z
t
0
hu
mtt
,φidτ≤C
T
(kφk
L
2
(0,T;H
1
0
(Ω))
+kφk
L
2
(0,T;L
2
(Ω))
).
K
u
mtt
∈L
2
(0,T;H
−1
(Ω)).
(26)
•â(17)ªÚ(26) Œ•
u
mt
→u
t
3L
2
(Q
T
)¥rÂñ.
(27)
DOI:10.12677/pm.2021.1181731554nØêÆ
4܆
u
mt
→u
t
3Q
T
¥A??Âñ.u´u
3
mt
→u
3
t
3Q
T
¥A??¤á.qu
3
mt
→χ
1
3
L
4
3
(Q
T
)¥fÂñ.df4••˜5•:u
3
t
= χ
1
.
,,dug
m
(x)∈L
2
(Ω),éu˜ƒx∈Ω,kg
m
→g(m→∞)´fÂñ,…
g(x) ∈L
2
(0,T;L
2
(Ω)).
nþ¤ã,m→∞ž,é?¿ω∈H
1
0
(Ω),ξ∈M,k:















hu
tt
,ωi−hM(|∇u|
2
2
)∇u,∇ωi−
Z
∞
0
µ(s)h∇η
t
(s),∇ωids+αhu
3
t
,ωi−βhu
t
,ωi
+hf(u),ωi= hg(x),ωi.
hη
t
t
,ξi
M
= h−η
t
s
,ξi
M
+hu
t
,ξi
M
.
e5©Oy•§)z= (u,u
t
,η
t
)÷vЩ^‡:
du∈L
2
(0,T;H
1
0
(Ω)) Úu
t
∈L
2
(0,T;L
2
(Ω)),¤±ku∈C(0,T;L
2
(Ω)).Ku
m
(0)*u(0)
3L
2
(Ω)¥fÂñ,qdu
m
(0) *u
0
3H
1
0
(Ω)¥,u(0) = u
0
3L
2
(Ω)¤á.
ν(t) ∈C
1
[0,T],…ν(T) = 0.K3(5) ªüàÓ¦±ν(t) ¿'ut3[0,T] þÈ©,k:
Z
T
0
hu
mtt
,ν(t)idt−
Z
T
0
hM(|∇u
m
|
2
2
)∆u
m
),νidt−
Z
T
0
h
Z
+∞
0
µ(s)∆η
t
m
(s)ds,ν(t)idt
+α
Z
T
0
hu
3
mt
,ν(t)idt−β
Z
T
0
hu
mt
,ν(t)idt+
Z
T
0
hf(u
m
),ν(t)idt=
Z
T
0
hg
m
,ν(t)idt.
z{Œ:
−hu
mt
(0),ν(0)i−
Z
T
0
hu
mt
,ν(t)idt+
Z
T
0
M(|∇u
m
|
2
2
)h∇u
m
,∇ν(t)idt
+
Z
T
0
Z
+∞
0
µ(s)h∇η
t
m
(s),∇ν(t)idsdt+α
Z
T
0
hu
3
mt
,ν(t)idt
−β
Z
T
0
hu
mt
,ν(t)idt+
Z
T
0
hf(u
m
),ν(t)idt=
Z
T
0
hg
m
,ν(t)idt.
m→∞ž,k
−hu
1
,ν(0)i−
Z
T
0
hu
t
,ν(t)idt+
Z
T
0
M(|∇u|
2
2
)h∇u,∇ν(t)idt
+
Z
T
0
Z
+∞
0
µ(s)h∇η
t
(s),∇ν(t)idsdt+α
Z
T
0
hu
3
t
,ν(t)idt
−β
Z
T
0
hu
t
,ν(t)idt+
Z
T
0
hf(u),ν(t)idt=
Z
T
0
hg,ν(t)idt.
(28)
DOI:10.12677/pm.2021.1181731555nØêÆ
4܆
q^ν(t) Š^(5)ª¿'ut3[0,T] þÈ©,z{Œ:
−hu
t
(0),ν(0)i−
Z
T
0
hu
t
,ν(t)idt+
Z
T
0
M(|∇u|
2
2
)h∇u,∇ν(t)idt
+
Z
T
0
Z
+∞
0
µ(s)h∇η
t
(s),∇ν(t)idsdt+α
Z
T
0
hu
3
t
,ν(t)idt
−β
Z
T
0
hu
t
,ν(t)idt+
Z
T
0
hf(u),ν(t)idt=
Z
T
0
hg,ν(t)idt.
(29)
é'(28)ªÚ(29) ª,k
hu
1
,ν(0)i= hu
t
(0),ν(0)i,
¤±h(u
1
−u
t
(0)),ν(0)i= 0,u
t
(0) = u
1
.
aqþãЊy,Œθ(t)∈C
1
(0,T;L
2
µ
(R
+
;M) (θ(T)=0),¿3˜mL
2
µ
(0,T;L
2
(Ω))
þ©OŠ^(5)Ú(5) 1ª,²LOŽÚ',Œ
Z
+∞
0
µ(s)hη
t
(0)−η
0
,θ(0)ids= 0,
=hη
t
(0)−η
0
,θ(0)i= 0,η
t
|
t=0
= η
0
.y.œ
3.2.•˜5ÚëY5
½n3.4b^‡(H
1
)-(H
2
) ¤á,K¯K(5)-(6))´•˜…ÙëY•6uЊ.
y²:-ω
1
=(u,u
t
,η
t
)∈HÚω
2
=(v,v
t
,ξ
t
)∈H´•§(5) ©OéAuЊω
1
(0)=ω
1
0
=
(u
0
,u
1
,η
0
) ∈HÚω
2
(0) = ω
2
0
= (v
0
,v
1
,ξ
0
) ∈Hü‡),…ω= ω
1
−ω
2
= (u−v,u
t
−v
t
,η
t
−ξ
t
),
ÙÐ©Š•ω
0
= (u
0
−v
0
,u
1
−v
1
,η
0
−ξ
0
),Kω÷v•§:







ω
tt
−a∆ω−
Z
+∞
0
µ(s)∆ζ
t
(s)ds+αu
3
t
−αv
3
t
−βω
t
+f(u)−f(v) = b(|∇u|
2
2
−|∇v|
2
2
),
ζ
t
t
= −ζ
t
s
+ω
t
,
(30)
dM(r)=a+brŒ•M(|∇u|
2
2
)=a+b|∇u|
2
2
.?^ω
t
†•§(30) 3L
2
(Ω) þSÈ,2d
(11)Œ
1
2
d
dt
|ω
t
|
2
2
+
a
2
d
dt
|∇ω|
2
2
+
1
2
d
dt


ζ
t


2
M
+
δ
2


ζ
t


2
M
+α((|u
t
|
3
−|v
t
|
3
),ω
t
)
≤β|ω
t
|
2
2
+(f(v)−f(u),ω
t
)+b(|∇u|
2
2
−|∇v|
2
2
,ω
t
).
(31)
e¡é(31)Øªm>1‘?1?n,w,
p
2(p+1)
+
1
2(p+1)
+
p+1
2(p+1)
= 1¤á,2Šâi\
DOI:10.12677/pm.2021.1181731556nØêÆ
4܆
½nÚYoungØª,Kk:
(|f(v)−f(u)|,ω
t
) ≤C
Z
Ω
(1+|u|
p
+|v|
p
)|ω||ω
t
|dx
≤C[1+|u|
p
2(p+1)
+|v|
p
2(p+1)
]·|ω|
2(p+1)
·|ω
t
|
2
≤C[1+|∇u|
p
2
+|∇v|
p
2)
]·|∇ω|
2
·|ω
t
|
2
≤C[|∇ω|
2
2
+|ω
t
|
2
2
+


ζ
t


2
M
],
(32)
e¡é(31)Øªm>1n‘?1?n,k:
(|∇u|
2
2
−|∇v|
2
2
,ω
t
) ≤≤(|∇u|
2
+|∇v
2
|)·|(|∇(u−v)|
2
)|·(
Z
Ω
|ω
t
|
2
dx)
1
2
≤C
T
|∇ω|
2
·|ω
t
|
2
≤C
T
[|∇ω|
2
2
+|ω
t
|
2
2
+


ζ
t


2
M
].
(33)
duu
3
t
•üN4O¼ê,
Z
Ω
(|u
t
|
3
−|v
t
|
3
)·ω
t
dx≥0.
nþ,(31)ªŒz•
d
dt
[|ω
t
|
2
2
+a|∇ω|
2
2
+kζ
t
k
2
M
] ≤C[|ω
t
|
2
2
+a|∇ω|
2
2
+


ζ
t


2
M
].
eλ
2
= min{a,1},dGronwallÚn,k:
kω
1
−ω
2
k
2
H
≤Ce
Ct
kω
1
0
−ω
2
0
k
2
M
.
…=ω
1
0
= ω
2
0
ž,Ò¤á.¤±Òy²)•˜5,ÚéЊëY•65.y.œ
—
Šö©%a“[ˆÇG%•Ú9%y§aHŽg,‰ÆÄ7(?Òµ
2018JJ2416)]Ï"
ë•©z
[1]܃w,Üï©,°ÿ.˜aäPÁ‘[‚5ÅÄ•§•§NáÚf[J].A^êÆ,2020,
33(4):894-904.
[2]Li,C.,Liang,J.andXiao,T.J.(2021)Long-TermDynamicalBehavioroftheWaveModel
withLocallyDistributedFrictionalandViscoelasticDamping.CommunicationsinNonlinear
ScienceandNumericalSimulation,92,ArticleID:105472.
https://doi.org/10.1016/j.cnsns.2020.105472
DOI:10.12677/pm.2021.1181731557nØêÆ
4܆
[3]Liao,M.,Guo,B.andZhu,X.(2020)BoundsforBlow-UpTimetoaViscoelasticHyperbolic
Equation ofKirchhoffType withVariable Sources.Acta ApplicandaeMathematicae, 170, 1-18.
[4]Zhang,Z.Y.,Liu,Z.H.andGan,X.Y.(2013)GlobalExistenceandGeneralDecayfora
NonlinearViscoelasticEquationwithNonlinearLocalizedDampingandVelocity-Dependent
MaterialDensity.ApplicableAnalysis,92,2021-2048.
https://doi.org/10.1080/00036811.2012.716509
[5]Mezouar,N.andBoulaaras,S.(2020)GlobalExistenceandDecayofSolutionsforaClassof
Viscoelastic Kirchhoff Equation.BulletinoftheMalaysianMathematicalSciencesSociety, 43,
725-755.https://doi.org/10.1007/s40840-018-00708-2
[6]Lazo,P.P.D.(2011)GlobalSolutionforaQuasilinearWaveEquationwithSingularMemory.
AppliedMathematicsandComputation,217,7660-7668.
https://doi.org/10.1016/j.amc.2011.02.069
[7]Wang,H.andElcrat,A.R.(1993)BoundaryControlofWeaklyNonlinearWaveEquations
withanApplicationtoGallopingofTransmissionLines.DynamicsandControl,3,281-300.
https://doi.org/10.1007/BF01972700
[8]Sun,B.andHuang,T.(2014)ChaoticOscillationsoftheKlein-GordonEquationwithDis-
tributedEnergy Pumpingandvan derPolBoundaryRegulationandDistributedTime-Varying
Coefficients.ElectronicJournalofDifferentialEquations,2014,1-28.
DOI:10.12677/pm.2021.1181731558nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.