设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(8),1570-1584
PublishedOnlineAugust2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.118175
˜aRiemann-Liouville©ê¥á.uÐ
•§CqŒ›5
888÷÷÷
∗
§§§ÚÚÚ
†
Ü“‰ŒÆêƆÚOÆ,[‹=²
ÂvFϵ2021c718F¶¹^Fϵ2021c819F¶uÙFϵ2021c826F
Á‡
©$^Krasnoselskii ØÄ:½ny²Hilbert ˜m¥˜aRiemann-Liouville ©ê¥
á.uЕ§CqŒ›5,¿‰ÑÄ–(JA^~f"
'…c
Riemann-Liouville©êê§¥á.uЕ§§KrasnoselskiiØÄ:½n§CqŒ›5
ApproximateControllabilityforaClassof
Riemann-LiouvilleFractionalNeutral
EvolutionEquations
JihongWang
∗
,HeYang
†
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Jul.18
th
,2021;accepted:Aug.19
th
,2021;published:Aug.26
th
,2021
∗1˜Šö"
†ÏÕŠö"
©ÙÚ^:8÷,Ú.˜aRiemann-Liouville©ê¥á.uЕ§CqŒ›5[J].nØêÆ,2021,11(8):
1570-1584.DOI:10.12677/pm.2021.118175
8÷§Ú
Abstract
Inthispaper, byusingtheKrasnoselskii fixedpointtheorem, theapproximatecontrol-
labilityforaclassofnonlinearRiemann-Liouvillefractionalneutralevolutionequations
isinvestigatedinHilbertspaces.Anexampleisgiventoillustratetheapplicationof
theabstractconclusions.
Keywords
Riemann-LiouvilleFractionalDerivative,NeutralEvolutionEquations,Krasnoselskii
FixedPointTheorem,ApproximatelyControllability
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
1963 c, Kalman[1]ÄgJÑŒ›5Vg, duÙ3ÔnÆ+•2•A^¤•˜‡¹
ïÄ+•,Ù¥°(Œ›5®NõÆö¤ïÄ[2–4].´°(Œ›5´˜‡rVg,§‡¦
XÚUˆ¯k?¿‰ ½˜‡ªŽG, CqŒ›K‡¦XÚÕªCuTªŽG, Ïd
3¢SA^¥CqŒ›5äk•\2•A^µ.©z[5]ïÄCaputo©ê¥á.•¼‡©
•§››XÚCqŒ› 5.2005 c,Heymans ÚPodlubny [6]•Ñ, Œ±òÔn¿Â8ÏuÊ
5|¥Riemann-Liouville ©êê½È©L«Щ^‡, ùЩ^‡•Ü·)º,
Ôny–.2014 c,©z[7]|^Darbo-SadovskiiØÄ:½ny²Banach˜mE¥ŽfŒ+
T(t);½š;œ¹eRiemann-Liouville ©ê¥á.uЕ§







L
D
q
[x(t)−h(t,x(t))] = −Ax(t)+f(t,x(t)), t∈J
0
:= (0,b],0 <q<1
I
1−q
t
[x(t)−h(t,x(t))]|
t=0
= x
0
∈E
mild)•35,Ù¥
L
D
q
•qRiemann-Liouville.©êêŽf, I
1−q
•1−qRiemann-
Liouville.©êÈ©,−A: D(A) ⊂E→E´)ÛŒ+{T(t)}
t>0
á)¤.
DOI:10.12677/pm.2021.1181751571nØêÆ
8÷§Ú
2015c,©z[8]y²Banach˜mE¥Riemann-Liouville ©êuЕ§







L
D
q
x(t) = Ax(t)+Bu(t)+f(t,x(t)),t∈J
0
,0 <q61
I
1−q
t
x(t)|
t=0
= x
0
∈E
CqŒ›5,Ù¥A: D(A) ⊂E→E´C
0
-Œ+{T(t)}
t>0
á)¤,››¼ê
u∈V:= L
p
([0,b],U),p>
1
q
,U•,˜‡Banach˜m.
Éþã©zéu,©ïÄŒ©Hilbert ˜mX¥š‚5©ê¥á.uЕ§







L
D
q
[x(t)−h(t,x(t))] = Ax(t)+f(t,x(t))+Bu(t),t∈J
0
,
I
1−q
t
[x(t)−h(t,x(t))]|
t=0
= x
0
∈X
(1.1)
CqŒ›5,Ù¥A:D(A)⊂X→X´È½4‚5Žf,)¤X¥)ÛŒ+{T(t)}
t>0
, ››
¼êu∈L
p
(J,U),p>
1
q
,U•,˜‡Œ©g‡Hilbert ˜m, B: U→X•k.‚5Žf,¼ê
f,hò3©¥äN‰Ñ.
©3ŽfŒ+T(t) ´;Œ+œ¹e, $^Krasnoselskii ØÄ:½ny²¼êf,h÷v
,f^‡ž››XÚ(1.1) mild )•35. 3¼êf,h˜—k.…››XÚ(1.1) éA‚
5››XÚCqŒ›^‡e,y²››XÚ(1.1) CqŒ›5.
2.ý•£
(X,k·k) •Œ©Hilbert ˜m,J=[0,b]. PC(J,X) ´lJXþë Y¼êNU‰
êkxk
C(J,X)
= sup
t∈J
kx(t)k¤Banach˜m,L
p
(J,X)(1 6p<∞)´JþXŠp-•Bochner
ŒÈ¼êN¤Banach˜m, Ù‰ê•kxk
L
p
= (
Z
b
0
kf(t)k
p
dt)
1
p
.P
C
1−q
(J,X) = {x∈C(J
0
,X) : t
1−q
x(t) ∈C(J,X),0 <q<1,t∈J},
KC
1−q
(J,X) U‰êkxk
C
1−q
= sup
t∈J
{t
1−q
kx(t)k}¤Banach ˜m.X
β
:= (D(A
β
),k·k
β
) ´X¥
S˜m,Ù¥k·k
β
= kA
β
·k.Ø”˜„5,b∃N>1,¦
N:= sup
t∈J
kT(t)k<∞.
½Â2.1[8,9]¼êf: [0,+∞) →RqRiemann-Liouville.©êÈ©½Â•
I
q
t
f(t) =
1
Γ(q)
Z
t
0
(t−s)
q−1
f(s)ds,t>0,q>0,
Ù¥ΓL«gamma ¼ê.
DOI:10.12677/pm.2021.1181751572nØêÆ
8÷§Ú
½Â2.2[8,9]¼êf: [0,+∞) →RqRiemann-Liouville.©êê½Â•
L
D
q
t
f(t) =
1
Γ(n−q)
d
n
dt
n
Z
t
0
(t−s)
n−q−1
f(s)ds,t>0,n−1 <q6n.
Ù¥n= [q]+1,[q] L«qêÜ©.
aqu©z[7,8] |^Laplace C†ÑXe½Â.
½Â2.3¡x∈C
1−q
(J,X) ´XÚ(1.1) mild ),…=x÷vÈ©•§

















x(t) = t
q−1
T
q
(t)x
0
+h(t,x(t))+
Z
t
0
(t−s)
q−1
AT
q
(t−s)h(s,x(s))ds
+
Z
t
0
(t−s)
q−1
T
q
(t−s)f(s,x(s))ds+
Z
t
0
(t−s)
q−1
T
q
(t−s)Bu(s)ds,t∈J
0
,
I
1−q
t
[x(t)−h(t,x(t))]|
t=0
= x
0
,
(2.1)
Ù¥
T
q
(t) = q
Z
∞
0
θξ
q
(θ)T(t
q
θ)dθ,
ξ
q
(θ) =
1
q
θ
−1−
1
q
W
q
(θ
−
1
q
),
W
q
(θ) =
1
π
∞
X
n=1
(−1)
n−1
θ
−qn−1
Γ(1+nq)
n!
sin(nπq) ,θ∈(0,∞).
ξ
q
(θ)L«½Â3(0,∞) þVǗݼê,÷v
Z
∞
0
ξ
q
(θ)dθ= 1,
Z
∞
0
θ
ζ
ξ
q
(θ)dθ=
Γ(1+ζ)
Γ(1+qζ)
, ζ∈[0,1].
u´‰½››¼ê, x(b,u) •XÚ(1.1) ƒAu››¼êumild )3ªŽž•t=b
Š.¡8Ü
K
b
(f) = {x(b,u) ∈X: u∈L
p
(J,U),x´XÚ(1.1) ƒAuumild)}
•XÚ(1.1)Œˆ8.
½Â2.4[10](CqŒ›5)XJK
b
(f) =X, Ù¥K
b
(f) L«K
b
(f) 4•, K¡XÚ(1.1)
3«mJþ´CqŒ›.
Ún2.1[7,11]é∀η∈(0,1], •3~êC
η
,¦
kA
η
T(t)k6
C
η
t
η
,t∈J
0
.
Ún2.2[7]‚5Žfx{T
q
(t)}
t>0
äk±e5Ÿ:
DOI:10.12677/pm.2021.1181751573nØêÆ
8÷§Ú
1)é?¿‰½t>0 Ú∀x∈X,k
kT
q
(t)xk6
N
Γ(q)
kxk.
2)é∀t>0,ŽfT
q
(t)´rëY,=é∀x∈XÚ0 <t
0
<t
00
6b,k
kT
q
(t
00
)x−T
q
(t
0
)xk→0(t
00
→t
0
).
Ún2.3[8]é∀x∈X,β∈(0,1),η∈(0,1],k
AT
q
(t)x= A
1−β
T
q
(t)A
β
x,t∈J
Ú
kA
η
T
q
(t)xk6
qC
η
Γ(2−η)
t
qη
Γ(1+q(1−η))
kxk,t∈J
0
.
½n2.1 [12]( Krasnoselskii ØÄ:½n)D•Banach ˜mX¥˜‡š˜4àf8. e
ŽfQ
1
,Q
2
: D→X÷v
1)é∀x,y∈D,kQ
1
x+Q
2
y∈D;
2)Q
1
´Ø Žf;
3)Q
2
´ëYŽf,
KQ
1
+Q
2
3DS–k˜‡ØÄ:.
3.̇(J
•y²©̇(Ø,‰ÑXeb:
(H1)A)¤X¥;)ÛŒ+{T(t)}
t>0
.
(H2)¼êf: J×X→X÷vXe^‡:
1)é∀t∈J, ¼êf(t,·) : X→XëY,éz‡x∈X, ¼êf(·,x) : J→XrŒÿ.
2)•3¼êφ(t) ∈L
p
(J,R
+
),p>
1
q
,¦éa.e.t∈J,∀x∈C
1−q
(J,X),k
kf(t,x(t))k6φ(t),
Ù¥φ(t)÷vliminf
k→+∞
kφk
L
p
k
:= ρ<∞.
(H3)∃β∈(0,1),¼êh: J×X→X
β
ëY,…é∀x,y∈C
1−q
(J,X),∃H>0•~ê, ¦
kA
β
h(t,x(t))−A
β
h(t,y(t))k6Ht
1−q
kx(t)−y(t)k,∀t∈J.
(H4)B: U→X•‚5k.Žf,…•3~êM
B
¦kBk6M
B
.
DOI:10.12677/pm.2021.1181751574nØêÆ
8÷§Ú
•Ä››XÚ(1.1)ƒA‚5©ê››XÚ



L
D
q
[x(t)−h(t,x(t))] = Ax(t)+f(t)+Bu(t),t∈J
0
,
I
1−q
t
[x(t)−h(t,x(t))]|
t=0
= x
0
∈X
(3.1)
½ÂŽfXe:
Λ
b
=
Z
b
0
(b−s)
2q−2
T
q
(b−s)BB
∗
T
∗
q
(b−s)ds,
R(λ,Λ
b
) = (λI+Λ
b
)
−1
,λ>0,
Ù¥B
∗
,T
∗
q
(b−s) ©OL«B,T
q
(b−s) ÝŽf.w,Λ
b
´k.‚5Žf.
Ún3.1©ê‚5››XÚ(3.1)CqŒ›…=3rŽfÿÀ¥,λ→0
+
,λR(λ,Λ
b
) →
0.
dÚn3.1Œ, é∀λ>0, k
kR(λ,Λ
b
)k6
1
λ
.
½Â¼ê
u(t) = (b−t)
q−1
B
∗
T
∗
q
(b−t)R(λ,Λ
b
)p(x),t∈J
p(x) = x
1
−b
q−1
T
q
(b)x
0
−h(b,x(b))−
Z
b
0
(b−s)
q−1
T
q
(b−s)f(s,x(s))ds
−
Z
b
0
(b−s)
q−1
AT
q
(b−s)h(s,x(s))ds.
∀k>0,B
k
= {x∈C
1−q
(J,X):kxk
C
1−q
6k},éAuþã››¼êu, ½ÂŽfF= F
1
+F
2
:
B
k
→C
1−q
(J,X),Ù¥
(F
1
x)(t) =
Z
t
0
(t−s)
q−1
T
q
(t−s)f(s,x(s))ds+
Z
t
0
(t−s)
q−1
T
q
(t−s)Bu(s)ds,t∈J
0
.(3.2)
(F
2
x)(t) = t
q−1
T
q
(t)x
0
+h(t,x(t))+
Z
t
0
(t−s)
q−1
AT
q
(t−s)h(s,x(s))ds,t∈J
0
.(3.3)
½n3.1^‡(H1) −(H4) ¤á. XJ`<1,…λ→0
+
,λR(λ,Λ
b
)→0, KXÚ(1.1) –
k˜‡ØÄ:,Ù¥
`:= b
1−q
kA
−β
kH+
b
1−q+qβ
C
1−β
Γ(1+β)
βΓ(1+qβ)
H+
Nρ
Γ(q)
(
p−1
pq−1
b)
1−
1
p
+
N
2
M
2
B
b
q
λΓ
2
(q)(2q−1)

kA
−β
kH+
Nρ
Γ(q)
(
p−1
pq−1
)
1−
1
p
b
pq−1
p
+
b
qβ
C
1−β
Γ(1+β)
Γ(1+qβ)β
H

<1(3.4)
y²µ´yB
k
´C
1−q
(J,X)¥k.4à8. e¡©oÚy²F3B
k
¥–k˜‡
ØÄ::
DOI:10.12677/pm.2021.1181751575nØêÆ
8÷§Ú
1˜Ú:y²•3k>0 ¦F(B
k
) ⊆B
k
.
bé∀k>0,Ñ•3x∈B
k
,¦é∀t∈J,kk6kFxk
C
1−q
.dF½ÂÚ^‡
(H2)−(H4),|^H¨olderØª,k
k6t
1−q
k(Fx)(t)k6
N
Γ(q)
kx
0
k+b
1−q
[kA
−β
kHk+sup
t∈J
kA
−β
kkh(t,0)k
β
]
+
b
1−q+qβ
C
1−β
Γ(1+β)
βΓ(1+qβ)

Hk+sup
s∈J
kh(s,0)k
β

+
N
Γ(q)
(
p−1
pq−1
b)
1−
1
p
kφk
L
p
+
N
2
M
2
B
b
q
λΓ
2
(q)(2q−1)

kx
1
k+
Nb
q−1
Γ(q)
kx
0
k+kA
−β
kHk+kA
−β
kkh(b,0)k
β
+
N
Γ(q)
(
p−1
pq−1
)
1−
1
p
b
pq−1
p
kφk
L
p
+
b
qβ
C
1−β
Γ(1+β)
βΓ(1+qβ)
(Hk+sup
s∈J
kh(s,0)k
β
)

.
3þãØªü>þ(.¿ÓžØ±k,-k→+∞,k`>1.ù†(3.4)ªgñ,¤±∃k>0,¦
F(B
k
) ⊆B
k
.
1Ú:y²F: B
k
→B
k
ëY.
{x
m
}
∞
m=1
⊂B
k
÷vlim
m→∞
kx
m
−xk
C
1−q
= 0.ŠâfëY5,m→∞žk
kf(s,x
m
(s))−f(s,x(s))k→0,s∈J.
…
kf(s,x
m
(s))−f(s,x(s))k62φ(s) ∈L
p
(J,R
+
)
Ïdd^‡(H3) ÚLebesgue ››Âñ½n,k
t
1−q
k(Fx
m
)(t)−(Fx)(t)k
6b
1−q
N
Γ(q)
Z
t
0
(t−s)
q−1
kf(s,x
m
(s))−f(s,x(s))kds
+b
1−q
kA
−β
kHkx
m
−xk
C
1−q
+
b
1−q+qβ
C
1−β
Γ(1+β)
βΓ(1+qβ)
Hkx
m
−xk
C
1−q
+b
1−q
N
2
M
2
B
λΓ
2
(q)
Z
t
0
(t−s)
q−1
(b−s)
q−1
kp(x
m
)−p(x)kds
6b
1−q
N
Γ(q)
Z
t
0
(t−s)
q−1
kf(s,x
m
(s))−f(s,x(s))kds
+b
1−q
kA
−β
kHkx
m
−xk
C
1−q
+
b
1−q+qβ
C
1−β
Γ(1+β)
βΓ(1+qβ)
Hkx
m
−xk
C
1−q
+
N
2
M
2
B
b
q
λΓ
2
(q)(2q−1)

N
Γ(q)
Z
t
0
(t−s)
q−1
kf(s,x
m
(s))−f(s,x(s))kds
+kA
−β
kHkx
m
−xk
C
1−q
+
b
qβ
C
1−β
Γ(1+β)
βΓ(1+qβ)
Hkx
m
−xk
C
1−q

,
DOI:10.12677/pm.2021.1181751576nØêÆ
8÷§Ú
=
kFx
m
−Fxk
C
1−q
→0(m→∞).
F3B
k
¥ëY.
1nÚ:ŽfF
2
´Ø .
é∀x,y∈B
k
,t∈J,d(3.3)ªÚ^‡(H3)Œ
t
1−q
k(F
2
x)(t)−(F
2
y)(t)k
6b
1−q
kA
−β
kkA
β
h(t,x(t))−A
β
h(t,y(t))k
+b
1−q
Z
t
0
(t−s)
q−1
kA
1−β
T
q
(t−s)A
β
[h(s,x(s))−h(s,y(s))]kds
6b
1−q
kA
−β
kHkx−yk
C
1−q
+
b
1−q+qβ
C
1−β
Γ(1+β)
βΓ(1+qβ)
Hkx−yk
C
1−q
.
þªü>þ(.,k
kF
2
x−F
2
yk
C
1−q
6

b
1−q
HkA
−β
k+
b
1−q+qβ
C
1−β
Γ(1+β)
βΓ(1+qβ)
H

kx−yk
C
1−q
.
(Ü(3.4)ªŒ, kF
2
x−F
2
yk
C
1−q
<kx−yk
C
1−q
,F
2
´Ø .
Ω = {y∈C(J,X) : y(t) = t
1−q
(F
1
x)(t),x∈B
k
}.
1oÚ:y²Ω3C(J,X) ¥ƒé;.
Äky²Ω´ÝëY.
0 = t
1
<t
2
6b, é∀y∈Ω,d^‡(H2) 2)Œ
ky(t
2
)−y(0)k
6t
1−q
2
Z
t
2
0
k(t
2
−s)
q−1
T
q
(t
2
−s)f(s,x(s))kds
+t
1−q
2
Z
t
2
0
k(t
2
−s)
q−1
T
q
(t
2
−s)Bu(s)kds
6
N
Γ(q)
(
p−1
pq−1
t
2
)
1−
1
p
kφk
L
p
+
t
q
2
N
2
M
2
B
λΓ
2
(q)(2q−1)

kx
1
k+
Nb
q−1
Γ(q)
kx
0
k
+kA
−β
kHk+kA
−β
kkh(b,0)k
β
+
N
Γ(q)
(
p−1
pq−1
)
1−
1
p
b
pq−1
p
kφk
L
p
+
b
qβ
C
1−β
Γ(1+β)
βΓ(1+qβ)
(Hk+kh(s,0)k
β
)

→0(t
2
→0).
DOI:10.12677/pm.2021.1181751577nØêÆ
8÷§Ú
0 <t
1
<t
2
6b,>0¿©ž,k
ky(t
2
)−y(t
1
)k
6
Nb
1−q
Γ(q)
Z
t
2
t
1
(t
2
−s)
q−1
kf(s,x(s))+Bu(s)kds
+
N
Γ(q)
Z
t
1
0
kt
1−q
2
(t
2
−s)
q−1
−t
1−q
1
(t
1
−s)
q−1
kkf(s,x(s))+Bu(s)kds
+
Z
t
1
−
0
t
1−q
1
(t
1
−s)
q−1
kT
q
(t
2
−s)−T
q
(t
1
−s)kkf(s,x(s))+Bu(s)kds
+
Z
t
1
t
1
−
t
1−q
1
(t
1
−s)
q−1
kT
q
(t
2
−s)−T
q
(t
1
−s)kkf(s,x(s))+Bu(s)kds
:=
4
X
i=1
I
i
.
éuI
1
ÚI
4
,UìÚn2.21), t
2
−t
1
→0,→0ž,k
I
1
=
Nb
1−q
Γ(q)
Z
t
2
t
1
(t
2
−s)
q−1
kf(s,x(s))+Bu(s)kds
→0.
I
4
=
Z
t
1
t
1
−
t
1−q
1
(t
1
−s)
q−1
kT
q
(t
2
−s)−T
q
(t
1
−s)kkf(s,x(s))+Bu(s)kds.
6
2Nb
1−q
Γ(q)
Z
t
1
t
1
−
(t
1
−s)
q−1
kf(s,x(s))+Bu(s)kds.
→0.
éuI
2
,t
2
−t
1
→0 ž,dLebesgue ››Âñ½nŒ
I
2
=
N
Γ(q)
Z
t
1
0
kt
1−q
2
(t
2
−s)
q−1
−t
1−q
1
(t
1
−s)
q−1
kkf(s,x(s))+Bu(s)kds
→0.
éuI
3
,db^‡(H1) Œ•,t>0 žT
q
(t)´ÝëY,¤±t
2
−t
1
→0 ž,k
I
3
=
Z
t
1
−
0
t
1−q
1
(t
1
−s)
q−1
kT
q
(t
2
−s)−T
q
(t
1
−s)kkf(s,x(s))+Bu(s)kds
6b
1−q
sup
s∈[0,t
1
−]
kT
q
(t
2
−s)−T
q
(t
1
−s)k
Z
t
1
−
0
(t
1
−s)
q−1
kf(s,x(s))+Bu(s)kds
→0.
DOI:10.12677/pm.2021.1181751578nØêÆ
8÷§Ú
Ïd,é∀x∈B
k
,t
2
−t
1
→0,→0ž,k
ky(t
2
)−y(t
1
)k6
4
X
i=1
I
i
→0.
¤±,8ÜΩ ´ÝëY.
Ùgy²é∀t∈J,8ÜΩ(t) = {y(t) : y∈Ω}3X¥ƒé;.
w,,Ω(0)3X ¥ƒé;.
t∈J
0
ž,é∀0 <<t,∀δ>0Š
y
,δ
(t)=qt
1−q
Z
t−
0
Z
∞
δ
θ(t−s)
q−1
ξ
q
(θ)T((t−s)
q
θ)[f(s,x(s))+Bu(s)]dθds
=qt
1−q
T(
q
δ)
Z
t−
0
Z
∞
δ
θ(t−s)
q−1
ξ
q
(θ)T((t−s)
q
θ−
q
δ)[f(s,x(s))+Bu(s)]dθds
dT(
q
δ) ;5,Ñ∀0 <<t,∀δ>0 8ÜΩ
(,δ)
(t) = {y
,δ
(t),y∈Ω}3X ¥ƒé;.
é∀x∈B
k
k
ky(t)−y
,δ
(t)k
6qb
1−q
k
Z
t
0
Z
δ
0
θ(t−s)
q−1
ξ
q
(θ)T((t−s)
q
θ)[f(s,x(s))+Bu(s)]dθdsk
+qb
1−q
k
Z
t
0
Z
∞
δ
θ(t−s)
q−1
ξ
q
(θ)T((t−s)
q
θ)[f(s,x(s))+Bu(s)]dθds
−
Z
t−
0
Z
∞
δ
θ(t−s)
q−1
ξ
q
(θ)T((t−s)
q
θ)[f(s,x(s))+Bu(s)]dθdsk
6qb
1−q
N
Z
t
0
(t−s)
q−1
kf(s,x(s))+Bu(s)kds
Z
δ
0
θξ
q
(θ)dθ
+qb
1−q
N
Z
t
t−
(t−s)
q−1
kf(s,x(s))+Bu(s)kds
Z
∞
0
θξ
q
(θ)dθ
6qb
1−q
N
Z
t
0
(t−s)
q−1
kf(s,x(s))+Bu(s)kds
Z
δ
0
θξ
q
(θ)dθ
+
b
1−q
N
Γ(q)
Z
t
t−
(t−s)
q−1
kf(s,x(s))+Bu(s)kds
→0(→0,δ→0).
=t∈J
0
ž, •3˜‡ƒé;8Ω
(,δ)
(t) ?¿%CΩ(t),Ω(t) 3X ¥ƒé;. dAscoli-Arzela
½n•8ÜΩ ´C(J,X) ¥ƒé;8.¤±F
1
: B
k
→B
k
´ëYŽf,Ïdd½n2.1•,F3
B
k
þ–k˜‡ØÄ:x∈B
k
,dØÄ:=•XÚ(1.1) mild ).

½n3.2^‡(H1)−(H4) ¤á,fÚA
β
h˜—k.. XJƒA‚5XÚ(3.1)3JþCq
Œ›,K©ê››XÚ(1.1) 3JþCqŒ›.
DOI:10.12677/pm.2021.1181751579nØêÆ
8÷§Ú
y²:d½n3.1 •,∀λ>0,x
1
∈X, •3XÚ(1.1) mild )x
λ
∈C
1−q
(J,X) ¦
x
λ
(t)=t
q−1
T
q
(t)x
0
+h(t,x
λ
(t))+
Z
t
0
(t−s)
q−1
AT
q
(t−s)h(s,x
λ
(s))ds
+
Z
t
0
(t−s)
q−1
T
q
(t−s)[f(s,x
λ
(s))+Bu(s)]ds
Ù¥
u(t) = (b−t)
q−1
B
∗
T
∗
q
(b−t)R(λ,Λ
b
)p(x
λ
),t∈J
p(x
λ
)=x
1
−b
q−1
T
q
(b)x
0
−h(b,x
λ
(b))−
Z
b
0
(b−s)
q−1
T
q
(b−s)f(s,x
λ
(s))ds
−
Z
b
0
(b−s)
q−1
AT
q
(b−s)h(s,x
λ
(s))ds
d
I−Λ
b
R(λ,Λ
b
) = λR(λ,Λ
b
)

x
λ
(b) = b
q−1
T
q
(b)x
0
+h(b,x
λ
(b))+
Z
b
0
(b−s)
q−1
AT
q
(b−s)h(s,x
λ
(s))ds
+
Z
b
0
(b−s)
q−1
T
q
(b−s)f(s,x
λ
(s))ds
+
Z
b
0
(b−s)
q−1
T
q
(b−s)(b−s)
q−1
BB
∗
T
∗
q
(b−s)R(λ,Λ
b
)

x
1
−b
q−1
T
q
(b)x
0
−h(b,x
λ
(b))−
Z
b
0
(b−τ)
q−1
T
q
(b−τ)f(τ,x
λ
(τ))dτ
−
Z
b
0
(b−τ)
q−1
AT
q
(b−τ)h(τ,x
λ
(τ))dτ

ds
= x
1
−p(x
λ
(b))+Λ
b
R(λ,Λ
b
)p(x
λ
(b))
= x
1
−λR(λ,Λ
b
)p(x
λ
(b))(3.5)
dfÚA
β
h˜—k.5Œ•, {f(·,x
λ
(·)):λ>0}Ú{h(·,x
λ
(·)):λ>0}3L
2
(J,X) ¥k., •
3fS, Ø”•{f(·,x
λ
(·)) : λ>0}Ú{h(·,x
λ
(·)) : λ>0}, 3L
2
(J,X)¥©OfÂñ{ω(·)}
Ú{h(·)}.Ïd,dT
q
(t);5Œ•,λ→0
+
ž,k
Z
b
0
(b−s)
q−1
T
q
(b−s)[f(s,x
λ
(s))−ω(s)]ds→0
Z
b
0
(b−s)
q−1
A
1−β
T
q
(b−s)A
β
[h(s,x
λ
(s))−h(s)]ds→0
DOI:10.12677/pm.2021.1181751580nØêÆ
8÷§Ú
-
η= x
1
−b
q−1
T
q
(b)x
0
−h(b)−
Z
b
0
(b−s)
q−1
AT
q
(b−s)h(s)ds−
Z
b
0
(b−s)
q−1
T
q
(b−s)ω(s)ds
Kk
kp(x
λ
(b))−ηk
6kA
−β
kkA
β
h(b,x
λ
(b))−A
β
h(b)k+
Z
b
0
(b−s)
q−1
A
1−β
T
q
(b−s)A
β
kh(s,x
λ
(s))−h(s)kds
+
Z
b
0
(b−s)
q−1
T
q
(b−s)kf(s,x
λ
(s))−ω(s)kds
→0(λ→0
+
)
(Ü(3.5)ªÚÚn3.1 Œ
kx
λ
(b)−x
1
k6kλR(λ,Λ
b
)p(x
λ
(b))k
6kλR(λ,Λ
b
)kkp(x
λ
(b))−ηk+kλR(λ,Λ
b
)ηk
→0(λ→0
+
)
©ê››XÚ(1.1)3«mJþCqŒ›.
4.A^
~X= U:= L
2
([0,π],R),•Ä©ê¥á. ‡©•§













L
D
1
2
0
+
[x(t,z)−
Z
π
0
ν(z,τ)x(t,τ)dτ] = ∂
2
z
x(t,z)+u(t,z)+e
−t
sinx(t,z),(t,z) ∈(0,b]×[0,π],
x(t,0) = x(t,π) = 0,t∈[0,b],
I
1
2
0
+
[x(t,z)−
Z
π
0
ν(z,τ)x(t,τ)dτ]|
t=0
= x
0
(z),z∈[0,π],
(4.1)
Ù¥0 <q<1, q= β=
1
2
,J:=[0,b],b>0 ´~ê,u∈L
p
(J,U) •››¼ê.
d©z[7]Œ•, ½ÂŽfA: D(A) ⊂X→XXe:
Ax=
∂
2
x
∂z
2
,
Ù¥D(A) ={x∈X:x
0
,x
00
∈X,x(0) =x(π)=0}, KA´;)ÛŒ+{T(t)}
t>0
á)
¤,…•3N>1¦kT(t)k6N. u´
T(t)x=
∞
X
n=1
e
−n
2
t
hx,e
n
ie
n
,
DOI:10.12677/pm.2021.1181751581nØêÆ
8÷§Ú
Ù¥
e
n
(z) = (
2
π
)
1
2
sin(nz).
ŽfA
1
2
: D(A
1
2
) ⊂X→X½Â•:
A
1
2
x=
∞
X
n=1
nhx,e
n
ie
n
,
Ù¥D(A
1
2
) := {x(·) ∈X:
∞
P
n=1
nhx,e
n
ie
n
∈X}. ^‡(H1) ÷v.
•y²XÚ(4.1)CqŒ›, Ú\Xeb^‡:
(P)¼êν÷vXe^‡:
1)¼êνŒÿ,ν(0,θ) = ν(π,θ) = 0,…
Z
π
0
Z
π
0
ν
2
(z,τ)dτdz<∞.
2)¼ê∂
z
ν(θ,z) Œÿ,…
H:=

Z
π
0
Z
π
0
(∂
z
ν(z,τ))
2
dτdz

1
2
<∞.
é∀t∈J,-
x(t)(z) = x(t,z),
f(t,x(t))(z) = f(t,x(t,z)) = e
−t
sinx(t,z),
h(t,x(t))(z) =
Z
π
0
ν(z,τ)x(t,τ)dτ,
(νx)(z) =
Z
π
0
ν(z,τ)x(τ)dτ,
Bu(t)(z) = u(t,z),
dfLˆªŒ
kf(t,x(t,z))k6e
−t
,
^‡(H2) ¤á.qÏ•
hν(x),e
n
i= h
Z
π
0
ν(z,τ)x(τ)dτ,e
n
i=
Z
π
0
e
n
(z)(
Z
π
0
ν(z,τ)x(τ)dτ)dz,
KdŽfA
1
2
½ÂŒ
kA
1
2
ν(x)k= k
∞
X
n=1
nhν(x),e
n
ie
n
k.
N´y^‡(H3) ¤á…A
1
2
ν˜—k.. dBu(t)(z)=u(t,z) ,kBu(t)(z)k6ku(t,z)kŒB
DOI:10.12677/pm.2021.1181751582nØêÆ
8÷§Ú
•ü ŽfI,^‡(H4) ÷v.XJλR(λ,Λ
b
) →0(λ→0
+
),KdÚn3.1•XÚ(4.1) ƒA‚
5XÚ3«mJþCqŒ›.Ïd,d½n3.2Œ•,››XÚ(4.1) CqŒ›.
Ä7‘8
I[Ä7”“c‰Æ]Ï‘8(No.12061062)"
ë•©z
[1]Kalman, R.E., Ho, Y.C.and Narendra,K.(1963) Controllabilityof LinearDynamical Systems.
ContributionstoDifferentialEquations,1,189-213.
[2]Sakthivel,R.,Mahmudov,N.I.andNieto,J.J.(2012)ControllabilityofaClassofFractional
Order NonlinearNeutralFunctional Differential Equations. AppliedMathematicsandCompu-
tation,218,10334-10340.https://doi.org/10.1016/j.amc.2012.03.093
[3]Balachandran,K.andPark,J.Y.(2009)ControllabilityofFractionalIntegro-DifferentialSys-
temsinBanachSpaces.NonlinearAnalysis,3,363-367.
[4]Liu, M.J., Lv,Y. andLv, X.R.(2007)ControllabilityofNonlinearNeutralEvolution Equations
withNonlocalConditions.NortheasternMathematicalJournal,23,115-122.
[5]Yan,Z.M.(2012)ApproximateControllabilityofPartialNeutralFunctionalDifferentialSys-
temsofFractionalOrderwithState-DependentDelay.InternationalJournalofControl,85,
1051-1062.https://doi.org/10.1080/00207179.2012.675518
[6]Heymans,N.andPodlubny,I.(2006)PhysicalInterpretationofInitialConditionsforFrac-
tionalDifferentialEquationswithRiemann-LiouvilleFractionalDerivatives.RheologicaActa,
45,765-771.https://doi.org/10.1007/s00397-005-0043-5
[7]Liu,Y.L. andLv, J.Y.(2014) ExistenceResult forRiemann-LiouvilleFractionalNeutralEvo-
lutionEquations.AdvancesinDifferenceEquations,2014,ArticleNo.83.
[8]Liu,Z.X.andLi,X.W.(2015)ApproximateControllabilityofFractionalEvolutionSystems
withRiemann-LiouvilleFractionalDerivatives.SIAMJournalonControlandOptimization,
53,1920-1933.https://doi.org/10.1137/120903853
[9]Kilbas,A.A., Srivastava, H.M.and Trujillo,J.J. (2006)TheoryandApplications ofFractional
DifferentialEquations.Elsevier,Amsterdam.
[10]Fan,Z.B.(2014)ApproximateControllabilityofFractionalDifferentialEquationsviaResolvent
Operators.AdvancesinDifferenceEquations,2014,ArticleNo.54.
[11]Pazy,A.(1983)SemigroupsofLinearOperatorsandApplicationstoPartialDifferentialE-
quations.Springer,NewYork.
DOI:10.12677/pm.2021.1181751583nØêÆ
8÷§Ú
[12]Zhou,Y.andFeng,J.(2010)ExistenceofMildSolutionsforFractionalNeutralEvolution
Equations.ComputersandMathematicswithApplications,59,1063-1077.
https://doi.org/10.1016/j.camwa.2009.06.026
DOI:10.12677/pm.2021.1181751584nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.