设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(8),1585-1600
PublishedOnlineAugust2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.118176
عƒá²¡ã:ÎݯK
444(((
∗
§§§¦¦¦ïïï
†
“ŒÆêƆÚOÆ§ìÀ“
ÂvFϵ2021c720F¶¹^Fϵ2021c820F¶uÙFϵ2021c827F
Á‡
3 ì äïÄ¥§ì(y© ˜† ´˜ ‡k dŠ ïÄ‘K"Ñ uS • ħ阇#
ì(y©¯K?1ïħ§Œ±3ãØ¥=z••z¯K"ãG:ÎÝ´éG:8?1
º:XÚ§¦z‡ôÚaÑfã´GÜ•ôÚ꧘„^ÎÒva(G)L«"˜„
/§éu?¿²¡ãG§va(G)≤3§…é?¿š˜ãG§va(G)≥1¤á"w ,§va(G) =1
…=ãG´˜‡Ãã"éu,AÏœ¹§XJãG´˜‡Ø¹3-²¡ã§va(G)≤2"
RaspaudÚWang<y²XJãG´˜‡Ø¹4-½Ø¹5-²¡ã§Kva(G)≤2"d
§Huang,ShuiÚWang<y²XJãG´˜‡Ø¹7-²¡ã§Kva(G) ≤2"3©
¥§·‚y²XJãG´˜‡Ø¹ƒ3-Ú4-²¡ã§ ½öعƒ4-Ú5-²
¡ã§Kva(G) ≤2"
'…c
²¡ã§:Îݧƒ§
VertexArboricityProblemofPlanar
GraphswithoutAdjacentShortCycles
XingLiu
∗
,HuijuanWang
†
∗1˜Šö"
†ÏÕŠö"
©ÙÚ^:4(,¦ï.عƒá²¡ã:ÎݯK[J].nØêÆ,2021,11(8):1585-1600.
DOI:10.12677/pm.2021.118176
4(§¦ï
CollegeofMathematicsandStatistics,QingdaoUniversity,QingdaoShandong
Received:Jul.20
th
,2021;accepted:Aug.20
th
,2021;published:Aug.27
th
,2021
Abstract
Intheresearchofsocialnetworks,socialstructuredecompositionhasalwaysbeena
valuableresearchtopic.Forsecurityreasons,westudyanewsocialstructuredecom-
positionproblem,whichcanbedecomposedintoaproblemofminimizationingraph
theory.ThevertexarboricityofagraphG,denotedbyva(G),istheminimumnumber
ofsubsetssuchthattheverticesofGcanbecoloredandeverycolorclassinducesan
acyclicgraphsuchasaforestofG.Normally,va(G) ≤3foreveryplanargraphGand
va(G) ≥1foreverynonemptygraphG.Thereisnodoubtthatva(G) = 1ifandonlyif
Gisanacyclicgraph.Forsomespecialcases,itisknownthatva(G) ≤2ifGisaplanar
graphwithout3-cycles.Recently,RaspaudandWangetal.provedthatva(G)≤2if
Gisaplanargraphwithout4-cyclesorwithout5-cycles.Inaddition,Huang,Shiu,
andWangshowedthatifGisaplanargraphwithout7-cycles,thenva(G) ≤2.Inthis
paper,weprovethatifGisaplanargraphwithoutadjacent3-cyclesand5-cycles,or
withoutadjacent4-cyclesand5-cycles,thenva(G) ≤2.
Keywords
PlanarGraph,VertexArboricity,Adjacent,Cycle
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
ì(y©¯K3ìäïÄ¥äk-‡¿Â"~X©z[1–9]®²éÙ?1Nõï
Ä"©•Ä˜‡#ì(y©¯K"·‚ò¤kìë†öy©•؃+|§ù
z ‡|Ѭ>u˜‡ëÂfä"d u, S σ§·‚I‡•ÄÃ5§Ã(Œ
±éN´/£O"Ã(¥!:ƒm•3érƒ'5("lãØݧ·‚Œ±rù
DOI:10.12677/pm.2021.1181761586nØêÆ
4(§¦ï
‡ì(y©¯KL㕘‡•z¯K"
©=•Äk•!{üã"G•²¡ã"·‚¦^ÎÒV(G)!E(G)ÚF(G) 5©OL«
ãG:8!ãG>8ÚãG¡8"4(G)Úδ(G)©OL«ãG•ŒÝÚãG•Ý"•
Ý•k¡•k-"·‚¡ü‡´ƒ§XJùü‡–k˜‡úº:¶¡ùü‡ƒ
§XJ§‚–k˜^ú>"
ãGÃk/Ú´•lV(G)kÚ8ÜNψ§¦/Ó˜«ôÚ>Ñfã´Ã
"XJk´¦Gk˜‡Ãk/Ú•ê§@o·‚¡k•G:Îݧ3©¥
^va(G)L«"ã:ÎÝVg´1968cÄkdChartrand<Ú\[10]§¦‚y²?¿ãG
:ÎÝva(G)≤d
1+∆(G)
2
e§…é?¿š˜ãG§va(G)≥1§…=ãG´Ãã§va(G)=1"
ChartrandÚKronk[11]31969cy²é?¿²¡ãG§va(G)≤3"˜„/§XJãG´˜‡
ع3-²¡ã§Kva(G)≤2"3©z[12–15]¥y²§XJãG´˜‡Ø¹4-!5-!
6-Ú7-²¡ã§Kva(G)≤2"2012c§Chen[16]<ïÄع3-²¡ãG:Î
Ýva(G)≤2"3e5˜cp§HuangÚWang[17]y²éuvk¹u6-²¡ãG:
ÎÝva(G) ≤2"Cai[18]<y²éuعƒ5-²¡ãG:ÎÝva(G) ≤2"3Ó˜c§
©z[19]`²عƒ5-†6-²¡ãG:ÎÝva(G)≤2"©z[20]L²éu²¡ ã G§
ع3-†4-½ö3-†5-ƒ§Kva(G)≤2",§„k Ü©ƒ'(JŒl©z[21–25]
¥w"
·‚í2©z[12,13]Ú[15](J§±e(Ø"
½n1.1XJG´˜‡Ø¹ƒ3-†5-²¡ã§@ova(G) ≤2"
½n1.2XJG´˜‡Ø¹ƒ4-†5-²¡ã§@ova(G) ≤2"
2.5º
•£ã•B§·‚Äk‰Ñ©¥ò‡¦^˜ÎÒ"ãG•²¡ã§éuãG¥º
:v§·‚^d(v)L«vݧ=†vƒ>ê"÷vd(v) = kº:¡•k- :§÷vd(v) ≥kº
:¡•k
+
-:§÷vd(v)≤kº:¡•k
−
-:"Ó§éuG¥¡f§·‚¦^d(f)L«fݧ
=f>.•Ý"d(f) = k§¡¡f•k-¡¶d(f) ≥k§¡Ù•k
+
-¡¶d(f) ≤k§¡Ù•k
−
-¡"
˜‡k-¡§÷Ù>.^ž••\ëYº:v
1
,v
2
,···,v
k
¡(v
1
,v
2
,···,v
k
)-¡½
(d(v
1
),d(v
2
),···,d(v
k
))-¡"éu¡f§·‚¦^f
k
(f)L«†fƒk¡ê§^n
k
(f)±L«†fƒ
k-:\ê8"éuº:v§†vƒk-º:ê^n
k
(v)L«§†vƒi-¡ê^f
i
(v)L
«"éu¡(v
1
,v
2
,···,v
k
)§^f
i
L«†fkú>v
i
v
i+1
¡§(i=1,2,···,k−1)§·‚^f
k
L«
†fkú>v
k
v
1
¡"éuk-º:v§·‚¦^v
1
,v
2
,···,v
k
L«†v^žƒk‡ëYº:"
,^f
i
L«vv
i
Úvv
i+1
(i=1,2,···,k−1)\¡§ ^f
k
L«vv
k
Úvv
1
\¡"éu4-º:§
·‚¡v´AÏ§XJf
3
(v)=1Úf
5
+
(v)=3"éu4-º:v§·‚¡ƒ•f
1
†f
3
3v?ƒ‡§
f
2
†f
4
3v?ƒ‡"
3©eã/¥§±›ÑÙ¤k>ž§º:^•L«§ŒUvk±›Ñ¤k>ž§º
:^◦L«"
DOI:10.12677/pm.2021.1181761587nØêÆ
4(§¦ï
3.•‡~5Ÿ
y3·‚ÏL‡y{?1½n0.1Ú½n0.2y²"Äkb½n0.1Ú½n0.2´†"
éu½n0.1§ãG´˜‡º:Ú>Ú•4‡~§Kva(G)=3"w,§ãG´˜‡2ë
Ïã§=ãG?¿ü^>Ñ u˜‡úþ"y3·‚‰ÑãG(5ŸXeµ
Ún3.1[15]δ(G) ≥4"
Ún3.2[15,17]b3-¡(v
1
,v
2
,v
3
)Ú3-¡(v
4
,v
3
,v
2
)ƒ§§‚k˜‡Ó>v
2
v
3
"X
Jd(v
2
)+d(v
3
) ≤9§@od(v
1
)+d(v
4
) ≥9"
Ún3.3[12]f•3-¡§n
4
(f)=3"XJk˜‡k-(v
1
,v
2
,···,v
k
)§Ù¥k≥4§éuz
‡i∈{1,2,···,k}÷vd(v
i
) = 4§K(v
1
,v
2
,···,v
k
)؆fƒ"
Ó§éu½n0.2§ ãG´˜‡º:Ú>Ú•4‡~§ ãG(5Ÿ†½n0.1
ãG(5ŸƒÓ"
4.DŠ
•y²½n0.1Ú½n0.2§·‚3!¥0DŠ5K"ãG•²¡ã§éuãG¤
kº:ÚãG¤k¡§·‚½Â˜‡мêc"Äk§·‚‰ãGz‡º:v˜‡
Šc(v) = 2d(v)−6§±9z‡¡fŠc(f) = d(f)−6"¯¤±•µ
|V(G)|−|E(G)|+|F(G)|= 2(1)
X
v ∈V(G)
d(v) =
X
f∈F(G)
d(f) = 2|E(G)|(2)
ÏLî.úªãGoŠ´Kµ
X
v ∈V(G)
c(v)+
X
f∈F(G)
c(f) = −12 <0.(3)
éuü‡½ny²§·‚Ñ´Šâe¡‰ÑDŠ5K§‰ãG¤kº:Ú¡)¤˜‡#
Dмêc
0
§DЉ1ž§oÚØC"=µ
X
v ∈V(G)
c(v)+
X
f∈F(G)
c(f) =
X
v ∈V(G)
c
0
(v)+
X
f∈F(G)
c
0
(f).(4)
3e¡§·‚òy²ù˜:µ
X
v ∈V(G)
c
0
(v)+
X
f∈F(G)
c
0
(f) ≥0.(5)
DOI:10.12677/pm.2021.1181761588nØêÆ
4(§¦ï
ùÒ—gñ•3§¤éü‡½ny²"
3¡Øã¥§ÎÒτ(v→f)L«v=£fŠ§Ù¥v∈V(G)§f∈F(G)"ÎÒ
τ(f→f
1
)L«f=£f
1
Š§Ù¥f∈F(G)§f
1
∈F(G)"
4.1.½n0.1y²
éu½n0.1DŠ5KXeµ
R1.½v´†¡fƒ4-º:"
1)τ(v→f) = 1§XJd(f) = 3§f
3
(v) = 2"
2)τ(v→f) =
3
2
§XJd(f) = 3§f
3
(v) = 1"
3)τ(v→f) =
1
2
§XJd(f) = 4"
4)τ(v→f) =
1
5
§XJd(f) = 5"
R2.½v´†¡fƒ5-º:"
1)τ(v→f) =
4
3
§XJd(f) = 3§f
3
(v) = 3"
2)τ(v→f) =
3
2
§XJd(f) = 3§f
3
(v) ≤2"
3)τ(v→f) =
1
2
§XJd(f) = 4"
4)τ(v→f) =
1
5
§XJd(f) = 5"
R3.½v´†¡fƒ6
+
-º:"
1)τ(v→f) =
3
2
§XJd(f) = 3"
2)τ(v→f) =
1
2
§XJd(f) = 4"
3)τ(v→f) =
1
5
§XJd(f) = 5"
y3·‚òy²ãGz‡¡fÑk˜‡šKŠ"Äkéw,§ãGz‡6
+
-¡Ñk˜
‡šKŠ"bd(f)=5§KdR1(4)§R2(4)ÚR3(3)•c
0
(f)=−1+5×
1
5
=0"b
d(f) = 4§KdR1(3)§R2(3)ÚR3(2)•c
0
(f) = −2+4×
1
2
= 0"bd(f) = 3§KdR1(1)-(2)§
R2(1)-(2)ÚR3(1)•c
0
(f) ≥−3+3×1 ≥0"
e5·‚òy²ãGz‡º:vÑk˜‡šKŠ"bd(v) = 4"XJf
3
(v) = 2§KÏL
R1(1)c
0
(v) = 2−2×1 = 0"XJf
3
(v) = 1§KÏLR1(2)-(4)c
0
(v) ≥2−
3
2
−max{
1
2
,
1
5
}≥
0 "XJf
3
(v)=0,KÏLR1(3)-(4)c
0
(v)≥2−4 ×
1
2
≥0"d(v)=5.XJf
3
(v)=3,KÏ
LR2(1)c
0
(v)=4 −
4
3
×3=0"XJf
3
(v)=2,KÏLR2(2)-(4)c
0
(v)≥4 −2 ×
3
2
−
max{
1
2
,
1
5
}≥0"XJf
3
(v) = 1, KÏLR2(2)-(4) c
0
(v) ≥4−
3
2
−max{2×
1
2
,
1
2
+
1
5
,2×
1
5
}≥0"
XJf
3
(v)=0,KÏLR2(3)-(4)c
0
(v)≥4 −max{f
4
(v) ×
1
2
+ f
5
(v) ×
1
5
}≥0"bd(v)=
k
+
(k≥6)"XJk≥7§KÏLR3 ·‚•c
0
(v) >(2k−6)−max{f
3
(v)×
3
2
+(k−f
3
(v))×
1
2
}≥0"
Ïd§·‚••Äk= 6"bd(v) = 6"XJf
3
(v) = 4,KÏLR3(1)c
0
(v) = 6−4×
3
2
= 0"
XJf
3
(v)=3,KÏLR3(1)c
0
(v)=6 −3 ×
3
2
>0"XJf
3
(v)≤2,KÏLR3(1)-(3)
c
0
(v) ≥6−max{f
3
(v)×
3
2
+f
4
(v)×
1
2
+f
5
(v)×
1
5
}≥0"
DOI:10.12677/pm.2021.1181761589nØêÆ
4(§¦ï
nþ§·‚y²é¤kv∈V(G)Úf∈F(G)µ
P
c
0
(v)+
P
c
0
(f)≥0"ù†ÏLî.ú
ªoŠ´Kgñ§½ny"
4.2.½n0.2y²
3‰Ñ½n0.2DŠ5Kƒc§k0˜‡AÏ(§d(ò3R
v
2(5)-(7)¥¦^"
Xã1¤«µd(v)=5,f
5
+
(v)=3§f
3
(v)=2§…ü‡3-¡Øƒ"Ø”˜„5§bf
1
,f
3
§
Úf
4
´5
+
-¡§f
2
Úf
5
´3-¡"XJf
5
(v)=3§v
4
´˜‡4-º:§f
3
(v
4
)=1§=†v
4
\3-¡7
†f
3
½f
4
ƒ§Ø”˜„5§b3-¡†f
4
ƒ"
Figure1.ThedischargingrulesiconinTheorem0.1
ã1.½n0.2˜DŠ5Kã«
½n0.2DŠ5KXeµ
R
v
1.v´†fƒ4-º:"
1)τ(v→f) =
5
6
§XJd(f) = 3§f
3
(v) = 2§f
5
(v) = 0"
2)τ(v→f) =
4
5
§XJd(f) = 3§f
3
(v) = 2§f
5
(v) ≥1"
3)τ(v→f) =
7
6
§XJd(f) = 3§f
3
(v) = 1§f
4
(v) = 1"
4)τ(v→f) =
7
5
§XJd(f) = 3§f
3
(v) = 1§f
4
(v) = 0"
5)τ(v→f) =
1
2
§XJd(f) = 4"
6)τ(v→f) =
1
5
§XJd(f) = 5"
7)τ(v→f) =
1
6
§XJd(f) = 6
+
"
R
v
2.v´†fƒ5-º:"
1)τ(v→f
1
)=
17
15
§τ(v→f
2
)=
17
15
§τ(v→f
3
)=
7
5
§XJd(f
1
)=d(f
2
)=d(f
3
)=3§
f
3
(v) = 3§f
1
†f
2
ƒ§f
3
†f
1
؃§f
3
†f
2
؃"
2)τ(v→f) =
7
5
§XJd(f) = 3§f
3
(v) ≤2"
3)τ(v→f) =
1
2
§XJd(f) = 4"
4)τ(v→f) =
3
5
§XJd(f) = 5,f
3
(v) = 2,…ü‡3-¡ƒ"
5)τ(v→f
1
) =
3
5
,XJd(f
1
) = d(f
3
) = d(f
4
) = 5,f
5
(v) = 3,f
3
(v) = 2,ü‡3-¡Øƒ"
a)τ(v→f
3
) =
1
5
§τ(v→f
4
) =
2
5
§XJf´˜‡AÏ4-¡"
b)τ(v→f
3
) =
3
10
§τ(v→f
4
) =
3
10
§XJv
4
´˜5
+
-º:½v
4
´˜AÏ4-º:"
DOI:10.12677/pm.2021.1181761590nØêÆ
4(§¦ï
6)τ(v→f
1
)=
3
5
§τ(v→f
3
)=
2
5
§XJd(f
1
)=d(f
3
)=5§f
3
(v)=2§ü‡3-¡Øƒ§
f
5
(v) = 2§f
6
+
(v) = 1§d(f
4
) = 6
+
§f
1
†f
3
؃"
7)τ(v→f
3
)=
2
5
§τ(v→f
4
)=
2
5
§XJd(f
3
)=d(f
4
)=5§f
3
(v)=2§ü‡3-¡Øƒ§
f
5
(v) = 2,f
6
+
(v) = 1,d(f
1
) = 6
+
§f
3
†f
4
ƒ"
8)τ(v→f) =
3
5
§XJd(f) = 5,f
3
(v) = 2§ü‡3-¡Øƒ§f
5
(v) = 1"
9)τ(v→f) =
3
5
§XJd(f) = 5…f
3
(v) ≤1"
10)τ(v→f) =
1
6
§XJd(f) = 6
+
"
R
v
3.v´†fƒ6
+
-º:"
1)τ(v→f) =
7
5
§XJd(f) = 3"
2)τ(v→f) =
1
2
§XJd(f) = 4"
3)τ(v→f) =
3
5
§XJd(f) = 5"
4)τ(v→f) =
1
6
§XJd(f) = 6
+
"
R
f
1.b½f
1
´(4,4,4)-¡§f
3
(f
1
)=0§d(f)=3§f†f
1
3v:éá§f
1
¥Øv±ü‡º:Ø
´AÏ4-º:§f¥Øv±ü‡º:´5
+
-º:§½öü‡ Ñ´AÏ4-º:§½ö˜‡
´AÏ4-º:,˜‡´5
+
-º:"
1)τ(f→f
1
) =
1
10
§XJf
3
(f) = 1§f¥Øv±ü‡º:ƒ˜´5-º:§ …†n‡3-¡ƒ
§,˜º:•5
+
-º:"
2)τ(f→f
1
) =
3
5
§Ù¦"
éu3-¡f( v
1
,v
2
,v
3
)"^f
1
§f
2
Úf
3
5L«©O†fäkú>v
1
v
2
§v
2
v
3
Úv
3
v
1
¡"
3 -¡f´Ð§XJ÷vµ−3 +τ(v
1
→f) + τ(v
2
→f) + τ(v
3
→f)≥0½−3 +τ(v
1
→
f) + τ(v
2
→f) + τ(v
3
→f) +
1
10
≥0(f÷vR
f
1(1)ž)½−3 + τ(v
1
→f) + τ(v
2
→
f)+τ(v
3
→f)+
3
5
≥0(f÷vR
f
1(2)ž)½−3+τ(v
1
→f)+τ(v
2
→f)+τ(v
3
→f)+τ(f
i
→
f)≥0(i∈1,2,3)½−3+τ(v
1
→f) +τ(v
2
→f) +τ(v
3
→f) +τ(f
i
→f) +τ(f
j
→f)≥0
(i6=j§ij∈1,2,3)"^n
3
g
(f)5L«†fƒÐ3¡ê8"^n
0
f
L«²\º:DŠ
foŠê"
R
f
2.τ(f→f
1
) =
n
0
f
f
3
(f)−n
3
g
(f)
§XJf´˜‡6
+
-¡§…f†f
1
ƒ§f
1
Ø´˜‡Ð3-¡"
R
f
3.f´5¡§f
3
(f)−n
3
g
(f) >0§n
0
f
>0
1)τ(f→f
0
) = n
0
f
§XJf
3
(f)−n
3
g
(f) = 1§…f†f
0
ƒ"f
0
Ø´˜‡Ð3-¡"
2)τ(f→f
0
) =
n
0
f
f
3
(f)−n
3
g
(f)
§XJf
3
(f)−n
3
g
(f) ≥2§…f†f
0
ƒ§f
0
Ø´˜‡Ð3-¡"
ÏL±þDŠ5K§·‚íÑe¡Ún"
Ún4.1†5
+
-º:ƒk
+
-¡–õkk−2(k≥6)‡ØÐ3-¡"
y²µf´ãG¥k-¡(k≥6)"w,n
5
+
(f) = 1"éuk-¡fk≥6§^v
i
(i∈{1,2,···k})L
«÷f^ž\k‡º:"^f
i
(i∈{1,2,···k})L«†fkú>v
i
v
i+1
§^f
k
L«†fkú
>v
k
v
1
"-v
1
´5
+
-º:"e¡•Än«ŒU5µ
DOI:10.12677/pm.2021.1181761591nØêÆ
4(§¦ï
œ/1.bf
4
+
(f) ≥2"w,§f–õ†k−2‡Ø´Ð3-¡ƒ"
œ/2.bf
4
+
(f) = 1"阇†fƒÐ3-¡"XJf
1
´˜4
+
-¡§KÏLR
v
2(2)ÚR
v
3(1)
µτ(v
1
→f
k
) =
7
5
"f
k
´˜‡Ð3-¡"Ó/,XJf
k
´˜‡4
+
-¡§Kf
1
´˜‡Ð3-¡"X
Jf
i
´4
+
-¡§(i∈{2,3,···,k−1})§KÏLR
v
2(1)-(2)ÚR
v
3(1) Œf
1
Úf
k
¥k˜‡´Ð3-¡"
œ/3.bf
4
+
(f) =0"éü‡†fƒ3-¡"XJv
1
´6
+
-º:§KÏLR
v
3(1)-τ(v
1
→
f
1
) =
7
5
Úτ(v
1
→f
k
) =
7
5
"w,§f
1
Úf
k
´Ð3-¡"XJv
1
´5-º:§K?رeü«œ¹µ
•f
3
(v
1
) = 2"KÏLR
v
2(2)-τ(v
1
→f
1
) =
7
5
Úτ(v
1
→f
k
) =
7
5
"f
1
Úf
k
Ñ´Ð3¡"
•f
3
(v
1
) = 3"Ø”˜„5§ÏLR
v
2(1) -τ(v
1
→f
k
) =
7
5
Úτ(v
1
→f
1
) =
17
15
"w,§f
k
´Ð
3-¡§f
6
+
(f
1
) =2§f
3
(f
1
) =1"†f
1
ƒ6
+
-¡Øf±DЉf
1
–•
1
4
"Ïd§ÏL†f
1
ƒ
:DŠÚØf±6
+
-¡DŠf
1
´Ð"
nþ§†5
+
-º:ƒk
+
-¡–õkk−2(k≥6)‡ØÐ3-¡"
Ún4.2XJd(f) = 5§Kf
3
(f)−n
3
g
(f) ≤5n
0
f
"
y²µ-d(f)=5"éu5-¡f,·‚^v
1
§v
2
§v
3
§v
4
Úv
5
L«^ž†fƒº:"f
i
L«†fkú>v
i
v
i+1
(i∈{1,2,3,4})§f
5
L«†fkú>v
5
v
1
"dÚn2.3•§XJf
i
´3-
¡(i∈{1,2,3,4,5})§Kf
3
(f
i
)=0"w,§n
5
+
(f)≥3ž§5n
0
f
≥1≥f
3
(f) −n
3
g
(f)"b
n
4
(f)=5"KÏLR
v
1(6)n
0
f
=0"f
3
(f)>0ž§ŠâÚn2.2 §†fƒ3-¡¥
k˜‡5
+
-º:"Ïd§ÏLR
v
1(2)§R
v
1(4)§R
v
2(2)ÚR
v
3(1)§XJf
i
´3-¡(i∈{1,2,3,4,5})§
Kf
i
´Ð"Ïdf
3
(f)−n
3
g
(f) = 0"e5•ıeü«œ/µ
œ/1.bn
5
+
(f) = 1"Ø”˜„5§-v
1
•†fƒ5
+
-º:"•Äo«ŒUµ
(1.1)f
5
+
(f) ≥3"f
3
(f)−n
3
g
(f) = 0§n
0
f
≥0"
(1.2)f
5
+
(f)=2"dé¡5§·‚••Ä8«œ/"w,§f
3
(f) −n
3
g
(f)=0"d(f
1
)=
d(f
i
) ≥5 ½d(f
1
) = d(f
i
) ≥5§i∈{3,4}"Óžn
0
f
≥0"Ïd§·‚•ıeü«ŒUµ
1)d(f
1
)=d(f
5
)≥5"ÏLR
v
2(9)ÚR
v
3(3)τ(v
1
→f)=
3
5
§f
3
(f)−n
3
g
(f)≤1"Ïd
f
3
(f)−n
3
g
(f) ≤1 <5n
0
f
"
2)d(f
1
)=d(f
2
)≥5"ÏLR
v
2(5)-(9)ÚR
v
3(3)-τ(v
1
→f)≥
1
5
"Ïdn
0
f
≥0"w,§
f
3
Úf
5
Ñ´Ð3-¡"XJf
4
´˜‡Ð3-¡§Kf
3
(f)−n
3
g
(f) = 0 ≤n
0
f
"y3·‚•Iy²f
4
´
Ð"-f
i
´(v
i
,w
i
,v
i+1
)-¡(i∈{3,4})§f
5
´(v
5
,w
3
,v
1
)-¡"-s
i
5LǠf3v
i
(i∈{3,4,5}):
?éá¡"bw
3
,w
4
Úw
5
¥–k˜‡5
+
-º:"ÏLR
v
2(2)ÚR
f
1(2)f
4
´Ð"b
w
3
,w
4
Úw
5
Ñ´4-º:"Kn
5
+
(s
4
)≥1§n
5
+
(s
5
)≥1"s
1
–õ†(d(s
1
)−3)‡ØÐ3-¡ƒ§
s
2
–õ†(d(s
2
)−3)‡ØÐ3-¡ƒ"é²w§w
3
§w
4
Úw
5
¥–˜‡´AÏžf
4
´Ð"Ï
d·‚•Äw
1
§w
2
Úw
3
ÑØ´AÏ"-h
1
LǠf
4
3w
4
:éá¡"•ıeü«ŒU:
•XJd(s
4
) = d(s
5
) ≥6§KÏLR
v
1(1)-(3)ÚR
f
1-2 −3+τ(v
4
→f
4
)+τ(v
5
→f
4
)+τ(w
4
→
f
4
)+τ(h
1
→f
4
)≥
4
5
+
4
5
+
5
6
+
3
5
≥0½−3+ τ(v
4
→f
4
)+τ(v
5
→f
4
)+τ(w
4
→f
4
)+τ(s
4
→
f
4
)+τ(s
5
→f
4
) ≥
4
5
+
4
5
+
5
6
+
2
3
≥0"Ïd§f
4
´Ð"
DOI:10.12677/pm.2021.1181761592nØêÆ
4(§¦ï
•Øw
4
,s
4
Ús
5
–k˜‡´5-¡§XJh
1
¥kü‡5
+
-º:½kü‡AÏ4-º:½k˜A
Ï4-º:Ú˜5
+
-º:§ÏLR
f
3f
4
´Ð"y3·‚=•Äh
1
¥–õk˜‡5
+
-º:½–
õk˜‡AÏ4-º:"XJs
4
Ús
5
¥˜‡´5-¡§,˜‡´6
+
-¡,KÏLR
v
1(1)-(2)ÚR
f
2-3
−3+τ(v
4
→f
4
)+τ(v
5
→f
4
)+τ(w
4
→f
4
)+τ(s
4
→f
4
)+τ(s
5
→f
4
) ≥
4
5
+
4
5
+
4
5
+
1
5
+
1
2
>0"
XJd(s
4
)=d(s
5
)=5§f
3
(s
4
) −n
3
g
(s
4
)≤2žf
3
(s
5
) −n
3
g
(s
5
)≤1½f
3
(s
5
) −n
3
g
(s
5
)≤2ž
f
3
(s
4
)−n
3
g
(s
4
)≤1"Ïd§ÏLR
v
1(1)-(2)ÚR
f
3 −3+ τ(v
4
→f
4
)+ τ(v
5
→f
4
)+ τ(w
4
→
f
4
)+τ(s
4
→f
4
)+τ(s
5
→f
4
) ≥0"
(1.3)f
5
+
(f) = 1.dé¡5§·‚=•Än«œ/µd(f
1
) ≥5§d(f
2
) ≥5Úd(f
3
) ≥5"
1)bd(f
2
) ≥5½d(f
3
) ≥5"ÏLR
v
2(5)-(9)ÚR
v
3(3)τ(v
1
→f) ≥
3
5
§=µ5n
0
f
≥1"
ÏLR
v
1(4)§R
v
2(2)ÚR
v
3(1)f
3
(f)−n
3
g
(f) ≤1"Ïdf
3
(f)−n
3
g
(f) ≤1 ≤5n
0
f
"
2) bd(f
1
) ≥5"ÏLR
v
2(5)-(9)ÚR
v
3(3) τ(v
1
→f) ≥
2
5
§=µ5n
0
f
≥1"w,f
2
Úf
5
Ñ
´Ð3-¡"XJf
3
Úf
4
–k˜‡Ð3-¡§Kf
3
(f) −n
3
g
(f)≤n
0
f
"y3·‚y²f
3
Úf
4
–
˜‡´Ð3-¡"-f
i
´(v
i
,w
i
,v
i+1
)-¡(i∈{2,3,4})§f
5
´(v
5
,w
5
,v
1
)-¡"s
i
LǠf3v
i
(i∈
{2,3,4,5}):?éá¡"bw
2
§w
3
§w
4
Úw
5
–˜‡´5
+
-º:§ÏLR
v
2(2)ÚR
f
1(2)§
f
3
Úf
4
–k˜‡´Ð3-¡"bw
2
§w
3
§w
4
Úw
5
Ñ´4-º:§Ks
3
§s
4
Ús
5
¥Ñ–k˜
‡5
+
-º:"w
2
§w
3
§w
4
Úw
5
¥–k˜‡´AÏž§f
3
Úf
4
–˜‡´Ð"y3•Äw
2
§
w
3
§w
4
Úw
5
ÑØ´AÏ"h
i
LǠf
i
3w
i
(i∈{3,4}):?éá¡"s
3
§s
4
Ús
5
–ü‡
´5-¡§Øw
i
(i∈{3,4})§XJh
i
¥kü‡5
+
-º:½ü‡AÏ4-º:½˜‡AÏ4-º:
Ú˜‡5
+
-º:,Kf
i
´Ð"Ïd§XJs
1
§s
2
Ús
3
¥–ü‡´5-¡"K••Äh
3
Úh
4
¥–õ˜
‡5
+
-º:½–õ˜‡AÏ4-º:§k±e8«ŒUµ
XJd(s
3
)=d(s
4
)=5§s
5
≥6§KÏLR
f
2-3-τ(s
3
→f
3
)≥
2
5
§τ(s
4
→f
3
)≥
1
5
½
τ(s
5
→f
4
)≥
1
2
§τ(s
4
→f
4
)≥
1
5
"Ó/§XJd(s
4
)=d(s
5
)=5§s
3
≥6§KÏLR
f
2-3-
τ(s
5
→f
4
)≥
2
5
§τ(s
4
→f
4
)≥
1
5
½τ(s
3
→f
3
)≥
1
2
§τ(s
4
→f
3
)≥
1
5
"XJd(s
3
)=d(s
5
)=5§
s
4
≥6§KÏLR
f
2-τ(s
4
→f
3
)≥
1
2
§τ(s
4
→f
4
)≥
1
2
§ÏLR
f
3-τ(s
3
→f
3
)≥
1
5
§
τ(s
5
→f
4
)≥
1
5
"Ïd§ÏLR
v
1(2)ÚR
f
2–3−3 +τ(v
3
→f
3
) +τ(v
4
→f
3
) +τ(w
3
→
f
3
) + τ(s
3
→f
3
) + τ(s
4
→f
3
)≥0§−3+ τ(v
4
→f
4
) + τ(v
5
→f
4
) + τ(w
4
→f
4
) + τ(s
4
→
f
4
)+τ(s
5
→f
4
)≥0§=µf
3
Úf
4
Ñ´Ð"XJd(s
3
)=d(s
4
)=d(s
5
)=5§Ks
3
Ús
4
¥–˜
‡©ODЉf
3
Úf
4
–
2
5
"KÏLR
v
1(2)ÚR
f
3−3 +τ(v
3
→f
3
) +τ(v
4
→f
3
) +τ(w
3
→
f
3
) + τ(s
3
→f
3
) + τ(s
4
→f
3
)≥0½−3 + τ(v
4
→f
4
) + τ(v
5
→f
4
) + τ(w
4
→f
4
) + τ(s
4
→
f
4
) +τ(s
5
→f
4
)≥0"XJd(s
3
)=d(s
5
)≥6§s
4
=5§Øw
i
(i∈{3,4})§h
i
¥ü‡5
+
-
º:½ü‡AÏ4-º:½˜‡AÏ4-º:Ú˜‡5
+
-º:ž§Kf
i
´Ð"h
3
Úh
4
¥–õ˜
‡5
+
-º:½–õ˜‡AÏ4-º:ž§s
3
Ús
5
¥–˜‡©ODЉf
3
Úf
4
–
1
2
"ÏLR
f
2
τ(s
4
→f
3
)≥
1
5
½τ(s
4
→f
4
)≥
1
5
"XJd(s
3
)=d(s
4
)≥6½d(s
4
)=d(s
5
)≥6§KÏL
R
f
2τ(s
4
→f
3
)≥
1
4
Úτ(s
3
→f
3
)≥
1
3
½τ(s
4
→f
4
)≥
1
4
Úτ(s
5
→f
4
)≥
1
3
"ÏLR
v
1(1)-
(2)ÚR
f
2−3 + τ(v
3
→f
3
) + τ(v
4
→f
3
) + τ(w
3
→f
3
) + τ(s
3
→f
3
) + τ(s
4
→f
3
)≥0½
−3+τ(v
4
→f
4
)+τ(v
5
→f
4
)+τ(w
4
→f
4
)+τ(s
4
→f
4
)+τ(s
5
→f
4
) ≥0"nþ§f
3
Úf
4
–˜
‡´Ð"
DOI:10.12677/pm.2021.1181761593nØêÆ
4(§¦ï
(1.4)f
5
+
(f)=0.ÏLR
v
2(4)-(5)§
v
2(9)§R
v
2(11)-(12)ÚR
v
3(3)τ(v
1
→f)=
3
5
§
=µ5n
0
f
=2"ÏLR
v
1(1)-(4)§R
v
2(2)ÚR
v
3(1)f
1
Úf
5
Ñ´Ð3-¡"XJf
2
,f
3
Úf
4
–
˜‡´Ð3-¡§Kf
3
(f) −n
3
g
(f)≤n
0
f
"y3·‚•Iy²f
2
,f
3
Úf
4
–˜‡´Ð3-¡"
-f
i
´(v
i
,w
i
,v
i+1
)-¡(i∈{1,2,3,4})§f
5
´(v
5
,w
5
,v
1
)-¡"-s
i
5LǠf3v
i
(i∈{2,3,4,5}):
?éá¡"bw
1
§w
2
§w
3
§w
4
Úw
5
¥–k˜‡´5
+
-º:"ÏLR
v
2(2)ÚR
f
1(2)f
2
,
f
3
Úf
4
–˜‡´Ð3-¡"bw
1
§w
2
§w
3
§w
4
Úw
5
Ñ´4-º:"ŠâÚn2.3§s
2
§s
3
§s
4
Ús
5
¥Ñ–k˜‡5
+
-º:"w,§w
1
§w
2
§w
3
§w
4
Úw
5
¥–˜‡´AÏž§Kf
2
§f
3
Úf
4
¥
–˜‡´Ð3-¡"y3·‚=•Äw
1
§w
2
§w
3
§w
4
Úw
5
ÑØ´AÏž"-h
i
5LǠf
i
3w
i
(i∈{2,3,4}):?éá¡k±en«ŒUµ
1)s
2
§s
3
§s
4
Ús
5
–õ˜‡6
+
-¡"Øw
i
(i∈{2,3,4})§XJh
i
¥kü‡5
+
-º:½ü‡A
Ï4-º:½˜‡AÏ4-º:Ú˜‡5
+
-º:§Kf
i
´Ð"Ïd·‚=•Äh
i
¥–õ˜‡5
+
-º:½
–õ˜‡AÏ4-º:,i∈{2,3,4}"k±eü«ŒUµ
•bs
2
§s
3
§s
4
Ús
5
Ñ´5-¡§s
2
Ús
5
–˜‡©ODЉf
2
Úf
4
–
2
5
" ÏLR
f
2 -τ(s
3
→
f
2
) ≥
1
5
§τ(s
4
→f
4
) ≥
1
5
"Ïd§ÏLR
v
1(2)ÚR
f
3−3+τ(v
2
→f
2
)+τ(v
3
→f
2
)+τ(w
2
→
f
2
) + τ(s
2
→f
2
) + τ(s
3
→f
2
)≥0½−3 + τ(v
4
→f
4
) + τ(v
5
→f
4
) + τ(w
4
→f
4
) + τ(s
4
→
f
4
)+τ(s
5
→f
4
) ≥0§=f
2
§f
3
Úf
4
–˜‡´Ð3-¡"
•bs
2
§s
3
§s
4
Ús
5
ƒ˜´6
+
-¡"dé¡5§=•Äü«œ/µd(s
2
) ≥6 Úd(s
3
) ≥6"X
Jd(s
2
)≥6§ÏLR
f
2-3§τ(s
2
→f
2
)≥
1
2
ž§-τ(s
3
→f
2
)≥
1
5
¶τ(s
2
→f
2
)≥
1
3
ž§-
τ(s
5
→f
4
) geq
2
5
"ÏLR
v
1(2)ÚR
f
2–3§−3+τ(v
2
→f
2
)+τ(v
3
→f
2
)+τ(w
2
→f
2
)+τ(s
2
→
f
2
)+τ(s
3
→f
2
) ≥0 or−3+τ(v
4
→f
4
)+τ(v
5
→f
4
)+τ(w
4
→f
4
)+τ(s
4
→f
4
)+τ(s
5
→f
4
) ≥0§
=µf
2
´Ð½f
4
´Ð"Ïd§f
2
§f
3
Úf
4
–˜‡´Ð3-¡"XJd(s
3
)≥6§ÏLR
f
2-
3§τ(s
3
→f
2
)≥
1
2
ž§-τ(s
2
→f
2
)≥
1
5
½τ(s
2
→f
2
)≥
2
5
ž§-τ(s
3
→f
2
)≥
1
5
½
τ(s
5
→f
4
) ≥
2
5
ž§-τ(s
4
→f
4
) ≥
1
5
"Ïdf
2
§f
3
Úf
4
–˜‡´Ð3-¡"
2)s
2
§s
3
§s
4
Ús
5
¥ü‡´6
+
-¡"Ó/§·‚=•Äh
i
(i∈{2,3,4})¥–õ˜‡5
+
-º:
½–õ˜‡AÏ4-º:"dé¡5§·‚=•Äo«œ/µd(s
2
) =d(s
3
) ≥6¶ d(s
2
) =d(s
4
) ≥6¶
d(s
2
) = d(s
5
) ≥6¶d(s
3
) = d(s
4
) ≥6"
•bd(s
2
) = d(s
3
) ≥6"XJ−3+τ(v
2
→f
2
)+τ(v
3
→f
2
)+τ<0§K-τ(s
2
→f
2
) ≥
1
3
§
τ(s
3
→f
2
) ≥
1
4
"ÏLR
v
1(1)-(3)§R
v
2(1)-(2)ÚR
f
2−3+τ(v
2
→f
2
)+τ(v
3
→f
2
)+τ(w
2
→
f
2
) ≥0½−3+τ(v
2
→f
2
)+τ(v
3
→f
2
)+τ(w
2
→f
2
)+τ(s
2
→f
2
)+τ(s
3
→f
2
) ≥0§=µf
2
´
Ð"
•bd(s
2
)=d(s
4
)≥6"ÏLR
f
2-3§τ(s
2
→f
2
)≥
1
2
ž§-τ(s
3
→f
2
)≥
1
5
§τ(s
5
→
f
4
)=
2
5
ž§-τ(s
4
→f
4
)≥
1
4
§τ(s
5
→f
4
)=
1
5
ž§-τ(s
4
→f
4
)≥
1
2
"Ïd§ÏL
R
v
1(2)ÚR
f
2-3−3+τ(v
2
→f
2
)+τ(v
3
→f
2
)+τ(w
2
→f
2
)+τ(s
2
→f
2
)+τ(s
3
→f
2
) ≥0½
−3+τ(v
4
→f
4
)+τ(v
5
→f
4
)+τ(w
4
→f
4
)+τ(s
4
→f
4
)+τ(s
5
→f
4
) ≥0§=µf
2
§f
3
Úf
4
–
˜‡´Ð3-¡"
•Ó/§bd(s
2
)=d(s
5
)≥6"ÏLR
f
2-3-τ(s
2
→f
2
)≥
1
2
½τ(s
5
→f
4
)≥
1
2
"ÏL
R
v
1(2)ÚR
f
2–3−3+ τ(v
2
→f
2
)+τ(v
3
→f
2
)+τ(w
2
→f
2
)+τ(s
2
f
2
)+τ(s
3
→f
2
)≥0½
DOI:10.12677/pm.2021.1181761594nØêÆ
4(§¦ï
−3+τ(v
4
→f
4
)+τ(v
5
→f
4
)+τ(w
4
→f
4
)+τ(s
4
→f
4
)+τ(s
5
→f
4
) ≥0"Ïd§f
2
§f
3
Úf
4
–
˜‡´Ð3-¡"
••§bd(s
3
)=d(s
4
)≥6"ÏLR
f
2§τ(s
4
→f
3
)=
1
4
ž§-τ(s
3
→f
3
)≥
1
3
"
τ(s
3
→f
3
) =
1
4
ž§-τ(s
4
→f
3
) ≥
1
3
"KÏLR
v
1(1)-(3)ÚR
f
2−3+τ(v
3
→f
3
)+τ(v
4
→
f
3
)+τ(w
3
→f
3
)+τ(s
3
→f
3
)+τ(s
4
→f
3
) ≥0§=µf
3
´Ð3-¡"
3) s
2
§s
3
§s
4
Ús
5
¥–n‡´6
+
-¡"•Äü«œ/µd(s
2
) = d(s
3
) ≥6Úd(s
4
) = d(s
5
) ≥6"
bd(s
2
) = d(s
3
) ≥6"XJ−3+τ(v
2
→f
2
)+τ(v
3
→f
2
)+τ(w
2
→f
2
) <0§K-τ(s
2
→f
2
) ≥
1
3
§
τ(s
3
→f
2
) ≥
1
4
"ÏLR
v
1(1)–(3)§R
v
2(1)-(2)ÚR
f
2−3+τ(v
2
→f
2
)+τ(v
3
→f
2
)+τ(w
2
→
f
2
) ≥0½−3+τ(v
2
→f
2
)+τ(v
3
→f
2
)+τ(w
2
→f
2
)+τ(s
2
→f
2
)+τ(s
3
→f
2
) ≥0§=µ f
2
´
Ð"Ó/§bd(s
4
) = d(s
5
) ≥6§Kf
4
´Ð"
œ/2.bn
5
+
(f)=2"dé¡5§=•Äü«œ/µü‡5
+
-º:3Ó˜^>§ü‡5
+
-º
:Ø3Ó˜^>"Ø”˜„5§ü‡5
+
-º:3Ó˜^>ž§-d(v
1
)=d(v
2
)≥5¶ü‡5
+
-º
:Ø3Ó˜^>ž§-d(v
1
) = d(v
3
) ≥5"
(2.1)d(v
1
) =d(v
2
) ≥5"é²w§f
5
+
(f) ≥3ž§f
3
(f)−n
3
g
(f) =0§n
0
f
≥0"?رen
«ŒU:
1)bf
5
+
(f) = 2"dé¡5§?Ø8«œ/µd(f
1
) = d(f
5
) ≥5¶d(f
1
) = d(f
4
) ≥5¶d(f
2
) =
d(f
3
) ≥5¶d(f
2
) =d(f
4
) ≥5¶d(f
2
) =d(f
5
) ≥5¶d(f
3
) =d(f
4
) ≥5"XJd(f
1
) =d(f
5
) ≥5¶K
ÏLR
v
2(4)-(9)ÚR
v
3(3) -τ(v
1
→f) ≥
3
10
§τ(v
2
→f) =
3
5
"ÏLR
v
1(1)-(4)§R
v
2(2)ÚR
v
3(1)
f
3
(f)−n
3
g
(f) ≤1"Ïdf
3
(f)−n
3
g
(f) ≤1<5n
0
f
"ÄK§ÏLR
v
1(1)-(4)§R
v
2(2)ÚR
v
3(1)
f
3
(f)−n
3
g
(f) = 0"f
3
(f)−n
3
g
(f) = 0 ≤5n
0
f
"
2)bf
5
+
(f)=1"dé¡5§?Øn«œ/µXJd(f
3
)≥5§K-τ(v
1
→f)=
3
5
§
τ(v
2
→f)=
3
5
§f
3
(f)−n
3
g
(f)=0"XJd(f
2
)≥5§ÏLR
v
2(4)–(9)ÚR
v
3(3)-τ(v
1
→f)≥
2
5
§
τ(v
2
→f)=
3
5
§=µ5n
0
f
≥3"ÏLR
v
1(1)-(4)§R
v
2(2)ÚR
v
3(1)f
3
(f)−n
3
g
(f)≤1"X
Jd(f
1
) ≥5§KÏLR
v
2(4)-(9)ÚR
v
3(3)-τ(v
1
→f) ≥
3
10
§τ(v
2
→f) ≥
3
10
§=µ5n
0
f
≥1"·
‚•f
2
Úf
5
Ñ´Ð3-¡"XJf
3
Úf
4
–˜‡´Ð3-¡ž§f
3
(f)−n
3
g
(f) ≤n
0
f
"y3·‚=
I‡y²f
3
Úf
4
–˜‡Ð3-¡"ù†y²(1.3) 2)œ/1´aq"ÓnŒ§f
3
Úf
4
–˜
‡´Ð3-¡"nþ¤ã§f
3
(f)−n
3
g
(f) <5n
0
f
"
3)bf
5
+
(f)=0"ÏLR
v
1(1)-(4)§R
v
2(2)§R
v
2(4)-(6)§R
v
2(8)-(9)ÚR
v
3(1)kτ(v
1
→
f) =
3
5
§τ(v
2
→f) =
3
5
§f
3
(f)−n
3
g
(f) ≤2"f
3
(f)−n
3
g
(f) <5n
0
f
"
(2.2)v
1
Úv
3
´5
+
ݺ:"Ó/§f
5
+
(f) ≥3ž§kf
3
(f)−n
3
g
(f) = 0§n
0
f
≥0"?رe
n«ŒUµ
1)bf
5
+
(f)=2"dé¡5k8«œ/µd(f
1
)=d(f
2
)≥5¶d(f
2
)=d(f
3
)≥5¶d(f
2
)=
d(f
4
)≥5¶d(f
2
)=d(f
5
)≥5¶d(f
3
)=d(f
4
)≥5¶d(f
3
)=d(f
5
)≥5"XJd(f
2
)=d(f
i
)≥5(i∈
{3,4,5})§½d(f
3
) = d(f
j
) ≥5(j∈{4,5})§KÏLR
v
1(1)-(4)§R
v
2(2)ÚR
v
3(1)f
3
(f)−n
3
g
(f) =
0"ÏLR
v
1(6)§R
v
2(4)-(9)ÚR
v
3(3)kτ(v
i
→f) ≥
1
5
(i∈{1,2,3,4,5})"Ïd§f
3
(f)−n
3
g
(f) =
0≤5n
0
f
"y3=•Äd(f
1
)=d(f
2
)≥5"ÏLR
v
2(4)-(12)ÚR
v
3(3) kτ(v
1
→f)≥
1
5
§τ(v
2
→
DOI:10.12677/pm.2021.1181761595nØêÆ
4(§¦ï
f) ≥
1
5
"ÏLR
v
1(1)-(4)§R
v
2(2)ÚR
v
3(1)kf
3
(f)−n
3
g
(f) ≤1"e¡òy²f
4
´Ð3-¡"
-f
3
´(v
3
,w
1
,v
4
)-¡"f
4
´(v
4
,w
2
,v
5
)-¡§f
5
´(v
5
,w
3
,v
1
)-¡"-s
1
LǠf3v
4
:?éá¡"
s
2
LǠf3v
5
:?éá¡"bw
1
,w
2
Úw
3
–˜‡5
+
-º:"ÏLR
v
1(1)-(2)§R
v
2(2)ÚR
f
1(2)
f
4
´Ð3-¡"bw
1
§w
2
Úw
3
Ñ´4-º:"s
1
Ús
2
¥Ñ–k˜‡5
+
-º:"w
1
§w
2
Úw
3
–
˜‡´AÏž§f
4
´Ð"y3=•Äw
1
§w
2
Úw
3
ÑØ´AÏž"-h
1
LǠf
4
3w
2
:?é
á¡"Øw
2
§s
1
Ús
2
–˜‡´5-¡ž§XJh
1
¥k5
+
-º:§ ½öü‡AÏ4-º:§½ö
˜‡AÏ4-º:Ú˜‡5
+
-º:§Kf
4
´Ð"Ïd§s
1
Ús
2
–˜‡5-¡ž§=•Äh
1
¥–õ˜
‡5
+
-º:½4-º:"
XJs
1
Ús
2
Ù¥˜‡´5-¡§,˜‡´6
+
-¡§KÏLR
v
1(1)-(2)ÚR
f
2-3−3 +τ(v
4
→
f
4
) +τ(v
5
→f
4
) +τ(w
2
→f
4
) +τ(s
1
→f
4
) +τ(s
2
→f
4
)≥
4
5
+
4
5
+
4
5
+
1
5
+
1
2
>0§=µf
4
´
Ð"XJd(s
1
)=d(s
2
)=5§dÚn2.3§τ(s
2
→f
4
)≥
1
5
ž§kτ(s
1
→f
4
)≥
2
5
¶½ö
τ(s
1
→f
4
)≥
1
5
ž§kτ(s
2
→f
4
)≥
2
5
"ÏLR
v
1(1)-(2)ÚR
f
3§k−3 +τ(v
4
→f
4
)+ τ(v
5
→
f
4
)+ τ(w
2
→f
4
)+ τ(s
1
→f
4
)+ τ(s
2
→f
4
)≥0§=µf
4
´Ð"XJd(s
1
)=d(s
2
)≥6§ÏL
R
f
2kτ(s
1
→f
4
)≥
1
3
§τ(s
2
→f
4
)≥
1
3
"ÏLR
v
1(1)-(3)ÚR
f
2§k−3+τ(v
4
→f
4
)+τ(v
5
→
f
4
)+τ(w
2
→f
4
)+τ(s
1
→f
4
)+τ(s
2
→f
4
) ≥0§=µf
4
´Ð"
2)bf
5
+
(f)=1"dé¡5kn«œ/µd(f
2
)≥5¶d(f
3
)≥5¶d(f
4
)≥5"XJd(f
3
)≥5
½d(f
4
)≥5§ÏLR
v
1(1)-(4)§R
v
2(2)ÚR
v
3(1)f
3
(f)−n
3
g
(f)=0"Ïd§f
3
(f)−n
3
g
(f)=
0 ≤5n
0
f
"XJd(f
2
) ≥5§KÏLR
v
1(1)-(4)§R
v
2(2)§R
v
2(4)-(9)ÚR
v
3(1)§f
3
(f)−n
3
g
(f) ≤
1§τ(v
1
→f)=
3
5
§τ(v
2
→f)≥
2
5
"3)bf
5
+
(f)=0"ÏLR
v
1(1)-(4)§R
v
2(2)§R
v
2(4)–
(9)ÚR
v
3(1)§kf
3
(f)−n
3
g
(f) ≤1§τ(v
1
→f) =
3
5
§τ(v
2
→f) =
3
5
"Ïd§f
3
(f)−n
3
g
(f) ≤5n
0
f
"
nþ¤ã§XJf´G5-¡§Kf
3
(f)−n
3
g
(f) ≤5n
0
f
"
y3·‚y²Gz‡¡fÑkšKŠ"-d(f)≥6"ÏLR
v
1(7)§R
v
2(10)§R
v
3(4)
ÚR
f
2§kc
0
(f)≥0"-d(f)=5§dR
v
1(6)§R
v
2(4)–(9)§R
v
3(3)ÚÚn2.3•§d:D‰5¡
Š–•
1
5
§…f
3
(f)−n
3
g
(f) ≤5n
0
f
"Ïd§c
0
(f) ≥−1+5×
1
5
≥0"-f´G4-¡§KÏL
R
v
1(5)§R
v
2(3)ÚR
v
3(2)§kc
0
(f) = −2+
1
2
+
1
2
+
1
2
+
1
2
= 0"
-d(f) = 3"éu3-¡f§^v
1
§v
2
Úv
3
^žL«fn‡º:"^f
1
§f
2
Úf
3
©OL«†fk
ú>v
1
v
2
§v
2
v
3
Úv
3
v
1
¡"
œ/1.n
4
(f)=3"Xã2¤«§s
1
†f3v
1
:?éá§s
2
†f3v
2
:?éá§s
3
†f3v
3
:?
éá"ŠâÚn2.3§f
3
(f) ≤1"f
1
§f
2
Úf
3
¥Ñ–k˜‡5
+
-º:"
(1.1)f
3
(f)=0"bf–†˜‡4
+
-¡éá"KÏLR
v
1(1)-(4)ÚR
f
2-3kc
0
(f)≥−3 +
min{
4
5
+
4
5
+
7
5
,
4
5
+
4
5
+
7
6
+
1
4
,
5
6
+
7
6
+
7
6
,
4
5
+
7
5
+
7
6
,
7
6
+
7
6
+
7
6
}≥0bf†n‡3-¡éá§=µs
1
§
s
2
Ús
3
Ñ´Ð3-¡"dÚn2.3•f
3
(f) = 0§f
4
(f) = 0"?رen«ŒUµ
•bf
5
(f)≥2"w,§f
3
(s
1
)=0§f
3
(s
2
)=0§f
3
(s
3
)=0"XJs
1
§s
2
Ús
3
¥–˜‡
k ü‡5
+
-º:§½ö˜‡5
+
-º:Ú˜‡AÏ4-º:§½öü‡AÏ4-º:§KÏLR
v
1(2)§
R
f
1(2)ÚR
f
3kc
0
(f)≥−3+
4
5
+
4
5
+
4
5
+
3
5
≥0"ÄK§f
1
§f
2
Úf
3
–kü‡I‡‰fDŠ"Ø
”˜„5§-d(f
1
)=d(f
2
)=5§d(f
3
)≥5"ŠâÚn3.1ÚÚn3.2§5
+
¡‰ƒ€3-
DOI:10.12677/pm.2021.1181761596nØêÆ
4(§¦ï
¡DŠ–•
1
5
"XJ−3 +
4
5
+
4
5
+
4
5
+ τ(f
2
→f) + τ(f
3
→f)≥0§Kféuf
1
´Ð¶XJ
−3+
4
5
+
4
5
+
4
5
+τ(f
2
→f)+τ(f
3
→f) <0§Kféuf
1
´€"ŠâÚn3.2kτ(f
1
→f) ≥
1
5
"
Ïd§−3+
4
5
+
4
5
+
4
5
+τ(f
2
→f)+τ(f
3
→f)+τ(f
1
→f) ≥0"
•bf
5
(f) = 1§f
6
+
(f) = 2"Ø”˜„5§-d(f
1
) = d(f
3
) ≥6§d(f
2
) = 5"®•f
3
(s
1
) ≤1"
XJf
3
(s
1
) = 1§KÏLR
v
1(1)-(2)ÚR
f
1-3 c
0
(f) ≥−3+
5
6
+
4
5
+
4
5
+min{
3
5
,
1
4
+
1
4
+
1
10
,
1
4
+
1
4
+
1
5
,
1
4
+
1
3
}≥0"XJf
3
(s
1
) = 0§s
1
§s
2
Ús
3
¥–˜‡kü‡5
+
-º:§½ö˜‡5
+
-º:Ú˜‡
AÏ4-º:§½öü‡AÏ4-º:ž§ÏLR
v
1(2)§R
f
1(2)ÚR
f
3 kc
0
(f) ≥−3+
4
5
+
4
5
+
4
5
+
3
5
≥0"
s
1
§s
2
Ús
3
¥k–õ˜‡5
+
-º:½–õ˜‡AÏ4-º:ž§f
i
(i∈{1,2,3})I‡‰fDŠ"Ï
d§ÏLÚn3.1§Ún3.2§R
v
1(1)-(2)ÚR
f
2-3§−3+
4
5
+
4
5
+
4
5
+τ(f
1
→f)+τ(f
3
→f) ≥0
½ö−3+
4
5
+
4
5
+
4
5
+τ(f
2
→f)+τ(f
3
→f)+τ(f
1
→f) ≥0"
•bf
6
+
(f) = 3"ÏLÚn3.1ÚR
f
1τ(f
i
→f) ≥
1
4
i∈{1,2,3}"ÏLR
v
1(1)ÚR
f
2
c
0
(f) ≥−3+
5
6
+
5
6
+
5
6
+
1
4
+
1
4
+
1
4
≥0"
(1.2)f
3
(f)=1"Xã2(b)¤«§bd(f
3
)=3§d(s
1
)=d(s
3
)=d(f
1
)=d(f
2
)≥6"X
Jd(s
2
) = 3§ÏLR
v
1(1)ÚR
f
2kc
0
(f) ≥−3+
5
6
+
5
6
+
5
6
+
1
4
+
1
4
≥0"XJd(s
2
) = 4§ÏLR
v
1(1)§
R
v
1(3)ÚR
f
2kc
0
(f)≥−3+
5
6
+
5
6
+
7
6
+
1
4
≥0"XJd(s
2
)≥5§ÏLR
v
1(1)ÚR
v
1(4)kc
0
(f)≥
−3+
5
6
+
5
6
+
7
5
≥0"
œ/2.n
4
(f) = 2 §n
5
+
(f) = 1"Ø”˜„5§-d(v
3
) ≥5"bf
3
(f) = 0§ŠâR
v
2ÚR
v
3§
÷v^‡5
+
-º:‰3-¡DŠ•
7
5
"Ïd§ÏLR
v
1(1)-(4)§R
v
2(1)-(2)ÚR
v
3(1)kc
0
(f)≥−3 +
4
5
+
4
5
+
7
5
≥0"bf
3
(f)=1§-f
3
´3-¡§Xã2(c)¤«§ŠâÚn2.3§d(f
1
)=d(f
2
)≥6"
XJd(v
3
) = 5§v
3
†n‡3-¡ƒ§ÏLR
v
1(1)§R
v
1(3)-(4)§R
v
2(1)ÚR
f
2c
0
(f) ≥−3+
5
6
+
17
15
+
5
6
+
1
4
≥0"ÄK§ÏLR
v
1(1)-(4)§R
v
2(1)-(2)ÚR
v
3c
0
(f) ≥−3+
4
5
+
4
5
+
7
5
≥0"dé
¡5§d(f
2
)=3†d(f
3
)=3˜"y3=•Äd(f
1
)=3§Xã2(d)¤«§d(f
2
)=d(f
2
)≥6§Ï
LR
v
1(1)§R
v
2(1)-(2)ÚR
v
3(1)c
0
(f) ≥−3+
7
5
+
5
6
+
5
6
≥0"
Figure2.TheconfigurationsusedinTheorem0.2
ã2.½n0.2˜ã
œ/3.n
4
(f) = 1§n
5
+
(f) = 2"Ø”˜„5§-d(v
2
) = 4"bf
3
(f) = 0§ÏLR
v
1(1)-(4)§
R
v
2(1)-(2)§R
v
3(1)ÚR
f
1(2)§kc
0
(f) ≥−3+
7
5
+
4
5
+
7
5
−
3
5
≥0"bf
3
(f) = 1§-d(f
1
) = 3§Xã
2(e) ¤«§d(f
2
) = d(f
3
) ≥6"ÏLR
v
1(1)§R
v
2(1)-(2)ÚR
v
1(1) kc
0
(f) ≥−3+
17
15
+
7
5
+
5
6
≥0"d
é¡5§d(f
2
) =3†d(f
1
) =3˜"bd(f
3
) =3"XJv
1
Úv
3
Ù¥˜‡´5-º:§…†n‡3-¡
ƒ§,˜:´5
+
-º:§Ø”˜„5§-v
3
´Xã2(f)¤«5-¡§ÏLR
v
1(1)§R
v
1(3)-(4)§
R
v
2(1)-(2)§R
v
3(1)ÚR
f
1(1) kc
0
(f) ≥−3+
17
15
+
17
15
+
5
6
−
1
10
≥0"ÄK§ÏLR
v
1(1)§R
v
1(3)-(4)§
DOI:10.12677/pm.2021.1181761597nØêÆ
4(§¦ï
R
v
2(1)-(2)§R
v
3(1)ÚR
f
1(2)kc
0
(f) ≥−3+
7
5
+
5
6
+
7
5
−
3
5
≥0"
œ/4.n
5
+
(f) = 3"ÏLR
v
2(1)-(2)ÚR
v
3(1)kc
0
(f) ≥−3+
17
15
+
17
15
+
7
5
≥0"
y3·‚y²Gz‡:vkšKŠ"
-d(v) = 4"ÏLÚn2.2kf
3
(v) ≤2"XJf
3
(v) = 2§ÏLR
v
1(1)-(2)ÚR
v
1(6)-(7)kc
0
(v) ≥
2−max{2×
4
5
+2×
1
5
,2×
5
6
+2×
1
6
,2×
4
5
+
1
6
+
1
5
}≥0"XJf
3
(v)=1§ÏLR
v
1(3)-(7)
kc
0
(v) ≥2−max{
1
2
+
7
6
+2×
1
6
,
7
5
+f
5
(v)×
1
5
+f
6
+
(v)×
1
6
}≥0"XJf
3
(v) = 0§ÏLR
v
1(5)-(7)§
kc
0
(v) ≥2−max{f
4
(v)×
1
2
+f
5
(v)×
1
5
+f
6
+
(v)×
1
6
}≥0"
-d(v)=5"ÏLÚn2.2kf
3
(v)≤3"XJf
3
(v)=3"ÏLR
v
2(1)kc
0
(v)≥4 −
17
15
−
17
15
−
7
5
−2×
1
6
≥0"XJf
3
(v)=2§…ü‡3-¡ƒ§ÏLR
v
2(4)kc
0
(v)≥4−max{2 ×
7
5
+2×
1
6
+
1
2
,2×
7
5
+2×
1
6
+
3
5
,2×
7
5
+3×
1
6
}≥0"XJü‡3-¡Øƒ§ŠâR
v
2(5)-
(8)?رeA«œ/µÏLR
v
2(2)ÚR
v
2(5)1§c
0
(v)=4−
3
5
−
1
5
−
2
5
−2 ×
7
5
=0¶ÏL
R
v
2(2)ÚR
v
2(5)2§c
0
(v)=4−
3
5
−
3
10
−
3
10
−2×
7
5
=0¶ÏLR
v
2(2)ÚR
v
2(6)§kc
0
(v)≥
4−
3
5
−
2
5
−
1
6
−2 ×
7
5
≥0¶ÏLR
v
2(2)ÚR
v
2(7)§kc
0
(v)≥4−
2
5
−
2
5
−
1
6
−2 ×
7
5
≥0¶ÏL
R
v
2(2)ÚR
v
2(8)§kc
0
(v) ≥4−
3
5
−2×
1
6
−2×
7
5
≥0"XJf
3
(v) = 1§ÏLR
v
2(2)-(3)ÚR
v
2(9)-
(10)§kc
0
(v)≥4−
7
5
−max{f
4
(v) ×
1
2
+ f
5
(v) ×
3
5
+ f
6
+
(v) ×
1
6
}≥0"XJf
3
(v)=0"ÏL
R
v
2(3)ÚR
v
2(9)-(10)§kc
0
(v) ≥4−max{f
4
(v)×
1
2
+f
5
(v)×
3
5
+f
6
+
(v)×
1
6
}≥0"
-d(v)=k(k≥6)"Ï LR
v
3§XJk≥7§Kc
0
(v)>(2k−6) −max{f
3
(v)×
7
5
+ (k−
f
3
(v))×
3
5
}≥0"Ïd=•Äk= 6"XJk= 6§kf
3
(v) ≤4"XJf
3
(v) = 4§ÏLR
v
3(1)ÚR
v
3(4)
c
0
(v) = 6−4×
7
5
−2×
1
6
≥0"XJf
3
(v) ≤3§ÏLR
v
3kc
0
(v) ≥6−max{f
3
(v)×
7
5
+f
4
(v)×
1
2
+
f
5
(v)×
3
5
+f
6
+
(v)×
1
6
}≥0
–d§·‚y²é¤kv∈V(G)Úf∈F(G)Ñ÷v
P
c
0
(v)+
P
c
0
(f)≥0"ù†ÏL
î.úªoŠ´Kgñ§½ny"
nþ§·‚¤é½n0.1Ú½n0.2y²"
Ä7‘8
ìÀŽg,‰ÆÄ7(ZR2020MA045)"
ë•©z
[1]Yang,J,McAuley,J.andLeskovec,J.(2013)CommunityDetectioninNetworkswithN-
odeAttributes.2013IEEE13thInternationalConferenceonDataMining,Dallas,TX,7-10
December2013,1151-1156.https://doi.org/10.1109/ICDM.2013.167
[2]Bi,Y.J.,Wu,W.L.,Zhu,Y.Q.,Fan,L.D.andWang,A.L.(2014)ANature-InspiredInflu-
encePropagationModelfortheCommunityExpansionProblem.JournalofCombinatorial
Optimization,28,513-528.https://doi.org/10.1007/s10878-013-9686-9
DOI:10.12677/pm.2021.1181761598nØêÆ
4(§¦ï
[3]Lancichinetti, A.and Fortunato,S.(2009) Community DetectionAlgorithms:AComparative
Analysis.PhysicalReviewE,80,ArticleID:056117.
https://doi.org/10.1103/PhysRevE.80.056117
[4]Wagenseller,P.,Wang,F.andWu,W.L.(2018)SizeMatters:AComparativeAnalysisof
CommunityDetectionAlgorithms.IEEETransactionsonComputationalSocialSystems,5,
951-960.https://doi.org/10.1109/TCSS.2018.2875626
[5]Chen,G.andWang,Y.(2011)CommunityDetectioninComplexNetworksUsingExtremal
OptimizationModularityDensity.JournalofHuazhongUniversityofScienceandTechnology
(NaturalScienceEdition),39,82-85.
[6]Tong,G.M.,Cui,L.,Wu,W.L.,Liu,C.andDu,D.Z.(2016)Terminal-Set-EnhancedCom-
munityDetectioninSocialNetworks.The35thAnnualIEEEInternationalConferenceon
ComputerCommunications,SanFrancisco,CA,10-14April2016,1-9.
https://doi.org/10.1109/INFOCOM.2016.7524473
[7]Lu,Z.X.,Wu,W.L.,Chen,W.D.,Zhong,J.F.,Bi,Y.J.andGao,Z.(2013)TheMaximum
CommunityPartitionProbleminNetworks.DiscreteMathematics,AlgorithmsandA pplica-
tions,5,ArticleID:1350031.https://doi.org/10.1142/S1793830913500316
[8]Chartrand,G.,Kronk,H.V.andWall,C.E.(1968)ThePoint-ArboricityofaGraph.Israel
JournalofMathematics,6,169-175.https://doi.org/10.1007/BF02760181
[9]Chartrand,G. andKronk,H.V. (1969)ThePoint-Arboricity ofPlanar Graphs.Journalofthe
LondonMathematicalSociety,44,612-616.https://doi.org/10.1112/jlms/s1-44.1.612
[10]Fortunato,S.andHric,D.(2016)CommunityDetectioninNetworks:AUserGuide.Physics
Reports,659,1-44.https://doi.org/10.1016/j.physrep.2016.09.002
[11]Wang,L.,Wang,J.,Bi,Y.J.,Wu,W.L.,Xu,W.andLian,B.(2014)Noise-ToleranceCom-
munityDetectionandEvolutioninDynamicSocialNetworks.JournalofCombinatorialOp-
timization,28,600-612.https://doi.org/10.1007/s10878-014-9719-z
[12]Raspaud,A.andWang,W.(2008)OntheVertex-ArboricityofPlanarGraphs.European
JournalofCombinatorics,29,1064-1075.https://doi.org/10.1016/j.ejc.2007.11.022
[13]Wang, W. andLin, K.W.(2002)Choosability andEdgeChoosabilityof PlanarGraphswithout
FiveCycles.AppliedMathematicsLetters,15,561-565.
https://doi.org/10.1016/S0893-9659(02)80007-6
[14]Fijav˘z,G.,Juvan,M.,Mohar,B.and
˘
Skrekovski,R.(2002)PlanarGraphswithoutCyclesof
SpecificLengths.EuropeanJournalofCombinatorics,23,377-388.
https://doi.org/10.1006/eujc.2002.0570
[15]Huang,D.,Shui,W.C.andWang,W.(2012)OntheVertex-ArboricityofPlanarGraphs
without7-Cycles.DiscreteMathematics,312,2304-2315.
https://doi.org/10.1016/j.disc.2012.03.035
DOI:10.12677/pm.2021.1181761599nØêÆ
4(§¦ï
[16]Chen,M.,Raspaud,A.andWang,W.(2012)Vertex-ArboricityofPlanarGraphswithout
IntersectingTriangles.EuropeanJournalofCombinatorics,33,905-923.
https://doi.org/10.1016/j.ejc.2011.09.017
[17]Huang,D.andWang,W.F.(2013)Vertex-ArboricityofPlanarGraphswithoutChordal6-
Cycles.InternationalJournalofComputerMathematics,90,258-272.
https://doi.org/10.1080/00207160.2012.727989
[18]Cai,H.,Wu,J.andSun,L.(2018)VertexArboricityofPlanarGraphswithoutIntersecting
5-Cycles.JournalofCombinatorialOptimization,35,365-372.
https://doi.org/10.1007/s10878-017-0168-3
[19]Chen, H.L., Teng, W.S., Wang, H.J.and Gao, H.W.(2018)Vertex Arboricityof PlanarGraphs
without5-CyclesIntersectingwith6-Cycles.ScholarsJournalofPhysics,Mathematicsand
Statistics,5,322-327.
[20]Teng,W.S.,Wang,H.J.,Chen,H.L.andLiu,B.(2019)SocialStructureDecompositionwith
SecurityIssue.IEEEAccess,7,82785-82793.https://doi.org/10.1109/ACCESS.2019.2924052
[21]Choi,I.andZhang,H.(2014)VertexArboricityofToroidalGraphswithaForbiddenCycle.
DiscreteMathematics,333,101-105.https://doi.org/10.1016/j.disc.2014.06.011
[22]Tao,F.Y.andLin,W.S.(2016)OntheEquitableVertexArboricityofGraphs.International
JournalofComputerMathematics,93,844-853.
https://doi.org/10.1080/00207160.2015.1023794
[23]Yang,A.F.andYuan,J. (2007)On theVertexArboricity ofPlanar GraphsofDiameterTwo.
DiscreteMathematics,307,2438-2447.https://doi.org/10.1016/j.disc.2006.10.017
[24]Guo,Z.,Zhao,H.andMao,Y.(2015)OntheEquitableVertexArboricityofCompleteTri-
partiteGraphs.DiscreteMathematicsAlgorithmsandApplications,7,225-243.
https://doi.org/10.1142/S1793830915500561
[25]Cui,X.Y.,Teng,W.S.,Liu,X.andWang,H.J.(2020)ANoteofVertexArboricityofPlanar
Graphswithout4-CyclesIntersectingwith6-Cycles.TheoreticalComputerScience, 836,53-58.
https://doi.org/10.1016/j.tcs.2020.06.009
DOI:10.12677/pm.2021.1181761600nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.