设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2021,11(8),1585-1600
PublishedOnlineAugust2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.118176
Ø
¹
ƒ
á
²
¡
ã
:
Î
Ý
¯
K
444
(((
∗
§§§
¦¦¦
ïïï
†
“
Œ
Æ
ê
Æ
†
Ú
O
Æ
§
ì
À
“
Â
v
F
Ï
µ
2021
c
7
20
F
¶
¹
^
F
Ï
µ
2021
c
8
20
F
¶
u
Ù
F
Ï
µ
2021
c
8
27
F
Á
‡
3
ì
ä
ï
Ä
¥
§
ì
(
y
©
˜
†
´
˜
‡
k
d
Š
ï
Ä
‘
K
"
Ñ
u
S
•
Ä
§
é
˜
‡
#
ì
(
y
©
¯
K
?
1ï
Ä
§
§
Œ
±
3
ã
Ø
¥
=
z
•
•
z
¯
K
"
ã
G
:
Î
Ý
´
é
G
:
8
?
1
º:
X
Ú
§
¦
z
‡
ô
Ú
a
Ñ
f
ã
´
G
Ü
•
ô
Ú
ê
§
˜
„
^
Î
Ò
va
(
G
)
L
«
"
˜
„
/
§
é
u
?
¿
²
¡
ã
G
§
va
(
G
)
≤
3
§
…
é
?
¿
š
˜
ã
G
§
va
(
G
)
≥
1
¤
á
"
w
,
§
va
(
G
) =1
…
=
ã
G
´
˜
‡
Ã
ã
"
é
u
,
A
Ï
œ
¹
§
X
J
ã
G
´
˜
‡
Ø
¹
3
-
²
¡
ã
§
va
(
G
)
≤
2
"
Raspaud
Ú
Wang
<
y
²
X
J
ã
G
´
˜
‡
Ø
¹
4
-
½
Ø
¹
5
-
²
¡
ã
§
K
va
(
G
)
≤
2
"
d
§
Huang,Shui
Ú
Wang
<
y
²
X
J
ã
G
´
˜
‡
Ø
¹
7
-
²
¡
ã
§
K
va
(
G
)
≤
2
"
3
©
¥
§
·
‚
y
²
X
J
ã
G
´
˜
‡
Ø
¹
ƒ
3
-
Ú
4
-
²
¡
ã
§
½
ö
Ø
¹
ƒ
4
-
Ú
5
-
²
¡
ã
§
K
va
(
G
)
≤
2
"
'
…
c
²
¡
ã
§
:
Î
Ý
§
ƒ
§
VertexArboricityProblemofPlanar
GraphswithoutAdjacentShortCycles
XingLiu
∗
,HuijuanWang
†
∗
1
˜
Š
ö
"
†
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
4
(
,
¦
ï
.
Ø
¹
ƒ
á
²
¡
ã
:
Î
Ý
¯
K
[J].
n
Ø
ê
Æ
,2021,11(8):1585-1600.
DOI:10.12677/pm.2021.118176
4
(
§
¦
ï
CollegeofMathematicsandStatistics,QingdaoUniversity,QingdaoShandong
Received:Jul.20
th
,2021;accepted:Aug.20
th
,2021;published:Aug.27
th
,2021
Abstract
Intheresearchofsocialnetworks,socialstructuredecompositionhasalwaysbeena
valuableresearchtopic.Forsecurityreasons,westudyanewsocialstructuredecom-
positionproblem,whichcanbedecomposedintoaproblemofminimizationingraph
theory.Thevertexarboricityofagraph
G
,denotedby
va
(
G
)
,istheminimumnumber
ofsubsetssuchthattheverticesof
G
canbecoloredandeverycolorclassinducesan
acyclicgraphsuchasaforestof
G
.Normally,
va
(
G
)
≤
3
foreveryplanargraph
G
and
va
(
G
)
≥
1
foreverynonemptygraph
G
.Thereisnodoubtthat
va
(
G
) = 1
ifandonlyif
G
isanacyclicgraph.Forsomespecialcases,itisknownthat
va
(
G
)
≤
2
if
G
isaplanar
graphwithout
3
-cycles.Recently,RaspaudandWang
etal.
provedthat
va
(
G
)
≤
2
if
G
isaplanargraphwithout
4
-cyclesorwithout
5
-cycles.Inaddition,Huang,Shiu,
andWangshowedthatif
G
isaplanargraphwithout
7
-cycles,then
va
(
G
)
≤
2
.Inthis
paper,weprovethatif
G
isaplanargraphwithoutadjacent
3
-cyclesand
5
-cycles,or
withoutadjacent
4
-cyclesand
5
-cycles,then
va
(
G
)
≤
2
.
Keywords
PlanarGraph,VertexArboricity,Adjacent,Cycle
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
ì
(
y
©
¯
K
3
ì
ä
ï
Ä
¥
ä
k
-
‡¿Â
"
~
X
©
z
[1–9]
®
²
é
Ù
?
1
N
õ
ï
Ä
"
©
•
Ä
˜
‡
#
ì
(
y
©
¯
K
"
·
‚
ò
¤
k
ì
ë
†
ö
y
©
•
Ø
ƒ
+
|
§
ù
z
‡
|
Ñ
¬
>
u
˜
‡
ë
Ã
‚
f
ä
"
d u
,
S
Ï
ƒ
§
·
‚
I
‡
•
Ä
Ã
5
§
Ã
(
Œ
±
é
N
´
/
£
O
"
Ã
(
¥
!
:
ƒ
m
•
3
é
r
ƒ
'
5
(
"
l
ã
Ø
Ý
§
·
‚
Œ
±
r
ù
DOI:10.12677/pm.2021.1181761586
n
Ø
ê
Æ
4
(
§
¦
ï
‡
ì
(
y
©
¯
K
L
ã
•
˜
‡
•
z
¯
K
"
©
=
•
Ä
k
•
!
{
ü
ã
"
G
•
²
¡
ã
"
·
‚
¦
^
Î
Ò
V
(
G
)
!
E
(
G
)
Ú
F
(
G
)
5
©
OL
«
ã
G
:
8
!
ã
G
>
8
Ú
ã
G
¡
8
"
4
(
G
)
Ú
δ
(
G
)
©
OL
«
ã
G
•
Œ
Ý
Ú
ã
G
•
Ý
"
•
Ý
•
k
¡
•
k
-
"
·
‚
¡
ü
‡
´
ƒ
§
X
J
ù
ü
‡
–
k
˜
‡ú
º:
¶
¡
ù
ü
‡
ƒ
§
X
J
§
‚
–
k
˜
^
ú
>
"
ã
G
Ã
k
/Ú
´
•
l
V
(
G
)
k
Ú
8
Ü
N
ψ
§
¦
/
Ó
˜
«
ô
Ú
>
Ñ
f
ã
´
Ã
"
X
J
k
´¦
G
k
˜
‡
Ã
k
/Ú
•
ê
§
@
o
·
‚
¡
k
•
G
:
Î
Ý
§
3
©
¥
^
va
(
G
)
L
«
"
ã
:
Î
Ý
V
g
´
1968
c
Ä
k
d
Chartrand
<
Ú
\
[10]
§
¦
‚
y
²
?
¿
ã
G
:
Î
Ý
va
(
G
)
≤d
1+∆(
G
)
2
e
§
…
é
?
¿
š
˜
ã
G
§
va
(
G
)
≥
1
§
…
=
ã
G
´
Ã
ã
§
va
(
G
)=1
"
Chartrand
Ú
Kronk[11]
3
1969
c
y
²
é
?
¿
²
¡
ã
G
§
va
(
G
)
≤
3
"
˜
„
/
§
X
J
ã
G
´
˜
‡
Ø
¹
3-
²
¡
ã
§
K
va
(
G
)
≤
2
"
3
©
z
[12–15]
¥y
²
§
X
J
ã
G
´
˜
‡
Ø
¹
4-
!
5-
!
6-
Ú
7-
²
¡
ã
§
K
va
(
G
)
≤
2
"
2012
c
§
Chen[16]
<
ï
Ä
Ø
¹
3-
²
¡
ã
G
:
Î
Ý
va
(
G
)
≤
2
"
3
e
5
˜
c
p
§
Huang
Ú
Wang[17]
y
²
é
u
v
k
¹
u
6-
²
¡
ã
G
:
Î
Ý
va
(
G
)
≤
2
"
Cai[18]
<
y
²
é
u
Ø
¹
ƒ
5-
²
¡
ã
G
:
Î
Ý
va
(
G
)
≤
2
"
3
Ó
˜
c
§
©
z
[19]
`
²
Ø
¹
ƒ
5-
†
6-
²
¡
ã
G
:
Î
Ý
va
(
G
)
≤
2
"
©
z
[20]
L
²
é
u
²
¡
ã
G
§
Ø
¹
3-
†
4-
½
ö
3-
†
5-
ƒ
§
K
va
(
G
)
≤
2
"
,
§
„
k
Ü
©
ƒ
'
(
J
Œ
l
©
z
[21–25]
¥
w
"
·
‚
í
2
©
z
[12,13]
Ú
[15]
(
J
§
±
e
(
Ø
"
½
n
1.1
X
J
G
´
˜
‡
Ø
¹
ƒ
3
-
†
5
-
²
¡
ã
§
@
o
va
(
G
)
≤
2
"
½
n
1.2
X
J
G
´
˜
‡
Ø
¹
ƒ
4
-
†
5
-
²
¡
ã
§
@
o
va
(
G
)
≤
2
"
2.
5
º
•
£
ã
•
B
§
·
‚
Ä
k
‰
Ñ
©
¥
ò
‡
¦
^
˜
Î
Ò
"
ã
G
•
²
¡
ã
§
é
u
ã
G
¥
º
:
v
§
·
‚
^
d
(
v
)
L
«
v
Ý
§
=
†
v
ƒ
>
ê
"
÷
v
d
(
v
) =
k
º:
¡
•
k
-
:
§
÷
v
d
(
v
)
≥
k
º
:
¡
•
k
+
-
:
§
÷
v
d
(
v
)
≤
k
º:
¡
•
k
−
-
:
"
Ó
§
é
u
G
¥
¡
f
§
·
‚
¦
^
d
(
f
)
L
«
f
Ý
§
=
f
>
.
•
Ý
"
d
(
f
) =
k
§
¡
¡
f
•
k
-
¡
¶
d
(
f
)
≥
k
§
¡
Ù
•
k
+
-
¡
¶
d
(
f
)
≤
k
§
¡
Ù
•
k
−
-
¡
"
˜
‡
k
-
¡
§
÷
Ù
>
.
^
ž
•
•
\
ë
Y
º:
v
1
,
v
2
,
···
,
v
k
¡
(
v
1
,v
2
,
···
,v
k
)-
¡
½
(
d
(
v
1
)
,d
(
v
2
)
,
···
,d
(
v
k
))-
¡
"
é
u
¡
f
§
·
‚
¦
^
f
k
(
f
)
L
«
†
f
ƒ
k
¡
ê
§
^
n
k
(
f
)
±
L
«
†
f
ƒ
k
-
:
\
ê
8
"
é
u
º:
v
§
†
v
ƒ
k
-
º:
ê
^
n
k
(
v
)
L
«
§
†
v
ƒ
i
-
¡
ê
^
f
i
(
v
)
L
«
"
é
u
¡
(
v
1
,v
2
,
···
,v
k
)
§
^
f
i
L
«
†
f
k
ú
>
v
i
v
i
+1
¡
§
(
i
=1,2,
···
,
k
−
1)
§
·
‚
^
f
k
L
«
†
f
k
ú
>
v
k
v
1
¡
"
é
u
k
-
º:
v
§
·
‚
¦
^
v
1
,v
2
,
···
,v
k
L
«
†
v
^
ž
ƒ
k
‡
ë
Y
º:
"
,
^
f
i
L
«
vv
i
Ú
vv
i
+1
(
i
=1,2,
···
,
k
−
1)
\
¡
§
^
f
k
L
«
vv
k
Ú
vv
1
\
¡
"
é
u
4-
º:
§
·
‚
¡
v
´
A
Ï
§
X
J
f
3
(
v
)=1
Ú
f
5
+
(
v
)=3
"
é
u
4-
º:
v
§
·
‚
¡
ƒ
•
f
1
†
f
3
3
v
?
ƒ
‡
§
f
2
†
f
4
3
v
?
ƒ
‡
"
3
©
e
ã
/
¥
§
±
›
Ñ
Ù
¤
k
>
ž
§
º:
^
•
L
«
§
Œ
U
v
k
±
›
Ñ
¤
k
>
ž
§
º
:
^
◦
L
«
"
DOI:10.12677/pm.2021.1181761587
n
Ø
ê
Æ
4
(
§
¦
ï
3.
•
‡
~
5
Ÿ
y
3
·
‚
Ï
L
‡
y
{
?
1
½
n
0.1
Ú
½
n
0.2
y
²
"
Ä
k
b
½
n
0.1
Ú
½
n
0.2
´
†
"
é
u
½
n
0.1
§
ã
G
´
˜
‡
º:
Ú
>
Ú
•
4
‡
~
§
K
va
(
G
)=3
"
w
,
§
ã
G
´
˜
‡
2
ë
Ïã
§
=
ã
G
?
¿
ü
^
>
Ñ
u
˜
‡ú
þ
"
y
3
·
‚
‰
Ñ
ã
G
(
5
Ÿ
X
e
µ
Ú
n
3.1
[15]
δ
(
G
)
≥
4
"
Ú
n
3.2
[15,17]
b
3-
¡
(
v
1
,v
2
,v
3
)
Ú
3-
¡
(
v
4
,v
3
,v
2
)
ƒ
§
§
‚
k
˜
‡
Ó
>
v
2
v
3
"
X
J
d
(
v
2
)+
d
(
v
3
)
≤
9
§
@
o
d
(
v
1
)+
d
(
v
4
)
≥
9
"
Ú
n
3.3
[12]
f
•
3
-
¡
§
n
4
(
f
)=3
"
X
J
k
˜
‡
k
-
(
v
1
,v
2
,
···
,v
k
)
§
Ù
¥
k
≥
4
§
é
u
z
‡
i
∈{
1
,
2
,
···
,k
}
÷
v
d
(
v
i
) = 4
§
K
(
v
1
,v
2
,
···
,v
k
)
Ø
†
f
ƒ
"
Ó
§
é
u
½
n
0.2
§
ã
G
´
˜
‡
º:
Ú
>
Ú
•
4
‡
~
§
ã
G
(
5
Ÿ
†
½
n
0.1
ã
G
(
5
Ÿ
ƒ
Ó
"
4.
D
Š
•
y
²
½
n
0.1
Ú
½
n
0.2
§
·
‚
3
!
¥
0
D
Š
5
K
"
ã
G
•
²
¡
ã
§
é
u
ã
G
¤
k
º:
Ú
ã
G
¤
k
¡
§
·
‚
½
Â
˜
‡
Š
¼
ê
c
"
Ä
k
§
·
‚
‰
ã
G
z
‡
º:
v
˜
‡
Š
c
(
v
) = 2
d
(
v
)
−
6
§
±
9
z
‡
¡
f
Š
c
(
f
) =
d
(
f
)
−
6
"
¯
¤
±•
µ
|
V
(
G
)
|−|
E
(
G
)
|
+
|
F
(
G
)
|
= 2(1)
X
v
∈
V
(
G
)
d
(
v
) =
X
f
∈
F
(
G
)
d
(
f
) = 2
|
E
(
G
)
|
(2)
Ï
L
î
.
ú
ª
ã
G
o
Š
´
K
µ
X
v
∈
V
(
G
)
c
(
v
)+
X
f
∈
F
(
G
)
c
(
f
) =
−
12
<
0
.
(3)
é
u
ü
‡
½
n
y
²
§
·
‚
Ñ
´
Š
â
e
¡
‰
Ñ
D
Š
5
K
§
‰
ã
G
¤
k
º:
Ú
¡
)
¤
˜
‡
#
D
Š
¼
ê
c
0
§
D
Љ
1
ž
§
o
Ú
ØC
"
=
µ
X
v
∈
V
(
G
)
c
(
v
)+
X
f
∈
F
(
G
)
c
(
f
) =
X
v
∈
V
(
G
)
c
0
(
v
)+
X
f
∈
F
(
G
)
c
0
(
f
)
.
(4)
3
e
¡
§
·
‚
ò
y
²
ù
˜
:
µ
X
v
∈
V
(
G
)
c
0
(
v
)+
X
f
∈
F
(
G
)
c
0
(
f
)
≥
0
.
(5)
DOI:10.12677/pm.2021.1181761588
n
Ø
ê
Æ
4
(
§
¦
ï
ù
Ò
—
g
ñ
•
3
§
¤
é
ü
‡
½
n
y
²
"
3
¡
Ø
ã
¥
§
Î
Ò
τ
(
v
→
f
)
L
«
v
=
£
f
Š
§
Ù
¥
v
∈
V
(
G
)
§
f
∈
F
(
G
)
"
Î
Ò
τ
(
f
→
f
1
)
L
«
f
=
£
f
1
Š
§
Ù
¥
f
∈
F
(
G
)
§
f
1
∈
F
(
G
)
"
4.1.
½
n
0.1
y
²
é
u
½
n
0.1
D
Š
5
K
X
e
µ
R1
.
½
v
´
†
¡
f
ƒ
4-
º:
"
1)
τ
(
v
→
f
) = 1
§
X
J
d
(
f
) = 3
§
f
3
(
v
) = 2
"
2)
τ
(
v
→
f
) =
3
2
§
X
J
d
(
f
) = 3
§
f
3
(
v
) = 1
"
3)
τ
(
v
→
f
) =
1
2
§
X
J
d
(
f
) = 4
"
4)
τ
(
v
→
f
) =
1
5
§
X
J
d
(
f
) = 5
"
R2
.
½
v
´
†
¡
f
ƒ
5-
º:
"
1)
τ
(
v
→
f
) =
4
3
§
X
J
d
(
f
) = 3
§
f
3
(
v
) = 3
"
2)
τ
(
v
→
f
) =
3
2
§
X
J
d
(
f
) = 3
§
f
3
(
v
)
≤
2
"
3)
τ
(
v
→
f
) =
1
2
§
X
J
d
(
f
) = 4
"
4)
τ
(
v
→
f
) =
1
5
§
X
J
d
(
f
) = 5
"
R3
.
½
v
´
†
¡
f
ƒ
6
+
-
º:
"
1)
τ
(
v
→
f
) =
3
2
§
X
J
d
(
f
) = 3
"
2)
τ
(
v
→
f
) =
1
2
§
X
J
d
(
f
) = 4
"
3)
τ
(
v
→
f
) =
1
5
§
X
J
d
(
f
) = 5
"
y
3
·
‚
ò
y
²
ã
G
z
‡
¡
f
Ñ
k
˜
‡
š
K
Š
"
Ä
k
é
w
,
§
ã
G
z
‡
6
+
-
¡
Ñ
k
˜
‡
š
K
Š
"
b
d
(
f
)=5
§
K
d
R1(4)
§
R2(4)
Ú
R3(3)
•
c
0
(
f
)=
−
1+5
×
1
5
=0
"
b
d
(
f
) = 4
§
K
d
R1(3)
§
R2(3)
Ú
R3(2)
•
c
0
(
f
) =
−
2+4
×
1
2
= 0
"
b
d
(
f
) = 3
§
K
d
R1(1)-(2)
§
R2(1)-(2)
Ú
R3(1)
•
c
0
(
f
)
≥−
3+3
×
1
≥
0
"
e
5
·
‚
ò
y
²
ã
G
z
‡
º:
v
Ñ
k
˜
‡
š
K
Š
"
b
d
(
v
) = 4
"
X
J
f
3
(
v
) = 2
§
K
Ï
L
R1(1)
c
0
(
v
) = 2
−
2
×
1 = 0
"
X
J
f
3
(
v
) = 1
§
K
Ï
L
R1(2)-(4)
c
0
(
v
)
≥
2
−
3
2
−
max
{
1
2
,
1
5
}≥
0
"
X
J
f
3
(
v
)=0,
K
Ï
L
R1(3)-(4)
c
0
(
v
)
≥
2
−
4
×
1
2
≥
0
"
d
(
v
)=5.
X
J
f
3
(
v
)=3,
K
Ï
L
R2(1)
c
0
(
v
)=4
−
4
3
×
3=0
"
X
J
f
3
(
v
)=2,
K
Ï
L
R2(2)-(4)
c
0
(
v
)
≥
4
−
2
×
3
2
−
max
{
1
2
,
1
5
}≥
0
"
X
J
f
3
(
v
) = 1,
K
Ï
L
R2(2)-(4)
c
0
(
v
)
≥
4
−
3
2
−
max
{
2
×
1
2
,
1
2
+
1
5
,
2
×
1
5
}≥
0
"
X
J
f
3
(
v
)=0,
K
Ï
L
R2(3)-(4)
c
0
(
v
)
≥
4
−
max
{
f
4
(
v
)
×
1
2
+
f
5
(
v
)
×
1
5
}≥
0
"
b
d
(
v
)=
k
+
(
k
≥
6)
"
X
J
k
≥
7
§
K
Ï
L
R3
·
‚
•
c
0
(
v
)
>
(2
k
−
6)
−
max
{
f
3
(
v
)
×
3
2
+(
k
−
f
3
(
v
))
×
1
2
}≥
0
"
Ï
d
§
·
‚
•
•
Ä
k
= 6
"
b
d
(
v
) = 6
"
X
J
f
3
(
v
) = 4,
K
Ï
L
R3(1)
c
0
(
v
) = 6
−
4
×
3
2
= 0
"
X
J
f
3
(
v
)=3,
K
Ï
L
R3(1)
c
0
(
v
)=6
−
3
×
3
2
>
0
"
X
J
f
3
(
v
)
≤
2,
K
Ï
L
R3(1)-(3)
c
0
(
v
)
≥
6
−
max
{
f
3
(
v
)
×
3
2
+
f
4
(
v
)
×
1
2
+
f
5
(
v
)
×
1
5
}≥
0
"
DOI:10.12677/pm.2021.1181761589
n
Ø
ê
Æ
4
(
§
¦
ï
n
þ
§
·
‚
y
²
é
¤
k
v
∈
V
(
G
)
Ú
f
∈
F
(
G
)
µ
P
c
0
(
v
)+
P
c
0
(
f
)
≥
0
"
ù
†
Ï
L
î
.
ú
ª
o
Š
´
K
g
ñ
§
½
n
y
"
4.2.
½
n
0.2
y
²
3
‰
Ñ
½
n
0.2
D
Š
5
K
ƒ
c
§
k
0
˜
‡
A
Ï
(
§
d
(
ò
3
R
v
2(5)-(7)
¥
¦
^
"
X
ã
1
¤
«
µ
d
(
v
)=5,
f
5
+
(
v
)=3
§
f
3
(
v
)=2
§
…
ü
‡
3-
¡
Ø
ƒ
"
Ø
”
˜
„
5
§
b
f
1
,
f
3
§
Ú
f
4
´
5
+
-
¡
§
f
2
Ú
f
5
´
3-
¡
"
X
J
f
5
(
v
)=3
§
v
4
´
˜
‡
4-
º:
§
f
3
(
v
4
)=1
§
=
†
v
4
\
3-
¡
7
†
f
3
½
f
4
ƒ
§
Ø
”
˜
„
5
§
b
3-
¡
†
f
4
ƒ
"
Figure1.
ThedischargingrulesiconinTheorem0.1
ã
1.
½
n
0.2
˜
D
Š
5
K
ã
«
½
n
0.2
D
Š
5
K
X
e
µ
R
v
1
.
v
´
†
f
ƒ
4-
º:
"
1)
τ
(
v
→
f
) =
5
6
§
X
J
d
(
f
) = 3
§
f
3
(
v
) = 2
§
f
5
(
v
) = 0
"
2)
τ
(
v
→
f
) =
4
5
§
X
J
d
(
f
) = 3
§
f
3
(
v
) = 2
§
f
5
(
v
)
≥
1
"
3)
τ
(
v
→
f
) =
7
6
§
X
J
d
(
f
) = 3
§
f
3
(
v
) = 1
§
f
4
(
v
) = 1
"
4)
τ
(
v
→
f
) =
7
5
§
X
J
d
(
f
) = 3
§
f
3
(
v
) = 1
§
f
4
(
v
) = 0
"
5)
τ
(
v
→
f
) =
1
2
§
X
J
d
(
f
) = 4
"
6)
τ
(
v
→
f
) =
1
5
§
X
J
d
(
f
) = 5
"
7)
τ
(
v
→
f
) =
1
6
§
X
J
d
(
f
) = 6
+
"
R
v
2
.
v
´
†
f
ƒ
5-
º:
"
1)
τ
(
v
→
f
1
)=
17
15
§
τ
(
v
→
f
2
)=
17
15
§
τ
(
v
→
f
3
)=
7
5
§
X
J
d
(
f
1
)=
d
(
f
2
)=
d
(
f
3
)=3
§
f
3
(
v
) = 3
§
f
1
†
f
2
ƒ
§
f
3
†
f
1
Ø
ƒ
§
f
3
†
f
2
Ø
ƒ
"
2)
τ
(
v
→
f
) =
7
5
§
X
J
d
(
f
) = 3
§
f
3
(
v
)
≤
2
"
3)
τ
(
v
→
f
) =
1
2
§
X
J
d
(
f
) = 4
"
4)
τ
(
v
→
f
) =
3
5
§
X
J
d
(
f
) = 5,
f
3
(
v
) = 2,
…
ü
‡
3-
¡
ƒ
"
5)
τ
(
v
→
f
1
) =
3
5
,
X
J
d
(
f
1
) =
d
(
f
3
) =
d
(
f
4
) = 5,
f
5
(
v
) = 3,
f
3
(
v
) = 2,
ü
‡
3-
¡
Ø
ƒ
"
a)
τ
(
v
→
f
3
) =
1
5
§
τ
(
v
→
f
4
) =
2
5
§
X
J
f
´
˜
‡
A
Ï
4-
¡
"
b)
τ
(
v
→
f
3
) =
3
10
§
τ
(
v
→
f
4
) =
3
10
§
X
J
v
4
´
˜
5
+
-
º:
½
v
4
´
˜
A
Ï
4-
º:
"
DOI:10.12677/pm.2021.1181761590
n
Ø
ê
Æ
4
(
§
¦
ï
6)
τ
(
v
→
f
1
)=
3
5
§
τ
(
v
→
f
3
)=
2
5
§
X
J
d
(
f
1
)=
d
(
f
3
)=5
§
f
3
(
v
)=2
§
ü
‡
3-
¡
Ø
ƒ
§
f
5
(
v
) = 2
§
f
6
+
(
v
) = 1
§
d
(
f
4
) = 6
+
§
f
1
†
f
3
Ø
ƒ
"
7)
τ
(
v
→
f
3
)=
2
5
§
τ
(
v
→
f
4
)=
2
5
§
X
J
d
(
f
3
)=
d
(
f
4
)=5
§
f
3
(
v
)=2
§
ü
‡
3-
¡
Ø
ƒ
§
f
5
(
v
) = 2,
f
6
+
(
v
) = 1,
d
(
f
1
) = 6
+
§
f
3
†
f
4
ƒ
"
8)
τ
(
v
→
f
) =
3
5
§
X
J
d
(
f
) = 5,
f
3
(
v
) = 2
§
ü
‡
3-
¡
Ø
ƒ
§
f
5
(
v
) = 1
"
9)
τ
(
v
→
f
) =
3
5
§
X
J
d
(
f
) = 5
…
f
3
(
v
)
≤
1
"
10)
τ
(
v
→
f
) =
1
6
§
X
J
d
(
f
) = 6
+
"
R
v
3
.
v
´
†
f
ƒ
6
+
-
º:
"
1)
τ
(
v
→
f
) =
7
5
§
X
J
d
(
f
) = 3
"
2)
τ
(
v
→
f
) =
1
2
§
X
J
d
(
f
) = 4
"
3)
τ
(
v
→
f
) =
3
5
§
X
J
d
(
f
) = 5
"
4)
τ
(
v
→
f
) =
1
6
§
X
J
d
(
f
) = 6
+
"
R
f
1
.
b
½
f
1
´
(4
,
4
,
4)-
¡
§
f
3
(
f
1
)=0
§
d
(
f
)=3
§
f
†
f
1
3
v
:é
á
§
f
1
¥
Ø
v
±
ü
‡
º:
Ø
´
A
Ï
4-
º:
§
f
¥
Ø
v
±
ü
‡
º:
´
5
+
-
º:
§
½
ö
ü
‡
Ñ
´
A
Ï
4-
º:
§
½
ö
˜
‡
´
A
Ï
4-
º:
,
˜
‡
´
5
+
-
º:
"
1)
τ
(
f
→
f
1
) =
1
10
§
X
J
f
3
(
f
) = 1
§
f
¥
Ø
v
±
ü
‡
º:
ƒ
˜
´
5-
º:
§
…
†
n
‡
3-
¡
ƒ
§
,
˜
º:
•
5
+
-
º:
"
2)
τ
(
f
→
f
1
) =
3
5
§
Ù
¦
"
é
u
3-
¡
f
(
v
1
,
v
2
,
v
3
)
"
^
f
1
§
f
2
Ú
f
3
5
L
«
©
O
†
f
ä
k
ú
>
v
1
v
2
§
v
2
v
3
Ú
v
3
v
1
¡
"
3 -
¡
f
´
Ð
§
X
J
÷
v
µ
−
3 +
τ
(
v
1
→
f
) +
τ
(
v
2
→
f
) +
τ
(
v
3
→
f
)
≥
0
½
−
3 +
τ
(
v
1
→
f
) +
τ
(
v
2
→
f
) +
τ
(
v
3
→
f
) +
1
10
≥
0(
f
÷
v
R
f
1(1)
ž
)
½
−
3 +
τ
(
v
1
→
f
) +
τ
(
v
2
→
f
)+
τ
(
v
3
→
f
)+
3
5
≥
0(
f
÷
v
R
f
1(2)
ž
)
½
−
3+
τ
(
v
1
→
f
)+
τ
(
v
2
→
f
)+
τ
(
v
3
→
f
)+
τ
(
f
i
→
f
)
≥
0(
i
∈
1
,
2
,
3)
½
−
3+
τ
(
v
1
→
f
) +
τ
(
v
2
→
f
) +
τ
(
v
3
→
f
) +
τ
(
f
i
→
f
) +
τ
(
f
j
→
f
)
≥
0
(
i
6
=
j
§
ij
∈
1
,
2
,
3)
"
^
n
3
g
(
f
)
5
L
«
†
f
ƒ
Ð
3
¡
ê
8
"
^
n
0
f
L
«
²
\
º:
D
Š
f
o
Š
ê
"
R
f
2
.
τ
(
f
→
f
1
) =
n
0
f
f
3
(
f
)
−
n
3
g
(
f
)
§
X
J
f
´
˜
‡
6
+
-
¡
§
…
f
†
f
1
ƒ
§
f
1
Ø
´
˜
‡
Ð
3-
¡
"
R
f
3
.
f
´
5
¡
§
f
3
(
f
)
−
n
3
g
(
f
)
>
0
§
n
0
f
>
0
1)
τ
(
f
→
f
0
) =
n
0
f
§
X
J
f
3
(
f
)
−
n
3
g
(
f
) = 1
§
…
f
†
f
0
ƒ
"
f
0
Ø
´
˜
‡
Ð
3-
¡
"
2)
τ
(
f
→
f
0
) =
n
0
f
f
3
(
f
)
−
n
3
g
(
f
)
§
X
J
f
3
(
f
)
−
n
3
g
(
f
)
≥
2
§
…
f
†
f
0
ƒ
§
f
0
Ø
´
˜
‡
Ð
3-
¡
"
Ï
L
±
þ
D
Š
5
K
§
·
‚
í
Ñ
e
¡
Ú
n
"
Ú
n
4.1
†
5
+
-
º:
ƒ
k
+
-
¡
–
õ
k
k
−
2(
k
≥
6)
‡
Ø
Ð
3
-
¡
"
y
²
µ
f
´
ã
G
¥
k
-
¡
(
k
≥
6)
"
w
,
n
5
+
(
f
) = 1
"
é
u
k
-
¡
fk
≥
6
§
^
v
i
(
i
∈{
1
,
2
,
···
k
}
)
L
«
÷
f
^
ž
\
k
‡
º:
"
^
f
i
(
i
∈{
1
,
2
,
···
k
}
)
L
«
†
f
k
ú
>
v
i
v
i
+1
§
^
f
k
L
«
†
f
k
ú
>
v
k
v
1
"
-
v
1
´
5
+
-
º:
"
e
¡
•
Ä
n
«
Œ
U
5
µ
DOI:10.12677/pm.2021.1181761591
n
Ø
ê
Æ
4
(
§
¦
ï
œ
/
1.
b
f
4
+
(
f
)
≥
2
"
w
,
§
f
–
õ
†
k
−
2
‡
Ø
´
Ð
3-
¡
ƒ
"
œ
/
2.
b
f
4
+
(
f
) = 1
"
é
˜
‡
†
f
ƒ
Ð
3-
¡
"
X
J
f
1
´
˜
4
+
-
¡
§
K
Ï
L
R
v
2(2)
Ú
R
v
3(1)
µ
τ
(
v
1
→
f
k
) =
7
5
"
f
k
´
˜
‡
Ð
3-
¡
"
Ó
/
,
X
J
f
k
´
˜
‡
4
+
-
¡
§
K
f
1
´
˜
‡
Ð
3-
¡
"
X
J
f
i
´
4
+
-
¡
§
(
i
∈{
2
,
3
,
···
,k
−
1
}
)
§
K
Ï
L
R
v
2(1)-(2)
Ú
R
v
3(1)
Œ
f
1
Ú
f
k
¥
k
˜
‡
´
Ð
3-
¡
"
œ
/
3.
b
f
4
+
(
f
) =0
"
é
ü
‡
†
f
ƒ
3-
¡
"
X
J
v
1
´
6
+
-
º:
§
K
Ï
L
R
v
3(1)
-
τ
(
v
1
→
f
1
) =
7
5
Ú
τ
(
v
1
→
f
k
) =
7
5
"
w
,
§
f
1
Ú
f
k
´
Ð
3-
¡
"
X
J
v
1
´
5-
º:
§
K
?
Ø
±
e
ü
«
œ
¹
µ
•
f
3
(
v
1
) = 2
"
K
Ï
L
R
v
2(2)
-
τ
(
v
1
→
f
1
) =
7
5
Ú
τ
(
v
1
→
f
k
) =
7
5
"
f
1
Ú
f
k
Ñ
´
Ð
3
¡
"
•
f
3
(
v
1
) = 3
"
Ø
”
˜
„
5
§
Ï
L
R
v
2(1)
-
τ
(
v
1
→
f
k
) =
7
5
Ú
τ
(
v
1
→
f
1
) =
17
15
"
w
,
§
f
k
´
Ð
3-
¡
§
f
6
+
(
f
1
) =2
§
f
3
(
f
1
) =1
"
†
f
1
ƒ
6
+
-
¡
Ø
f
±
D
Š
‰
f
1
–
•
1
4
"
Ï
d
§
Ï
L
†
f
1
ƒ
:
D
Š
Ú
Ø
f
±
6
+
-
¡
D
Š
f
1
´
Ð
"
n
þ
§
†
5
+
-
º:
ƒ
k
+
-
¡
–
õ
k
k
−
2(
k
≥
6)
‡
Ø
Ð
3-
¡
"
Ú
n
4.2
X
J
d
(
f
) = 5
§
K
f
3
(
f
)
−
n
3
g
(
f
)
≤
5
n
0
f
"
y
²
µ
-
d
(
f
)=5
"
é
u
5-
¡
f
,
·
‚
^
v
1
§
v
2
§
v
3
§
v
4
Ú
v
5
L
«
^
ž
†
f
ƒ
º:
"
f
i
L
«
†
f
k
ú
>
v
i
v
i
+1
(
i
∈{
1
,
2
,
3
,
4
}
)
§
f
5
L
«
†
f
k
ú
>
v
5
v
1
"
d
Ú
n
2.3
•
§
X
J
f
i
´
3-
¡
(
i
∈{
1
,
2
,
3
,
4
,
5
}
)
§
K
f
3
(
f
i
)=0
"
w
,
§
n
5
+
(
f
)
≥
3
ž
§
5
n
0
f
≥
1
≥
f
3
(
f
)
−
n
3
g
(
f
)
"
b
n
4
(
f
)=5
"
K
Ï
L
R
v
1(6)
n
0
f
=0
"
f
3
(
f
)
>
0
ž
§
Š
â
Ú
n
2.2
§
†
f
ƒ
3-
¡
¥
k
˜
‡
5
+
-
º:
"
Ï
d
§
Ï
L
R
v
1(2)
§
R
v
1(4)
§
R
v
2(2)
Ú
R
v
3(1)
§
X
J
f
i
´
3-
¡
(
i
∈{
1
,
2
,
3
,
4
,
5
}
)
§
K
f
i
´
Ð
"
Ï
d
f
3
(
f
)
−
n
3
g
(
f
) = 0
"
e
5
•
Ä
±
e
ü
«
œ
/
µ
œ
/
1.
b
n
5
+
(
f
) = 1
"
Ø
”
˜
„
5
§
-
v
1
•
†
f
ƒ
5
+
-
º:
"
•
Ä
o
«
Œ
U
µ
(1.1)
f
5
+
(
f
)
≥
3
"
f
3
(
f
)
−
n
3
g
(
f
) = 0
§
n
0
f
≥
0
"
(1.2)
f
5
+
(
f
)=2
"
d
é
¡
5
§
·
‚
•
•
Ä8
«
œ
/
"
w
,
§
f
3
(
f
)
−
n
3
g
(
f
)=0
"
d
(
f
1
)=
d
(
f
i
)
≥
5
½
d
(
f
1
) =
d
(
f
i
)
≥
5
§
i
∈{
3
,
4
}
"
Ó
ž
n
0
f
≥
0
"
Ï
d
§
·
‚
•
Ä
±
e
ü
«
Œ
U
µ
1)
d
(
f
1
)=
d
(
f
5
)
≥
5
"
Ï
L
R
v
2(9)
Ú
R
v
3(3)
τ
(
v
1
→
f
)=
3
5
§
f
3
(
f
)
−
n
3
g
(
f
)
≤
1
"
Ï
d
f
3
(
f
)
−
n
3
g
(
f
)
≤
1
<
5
n
0
f
"
2)
d
(
f
1
)=
d
(
f
2
)
≥
5
"
Ï
L
R
v
2(5)-(9)
Ú
R
v
3(3)
-
τ
(
v
1
→
f
)
≥
1
5
"
Ï
d
n
0
f
≥
0
"
w
,
§
f
3
Ú
f
5
Ñ
´
Ð
3-
¡
"
X
J
f
4
´
˜
‡
Ð
3-
¡
§
K
f
3
(
f
)
−
n
3
g
(
f
) = 0
≤
n
0
f
"
y
3
·
‚
•
I
y
²
f
4
´
Ð
"
-
f
i
´
(
v
i
,w
i
,v
i
+1
)-
¡
(
i
∈{
3
,
4
}
)
§
f
5
´
(
v
5
,w
3
,v
1
)-
¡
"
-
s
i
5
L
«
†
f
3
v
i
(
i
∈{
3
,
4
,
5
}
)
:
?
é
á
¡
"
b
w
3
,
w
4
Ú
w
5
¥–
k
˜
‡
5
+
-
º:
"
Ï
L
R
v
2(2)
Ú
R
f
1(2)
f
4
´
Ð
"
b
w
3
,
w
4
Ú
w
5
Ñ
´
4-
º:
"
K
n
5
+
(
s
4
)
≥
1
§
n
5
+
(
s
5
)
≥
1
"
s
1
–
õ
†
(
d
(
s
1
)
−
3)
‡
Ø
Ð
3-
¡
ƒ
§
s
2
–
õ
†
(
d
(
s
2
)
−
3)
‡
Ø
Ð
3-
¡
ƒ
"
é
²
w
§
w
3
§
w
4
Ú
w
5
¥–
˜
‡
´
A
Ïž
f
4
´
Ð
"
Ï
d
·
‚
•
Ä
w
1
§
w
2
Ú
w
3
Ñ
Ø
´
A
Ï
"
-
h
1
L
«
†
f
4
3
w
4
:é
á
¡
"
•
Ä
±
e
ü
«
Œ
U
:
•
X
J
d
(
s
4
) =
d
(
s
5
)
≥
6
§
K
Ï
L
R
v
1(1)-(3)
Ú
R
f
1-2
−
3+
τ
(
v
4
→
f
4
)+
τ
(
v
5
→
f
4
)+
τ
(
w
4
→
f
4
)+
τ
(
h
1
→
f
4
)
≥
4
5
+
4
5
+
5
6
+
3
5
≥
0
½
−
3+
τ
(
v
4
→
f
4
)+
τ
(
v
5
→
f
4
)+
τ
(
w
4
→
f
4
)+
τ
(
s
4
→
f
4
)+
τ
(
s
5
→
f
4
)
≥
4
5
+
4
5
+
5
6
+
2
3
≥
0
"
Ï
d
§
f
4
´
Ð
"
DOI:10.12677/pm.2021.1181761592
n
Ø
ê
Æ
4
(
§
¦
ï
•
Ø
w
4
,
s
4
Ú
s
5
–
k
˜
‡
´
5-
¡
§
X
J
h
1
¥
k
ü
‡
5
+
-
º:
½
k
ü
‡
A
Ï
4-
º:
½
k
˜
A
Ï
4-
º:
Ú
˜
5
+
-
º:
§
Ï
L
R
f
3
f
4
´
Ð
"
y
3
·
‚
=
•
Ä
h
1
¥–
õ
k
˜
‡
5
+
-
º:
½
–
õ
k
˜
‡
A
Ï
4-
º:
"
X
J
s
4
Ú
s
5
¥
˜
‡
´
5-
¡
§
,
˜
‡
´
6
+
-
¡
,
K
Ï
L
R
v
1(1)-(2)
Ú
R
f
2-3
−
3+
τ
(
v
4
→
f
4
)+
τ
(
v
5
→
f
4
)+
τ
(
w
4
→
f
4
)+
τ
(
s
4
→
f
4
)+
τ
(
s
5
→
f
4
)
≥
4
5
+
4
5
+
4
5
+
1
5
+
1
2
>
0
"
X
J
d
(
s
4
)=
d
(
s
5
)=5
§
f
3
(
s
4
)
−
n
3
g
(
s
4
)
≤
2
ž
f
3
(
s
5
)
−
n
3
g
(
s
5
)
≤
1
½
f
3
(
s
5
)
−
n
3
g
(
s
5
)
≤
2
ž
f
3
(
s
4
)
−
n
3
g
(
s
4
)
≤
1
"
Ï
d
§
Ï
L
R
v
1(1)-(2)
Ú
R
f
3
−
3+
τ
(
v
4
→
f
4
)+
τ
(
v
5
→
f
4
)+
τ
(
w
4
→
f
4
)+
τ
(
s
4
→
f
4
)+
τ
(
s
5
→
f
4
)
≥
0
"
(1.3)
f
5
+
(
f
) = 1.
d
é
¡
5
§
·
‚
=
•
Ä
n
«
œ
/
µ
d
(
f
1
)
≥
5
§
d
(
f
2
)
≥
5
Ú
d
(
f
3
)
≥
5
"
1)
b
d
(
f
2
)
≥
5
½
d
(
f
3
)
≥
5
"
Ï
L
R
v
2(5)-(9)
Ú
R
v
3(3)
τ
(
v
1
→
f
)
≥
3
5
§
=
µ
5
n
0
f
≥
1
"
Ï
L
R
v
1(4)
§
R
v
2(2)
Ú
R
v
3(1)
f
3
(
f
)
−
n
3
g
(
f
)
≤
1
"
Ï
d
f
3
(
f
)
−
n
3
g
(
f
)
≤
1
≤
5
n
0
f
"
2)
b
d
(
f
1
)
≥
5
"
Ï
L
R
v
2(5)-(9)
Ú
R
v
3(3)
τ
(
v
1
→
f
)
≥
2
5
§
=
µ
5
n
0
f
≥
1
"
w
,
f
2
Ú
f
5
Ñ
´
Ð
3-
¡
"
X
J
f
3
Ú
f
4
–
k
˜
‡
Ð
3-
¡
§
K
f
3
(
f
)
−
n
3
g
(
f
)
≤
n
0
f
"
y
3
·
‚
y
²
f
3
Ú
f
4
–
˜
‡
´
Ð
3-
¡
"
-
f
i
´
(
v
i
,w
i
,v
i
+1
)-
¡
(
i
∈{
2
,
3
,
4
}
)
§
f
5
´
(
v
5
,w
5
,v
1
)-
¡
"
s
i
L
«
†
f
3
v
i
(
i
∈
{
2
,
3
,
4
,
5
}
)
:
?
é
á
¡
"
b
w
2
§
w
3
§
w
4
Ú
w
5
–
˜
‡
´
5
+
-
º:
§
Ï
L
R
v
2(2)
Ú
R
f
1(2)
§
f
3
Ú
f
4
–
k
˜
‡
´
Ð
3-
¡
"
b
w
2
§
w
3
§
w
4
Ú
w
5
Ñ
´
4-
º:
§
K
s
3
§
s
4
Ú
s
5
¥
Ñ
–
k
˜
‡
5
+
-
º:
"
w
2
§
w
3
§
w
4
Ú
w
5
¥–
k
˜
‡
´
A
Ïž
§
f
3
Ú
f
4
–
˜
‡
´
Ð
"
y
3
•
Ä
w
2
§
w
3
§
w
4
Ú
w
5
Ñ
Ø
´
A
Ï
"
h
i
L
«
†
f
i
3
w
i
(
i
∈{
3
,
4
}
)
:
?
é
á
¡
"
s
3
§
s
4
Ú
s
5
–
ü
‡
´
5-
¡
§
Ø
w
i
(
i
∈{
3
,
4
}
)
§
X
J
h
i
¥
k
ü
‡
5
+
-
º:
½
ü
‡
A
Ï
4-
º:
½
˜
‡
A
Ï
4-
º:
Ú
˜
‡
5
+
-
º:
,
K
f
i
´
Ð
"
Ï
d
§
X
J
s
1
§
s
2
Ú
s
3
¥–
ü
‡
´
5-
¡
"
K
•
•
Ä
h
3
Ú
h
4
¥–
õ
˜
‡
5
+
-
º:
½
–
õ
˜
‡
A
Ï
4-
º:
§
k
±
e
8
«
Œ
U
µ
X
J
d
(
s
3
)=
d
(
s
4
)=5
§
s
5
≥
6
§
K
Ï
L
R
f
2-3
-
τ
(
s
3
→
f
3
)
≥
2
5
§
τ
(
s
4
→
f
3
)
≥
1
5
½
τ
(
s
5
→
f
4
)
≥
1
2
§
τ
(
s
4
→
f
4
)
≥
1
5
"
Ó
/
§
X
J
d
(
s
4
)=
d
(
s
5
)=5
§
s
3
≥
6
§
K
Ï
L
R
f
2-3
-
τ
(
s
5
→
f
4
)
≥
2
5
§
τ
(
s
4
→
f
4
)
≥
1
5
½
τ
(
s
3
→
f
3
)
≥
1
2
§
τ
(
s
4
→
f
3
)
≥
1
5
"
X
J
d
(
s
3
)=
d
(
s
5
)=5
§
s
4
≥
6
§
K
Ï
L
R
f
2
-
τ
(
s
4
→
f
3
)
≥
1
2
§
τ
(
s
4
→
f
4
)
≥
1
2
§
Ï
L
R
f
3
-
τ
(
s
3
→
f
3
)
≥
1
5
§
τ
(
s
5
→
f
4
)
≥
1
5
"
Ï
d
§
Ï
L
R
v
1(2)
Ú
R
f
2–3
−
3 +
τ
(
v
3
→
f
3
) +
τ
(
v
4
→
f
3
) +
τ
(
w
3
→
f
3
) +
τ
(
s
3
→
f
3
) +
τ
(
s
4
→
f
3
)
≥
0
§
−
3+
τ
(
v
4
→
f
4
) +
τ
(
v
5
→
f
4
) +
τ
(
w
4
→
f
4
) +
τ
(
s
4
→
f
4
)+
τ
(
s
5
→
f
4
)
≥
0
§
=
µ
f
3
Ú
f
4
Ñ
´
Ð
"
X
J
d
(
s
3
)=
d
(
s
4
)=
d
(
s
5
)=5
§
K
s
3
Ú
s
4
¥–
˜
‡
©
O
D
Š
‰
f
3
Ú
f
4
–
2
5
"
K
Ï
L
R
v
1(2)
Ú
R
f
3
−
3 +
τ
(
v
3
→
f
3
) +
τ
(
v
4
→
f
3
) +
τ
(
w
3
→
f
3
) +
τ
(
s
3
→
f
3
) +
τ
(
s
4
→
f
3
)
≥
0
½
−
3 +
τ
(
v
4
→
f
4
) +
τ
(
v
5
→
f
4
) +
τ
(
w
4
→
f
4
) +
τ
(
s
4
→
f
4
) +
τ
(
s
5
→
f
4
)
≥
0
"
X
J
d
(
s
3
)=
d
(
s
5
)
≥
6
§
s
4
=5
§
Ø
w
i
(
i
∈{
3
,
4
}
)
§
h
i
¥
ü
‡
5
+
-
º:
½
ü
‡
A
Ï
4-
º:
½
˜
‡
A
Ï
4-
º:
Ú
˜
‡
5
+
-
º:
ž
§
K
f
i
´
Ð
"
h
3
Ú
h
4
¥–
õ
˜
‡
5
+
-
º:
½
–
õ
˜
‡
A
Ï
4-
º:
ž
§
s
3
Ú
s
5
¥–
˜
‡
©
O
D
Š
‰
f
3
Ú
f
4
–
1
2
"
Ï
L
R
f
2
τ
(
s
4
→
f
3
)
≥
1
5
½
τ
(
s
4
→
f
4
)
≥
1
5
"
X
J
d
(
s
3
)=
d
(
s
4
)
≥
6
½
d
(
s
4
)=
d
(
s
5
)
≥
6
§
K
Ï
L
R
f
2
τ
(
s
4
→
f
3
)
≥
1
4
Ú
τ
(
s
3
→
f
3
)
≥
1
3
½
τ
(
s
4
→
f
4
)
≥
1
4
Ú
τ
(
s
5
→
f
4
)
≥
1
3
"
Ï
L
R
v
1(1)-
(2)
Ú
R
f
2
−
3 +
τ
(
v
3
→
f
3
) +
τ
(
v
4
→
f
3
) +
τ
(
w
3
→
f
3
) +
τ
(
s
3
→
f
3
) +
τ
(
s
4
→
f
3
)
≥
0
½
−
3+
τ
(
v
4
→
f
4
)+
τ
(
v
5
→
f
4
)+
τ
(
w
4
→
f
4
)+
τ
(
s
4
→
f
4
)+
τ
(
s
5
→
f
4
)
≥
0
"
n
þ
§
f
3
Ú
f
4
–
˜
‡
´
Ð
"
DOI:10.12677/pm.2021.1181761593
n
Ø
ê
Æ
4
(
§
¦
ï
(1.4)
f
5
+
(
f
)=0.
Ï
L
R
v
2(4)-(5)
§
v
2(9)
§
R
v
2(11)-(12)
Ú
R
v
3(3)
τ
(
v
1
→
f
)=
3
5
§
=
µ
5
n
0
f
=2
"
Ï
L
R
v
1(1)-(4)
§
R
v
2(2)
Ú
R
v
3(1)
f
1
Ú
f
5
Ñ
´
Ð
3-
¡
"
X
J
f
2
,
f
3
Ú
f
4
–
˜
‡
´
Ð
3-
¡
§
K
f
3
(
f
)
−
n
3
g
(
f
)
≤
n
0
f
"
y
3
·
‚
•
I
y
²
f
2
,
f
3
Ú
f
4
–
˜
‡
´
Ð
3-
¡
"
-
f
i
´
(
v
i
,w
i
,v
i
+1
)-
¡
(
i
∈{
1
,
2
,
3
,
4
}
)
§
f
5
´
(
v
5
,w
5
,v
1
)-
¡
"
-
s
i
5
L
«
†
f
3
v
i
(
i
∈{
2
,
3
,
4
,
5
}
)
:
?
é
á
¡
"
b
w
1
§
w
2
§
w
3
§
w
4
Ú
w
5
¥–
k
˜
‡
´
5
+
-
º:
"
Ï
L
R
v
2(2)
Ú
R
f
1(2)
f
2
,
f
3
Ú
f
4
–
˜
‡
´
Ð
3-
¡
"
b
w
1
§
w
2
§
w
3
§
w
4
Ú
w
5
Ñ
´
4-
º:
"
Š
â
Ú
n
2.3
§
s
2
§
s
3
§
s
4
Ú
s
5
¥
Ñ
–
k
˜
‡
5
+
-
º:
"
w
,
§
w
1
§
w
2
§
w
3
§
w
4
Ú
w
5
¥–
˜
‡
´
A
Ïž
§
K
f
2
§
f
3
Ú
f
4
¥
–
˜
‡
´
Ð
3-
¡
"
y
3
·
‚
=
•
Ä
w
1
§
w
2
§
w
3
§
w
4
Ú
w
5
Ñ
Ø
´
A
Ïž
"
-
h
i
5
L
«
†
f
i
3
w
i
(
i
∈{
2
,
3
,
4
}
)
:
?
é
á
¡
k
±
e
n
«
Œ
U
µ
1)
s
2
§
s
3
§
s
4
Ú
s
5
–
õ
˜
‡
6
+
-
¡
"
Ø
w
i
(
i
∈{
2
,
3
,
4
}
)
§
X
J
h
i
¥
k
ü
‡
5
+
-
º:
½
ü
‡
A
Ï
4-
º:
½
˜
‡
A
Ï
4-
º:
Ú
˜
‡
5
+
-
º:
§
K
f
i
´
Ð
"
Ï
d
·
‚
=
•
Ä
h
i
¥–
õ
˜
‡
5
+
-
º:
½
–
õ
˜
‡
A
Ï
4-
º:
,
i
∈{
2
,
3
,
4
}
"
k
±
e
ü
«
Œ
U
µ
•
b
s
2
§
s
3
§
s
4
Ú
s
5
Ñ
´
5-
¡
§
s
2
Ú
s
5
–
˜
‡
©
O
D
Š
‰
f
2
Ú
f
4
–
2
5
"
Ï
L
R
f
2
-
τ
(
s
3
→
f
2
)
≥
1
5
§
τ
(
s
4
→
f
4
)
≥
1
5
"
Ï
d
§
Ï
L
R
v
1(2)
Ú
R
f
3
−
3+
τ
(
v
2
→
f
2
)+
τ
(
v
3
→
f
2
)+
τ
(
w
2
→
f
2
) +
τ
(
s
2
→
f
2
) +
τ
(
s
3
→
f
2
)
≥
0
½
−
3 +
τ
(
v
4
→
f
4
) +
τ
(
v
5
→
f
4
) +
τ
(
w
4
→
f
4
) +
τ
(
s
4
→
f
4
)+
τ
(
s
5
→
f
4
)
≥
0
§
=
f
2
§
f
3
Ú
f
4
–
˜
‡
´
Ð
3-
¡
"
•
b
s
2
§
s
3
§
s
4
Ú
s
5
ƒ
˜
´
6
+
-
¡
"
d
é
¡
5
§
=
•
Ä
ü
«
œ
/
µ
d
(
s
2
)
≥
6
Ú
d
(
s
3
)
≥
6
"
X
J
d
(
s
2
)
≥
6
§
Ï
L
R
f
2-3
§
τ
(
s
2
→
f
2
)
≥
1
2
ž
§
-
τ
(
s
3
→
f
2
)
≥
1
5
¶
τ
(
s
2
→
f
2
)
≥
1
3
ž
§
-
τ
(
s
5
→
f
4
)
geq
2
5
"
Ï
L
R
v
1(2)
Ú
R
f
2–3
§
−
3+
τ
(
v
2
→
f
2
)+
τ
(
v
3
→
f
2
)+
τ
(
w
2
→
f
2
)+
τ
(
s
2
→
f
2
)+
τ
(
s
3
→
f
2
)
≥
0 or
−
3+
τ
(
v
4
→
f
4
)+
τ
(
v
5
→
f
4
)+
τ
(
w
4
→
f
4
)+
τ
(
s
4
→
f
4
)+
τ
(
s
5
→
f
4
)
≥
0
§
=
µ
f
2
´
Ð
½
f
4
´
Ð
"
Ï
d
§
f
2
§
f
3
Ú
f
4
–
˜
‡
´
Ð
3-
¡
"
X
J
d
(
s
3
)
≥
6
§
Ï
L
R
f
2-
3
§
τ
(
s
3
→
f
2
)
≥
1
2
ž
§
-
τ
(
s
2
→
f
2
)
≥
1
5
½
τ
(
s
2
→
f
2
)
≥
2
5
ž
§
-
τ
(
s
3
→
f
2
)
≥
1
5
½
τ
(
s
5
→
f
4
)
≥
2
5
ž
§
-
τ
(
s
4
→
f
4
)
≥
1
5
"
Ï
d
f
2
§
f
3
Ú
f
4
–
˜
‡
´
Ð
3-
¡
"
2)
s
2
§
s
3
§
s
4
Ú
s
5
¥
ü
‡
´
6
+
-
¡
"
Ó
/
§
·
‚
=
•
Ä
h
i
(
i
∈{
2
,
3
,
4
}
)
¥–
õ
˜
‡
5
+
-
º:
½
–
õ
˜
‡
A
Ï
4-
º:
"
d
é
¡
5
§
·
‚
=
•
Ä
o
«
œ
/
µ
d
(
s
2
) =
d
(
s
3
)
≥
6
¶
d
(
s
2
) =
d
(
s
4
)
≥
6
¶
d
(
s
2
) =
d
(
s
5
)
≥
6
¶
d
(
s
3
) =
d
(
s
4
)
≥
6
"
•
b
d
(
s
2
) =
d
(
s
3
)
≥
6
"
X
J
−
3+
τ
(
v
2
→
f
2
)+
τ
(
v
3
→
f
2
)+
τ<
0
§
K
-
τ
(
s
2
→
f
2
)
≥
1
3
§
τ
(
s
3
→
f
2
)
≥
1
4
"
Ï
L
R
v
1(1)-(3)
§
R
v
2(1)-(2)
Ú
R
f
2
−
3+
τ
(
v
2
→
f
2
)+
τ
(
v
3
→
f
2
)+
τ
(
w
2
→
f
2
)
≥
0
½
−
3+
τ
(
v
2
→
f
2
)+
τ
(
v
3
→
f
2
)+
τ
(
w
2
→
f
2
)+
τ
(
s
2
→
f
2
)+
τ
(
s
3
→
f
2
)
≥
0
§
=
µ
f
2
´
Ð
"
•
b
d
(
s
2
)=
d
(
s
4
)
≥
6
"
Ï
L
R
f
2-3
§
τ
(
s
2
→
f
2
)
≥
1
2
ž
§
-
τ
(
s
3
→
f
2
)
≥
1
5
§
τ
(
s
5
→
f
4
)=
2
5
ž
§
-
τ
(
s
4
→
f
4
)
≥
1
4
§
τ
(
s
5
→
f
4
)=
1
5
ž
§
-
τ
(
s
4
→
f
4
)
≥
1
2
"
Ï
d
§
Ï
L
R
v
1(2)
Ú
R
f
2-3
−
3+
τ
(
v
2
→
f
2
)+
τ
(
v
3
→
f
2
)+
τ
(
w
2
→
f
2
)+
τ
(
s
2
→
f
2
)+
τ
(
s
3
→
f
2
)
≥
0
½
−
3+
τ
(
v
4
→
f
4
)+
τ
(
v
5
→
f
4
)+
τ
(
w
4
→
f
4
)+
τ
(
s
4
→
f
4
)+
τ
(
s
5
→
f
4
)
≥
0
§
=
µ
f
2
§
f
3
Ú
f
4
–
˜
‡
´
Ð
3-
¡
"
•
Ó
/
§
b
d
(
s
2
)=
d
(
s
5
)
≥
6
"
Ï
L
R
f
2-3
-
τ
(
s
2
→
f
2
)
≥
1
2
½
τ
(
s
5
→
f
4
)
≥
1
2
"
Ï
L
R
v
1(2)
Ú
R
f
2–3
−
3+
τ
(
v
2
→
f
2
)+
τ
(
v
3
→
f
2
)+
τ
(
w
2
→
f
2
)+
τ
(
s
2
f
2
)+
τ
(
s
3
→
f
2
)
≥
0
½
DOI:10.12677/pm.2021.1181761594
n
Ø
ê
Æ
4
(
§
¦
ï
−
3+
τ
(
v
4
→
f
4
)+
τ
(
v
5
→
f
4
)+
τ
(
w
4
→
f
4
)+
τ
(
s
4
→
f
4
)+
τ
(
s
5
→
f
4
)
≥
0
"
Ï
d
§
f
2
§
f
3
Ú
f
4
–
˜
‡
´
Ð
3-
¡
"
•
•
§
b
d
(
s
3
)=
d
(
s
4
)
≥
6
"
Ï
L
R
f
2
§
τ
(
s
4
→
f
3
)=
1
4
ž
§
-
τ
(
s
3
→
f
3
)
≥
1
3
"
τ
(
s
3
→
f
3
) =
1
4
ž
§
-
τ
(
s
4
→
f
3
)
≥
1
3
"
K
Ï
L
R
v
1(1)-(3)
Ú
R
f
2
−
3+
τ
(
v
3
→
f
3
)+
τ
(
v
4
→
f
3
)+
τ
(
w
3
→
f
3
)+
τ
(
s
3
→
f
3
)+
τ
(
s
4
→
f
3
)
≥
0
§
=
µ
f
3
´
Ð
3-
¡
"
3)
s
2
§
s
3
§
s
4
Ú
s
5
¥–
n
‡
´
6
+
-
¡
"
•
Ä
ü
«
œ
/
µ
d
(
s
2
) =
d
(
s
3
)
≥
6
Ú
d
(
s
4
) =
d
(
s
5
)
≥
6
"
b
d
(
s
2
) =
d
(
s
3
)
≥
6
"
X
J
−
3+
τ
(
v
2
→
f
2
)+
τ
(
v
3
→
f
2
)+
τ
(
w
2
→
f
2
)
<
0
§
K
-
τ
(
s
2
→
f
2
)
≥
1
3
§
τ
(
s
3
→
f
2
)
≥
1
4
"
Ï
L
R
v
1(1)–(3)
§
R
v
2(1)-(2)
Ú
R
f
2
−
3+
τ
(
v
2
→
f
2
)+
τ
(
v
3
→
f
2
)+
τ
(
w
2
→
f
2
)
≥
0
½
−
3+
τ
(
v
2
→
f
2
)+
τ
(
v
3
→
f
2
)+
τ
(
w
2
→
f
2
)+
τ
(
s
2
→
f
2
)+
τ
(
s
3
→
f
2
)
≥
0
§
=
µ
f
2
´
Ð
"
Ó
/
§
b
d
(
s
4
) =
d
(
s
5
)
≥
6
§
K
f
4
´
Ð
"
œ
/
2.
b
n
5
+
(
f
)=2
"
d
é
¡
5
§
=
•
Ä
ü
«
œ
/
µ
ü
‡
5
+
-
º:
3
Ó
˜
^
>
§
ü
‡
5
+
-
º
:
Ø
3
Ó
˜
^
>
"
Ø
”
˜
„
5
§
ü
‡
5
+
-
º:
3
Ó
˜
^
>
ž
§
-
d
(
v
1
)=
d
(
v
2
)
≥
5
¶
ü
‡
5
+
-
º
:
Ø
3
Ó
˜
^
>
ž
§
-
d
(
v
1
) =
d
(
v
3
)
≥
5
"
(2.1)
d
(
v
1
) =
d
(
v
2
)
≥
5
"
é
²
w
§
f
5
+
(
f
)
≥
3
ž
§
f
3
(
f
)
−
n
3
g
(
f
) =0
§
n
0
f
≥
0
"
?
Ø
±
e
n
«
Œ
U
:
1)
b
f
5
+
(
f
) = 2
"
d
é
¡
5
§
?
Ø8
«
œ
/
µ
d
(
f
1
) =
d
(
f
5
)
≥
5
¶
d
(
f
1
) =
d
(
f
4
)
≥
5
¶
d
(
f
2
) =
d
(
f
3
)
≥
5
¶
d
(
f
2
) =
d
(
f
4
)
≥
5
¶
d
(
f
2
) =
d
(
f
5
)
≥
5
¶
d
(
f
3
) =
d
(
f
4
)
≥
5
"
X
J
d
(
f
1
) =
d
(
f
5
)
≥
5
¶
K
Ï
L
R
v
2(4)-(9)
Ú
R
v
3(3)
-
τ
(
v
1
→
f
)
≥
3
10
§
τ
(
v
2
→
f
) =
3
5
"
Ï
L
R
v
1(1)-(4)
§
R
v
2(2)
Ú
R
v
3(1)
f
3
(
f
)
−
n
3
g
(
f
)
≤
1
"
Ï
d
f
3
(
f
)
−
n
3
g
(
f
)
≤
1
<
5
n
0
f
"
Ä
K
§
Ï
L
R
v
1(1)-(4)
§
R
v
2(2)
Ú
R
v
3(1)
f
3
(
f
)
−
n
3
g
(
f
) = 0
"
f
3
(
f
)
−
n
3
g
(
f
) = 0
≤
5
n
0
f
"
2)
b
f
5
+
(
f
)=1
"
d
é
¡
5
§
?
Ø
n
«
œ
/
µ
X
J
d
(
f
3
)
≥
5
§
K
-
τ
(
v
1
→
f
)=
3
5
§
τ
(
v
2
→
f
)=
3
5
§
f
3
(
f
)
−
n
3
g
(
f
)=0
"
X
J
d
(
f
2
)
≥
5
§
Ï
L
R
v
2(4)–(9)
Ú
R
v
3(3)
-
τ
(
v
1
→
f
)
≥
2
5
§
τ
(
v
2
→
f
)=
3
5
§
=
µ
5
n
0
f
≥
3
"
Ï
L
R
v
1(1)-(4)
§
R
v
2(2)
Ú
R
v
3(1)
f
3
(
f
)
−
n
3
g
(
f
)
≤
1
"
X
J
d
(
f
1
)
≥
5
§
K
Ï
L
R
v
2(4)-(9)
Ú
R
v
3(3)
-
τ
(
v
1
→
f
)
≥
3
10
§
τ
(
v
2
→
f
)
≥
3
10
§
=
µ
5
n
0
f
≥
1
"
·
‚
•
f
2
Ú
f
5
Ñ
´
Ð
3-
¡
"
X
J
f
3
Ú
f
4
–
˜
‡
´
Ð
3-
¡
ž
§
f
3
(
f
)
−
n
3
g
(
f
)
≤
n
0
f
"
y
3
·
‚
=
I
‡
y
²
f
3
Ú
f
4
–
˜
‡
Ð
3-
¡
"
ù
†
y
²
(1.3) 2)
œ
/
1
´
a
q
"
Ó
n
Œ
§
f
3
Ú
f
4
–
˜
‡
´
Ð
3-
¡
"
n
þ
¤
ã
§
f
3
(
f
)
−
n
3
g
(
f
)
<
5
n
0
f
"
3)
b
f
5
+
(
f
)=0
"
Ï
L
R
v
1(1)-(4)
§
R
v
2(2)
§
R
v
2(4)-(6)
§
R
v
2(8)-(9)
Ú
R
v
3(1)
k
τ
(
v
1
→
f
) =
3
5
§
τ
(
v
2
→
f
) =
3
5
§
f
3
(
f
)
−
n
3
g
(
f
)
≤
2
"
f
3
(
f
)
−
n
3
g
(
f
)
<
5
n
0
f
"
(2.2)
v
1
Ú
v
3
´
5
+
ݺ:
"
Ó
/
§
f
5
+
(
f
)
≥
3
ž
§
k
f
3
(
f
)
−
n
3
g
(
f
) = 0
§
n
0
f
≥
0
"
?
Ø
±
e
n
«
Œ
U
µ
1)
b
f
5
+
(
f
)=2
"
d
é
¡
5
k
8
«
œ
/
µ
d
(
f
1
)=
d
(
f
2
)
≥
5
¶
d
(
f
2
)=
d
(
f
3
)
≥
5
¶
d
(
f
2
)=
d
(
f
4
)
≥
5
¶
d
(
f
2
)=
d
(
f
5
)
≥
5
¶
d
(
f
3
)=
d
(
f
4
)
≥
5
¶
d
(
f
3
)=
d
(
f
5
)
≥
5
"
X
J
d
(
f
2
)=
d
(
f
i
)
≥
5(
i
∈
{
3
,
4
,
5
}
)
§
½
d
(
f
3
) =
d
(
f
j
)
≥
5(
j
∈{
4
,
5
}
)
§
K
Ï
L
R
v
1(1)-(4)
§
R
v
2(2)
Ú
R
v
3(1)
f
3
(
f
)
−
n
3
g
(
f
) =
0
"
Ï
L
R
v
1(6)
§
R
v
2(4)-(9)
Ú
R
v
3(3)
k
τ
(
v
i
→
f
)
≥
1
5
(
i
∈{
1
,
2
,
3
,
4
,
5
}
)
"
Ï
d
§
f
3
(
f
)
−
n
3
g
(
f
) =
0
≤
5
n
0
f
"
y
3
=
•
Ä
d
(
f
1
)=
d
(
f
2
)
≥
5
"
Ï
L
R
v
2(4)-(12)
Ú
R
v
3(3)
k
τ
(
v
1
→
f
)
≥
1
5
§
τ
(
v
2
→
DOI:10.12677/pm.2021.1181761595
n
Ø
ê
Æ
4
(
§
¦
ï
f
)
≥
1
5
"
Ï
L
R
v
1(1)-(4)
§
R
v
2(2)
Ú
R
v
3(1)
k
f
3
(
f
)
−
n
3
g
(
f
)
≤
1
"
e
¡
ò
y
²
f
4
´
Ð
3-
¡
"
-
f
3
´
(
v
3
,w
1
,v
4
)-
¡
"
f
4
´
(
v
4
,w
2
,v
5
)-
¡
§
f
5
´
(
v
5
,w
3
,v
1
)-
¡
"
-
s
1
L
«
†
f
3
v
4
:
?
é
á
¡
"
s
2
L
«
†
f
3
v
5
:
?
é
á
¡
"
b
w
1
,
w
2
Ú
w
3
–
˜
‡
5
+
-
º:
"
Ï
L
R
v
1(1)-(2)
§
R
v
2(2)
Ú
R
f
1(2)
f
4
´
Ð
3-
¡
"
b
w
1
§
w
2
Ú
w
3
Ñ
´
4-
º:
"
s
1
Ú
s
2
¥
Ñ
–
k
˜
‡
5
+
-
º:
"
w
1
§
w
2
Ú
w
3
–
˜
‡
´
A
Ïž
§
f
4
´
Ð
"
y
3
=
•
Ä
w
1
§
w
2
Ú
w
3
Ñ
Ø
´
A
Ïž
"
-
h
1
L
«
†
f
4
3
w
2
:
?
é
á
¡
"
Ø
w
2
§
s
1
Ú
s
2
–
˜
‡
´
5-
¡
ž
§
X
J
h
1
¥
k
5
+
-
º:
§
½
ö
ü
‡
A
Ï
4-
º:
§
½
ö
˜
‡
A
Ï
4-
º:
Ú
˜
‡
5
+
-
º:
§
K
f
4
´
Ð
"
Ï
d
§
s
1
Ú
s
2
–
˜
‡
5-
¡
ž
§
=
•
Ä
h
1
¥–
õ
˜
‡
5
+
-
º:
½
4-
º:
"
X
J
s
1
Ú
s
2
Ù
¥
˜
‡
´
5-
¡
§
,
˜
‡
´
6
+
-
¡
§
K
Ï
L
R
v
1(1)-(2)
Ú
R
f
2-3
−
3 +
τ
(
v
4
→
f
4
) +
τ
(
v
5
→
f
4
) +
τ
(
w
2
→
f
4
) +
τ
(
s
1
→
f
4
) +
τ
(
s
2
→
f
4
)
≥
4
5
+
4
5
+
4
5
+
1
5
+
1
2
>
0
§
=
µ
f
4
´
Ð
"
X
J
d
(
s
1
)=
d
(
s
2
)=5
§
d
Ú
n
2.3
§
τ
(
s
2
→
f
4
)
≥
1
5
ž
§
k
τ
(
s
1
→
f
4
)
≥
2
5
¶
½
ö
τ
(
s
1
→
f
4
)
≥
1
5
ž
§
k
τ
(
s
2
→
f
4
)
≥
2
5
"
Ï
L
R
v
1(1)-(2)
Ú
R
f
3
§
k
−
3 +
τ
(
v
4
→
f
4
)+
τ
(
v
5
→
f
4
)+
τ
(
w
2
→
f
4
)+
τ
(
s
1
→
f
4
)+
τ
(
s
2
→
f
4
)
≥
0
§
=
µ
f
4
´
Ð
"
X
J
d
(
s
1
)=
d
(
s
2
)
≥
6
§
Ï
L
R
f
2
k
τ
(
s
1
→
f
4
)
≥
1
3
§
τ
(
s
2
→
f
4
)
≥
1
3
"
Ï
L
R
v
1(1)-(3)
Ú
R
f
2
§
k
−
3+
τ
(
v
4
→
f
4
)+
τ
(
v
5
→
f
4
)+
τ
(
w
2
→
f
4
)+
τ
(
s
1
→
f
4
)+
τ
(
s
2
→
f
4
)
≥
0
§
=
µ
f
4
´
Ð
"
2)
b
f
5
+
(
f
)=1
"
d
é
¡
5
k
n
«
œ
/
µ
d
(
f
2
)
≥
5
¶
d
(
f
3
)
≥
5
¶
d
(
f
4
)
≥
5
"
X
J
d
(
f
3
)
≥
5
½
d
(
f
4
)
≥
5
§
Ï
L
R
v
1(1)-(4)
§
R
v
2(2)
Ú
R
v
3(1)
f
3
(
f
)
−
n
3
g
(
f
)=0
"
Ï
d
§
f
3
(
f
)
−
n
3
g
(
f
)=
0
≤
5
n
0
f
"
X
J
d
(
f
2
)
≥
5
§
K
Ï
L
R
v
1(1)-(4)
§
R
v
2(2)
§
R
v
2(4)-(9)
Ú
R
v
3(1)
§
f
3
(
f
)
−
n
3
g
(
f
)
≤
1
§
τ
(
v
1
→
f
)=
3
5
§
τ
(
v
2
→
f
)
≥
2
5
"
3)
b
f
5
+
(
f
)=0
"
Ï
L
R
v
1(1)-(4)
§
R
v
2(2)
§
R
v
2(4)–
(9)
Ú
R
v
3(1)
§
k
f
3
(
f
)
−
n
3
g
(
f
)
≤
1
§
τ
(
v
1
→
f
) =
3
5
§
τ
(
v
2
→
f
) =
3
5
"
Ï
d
§
f
3
(
f
)
−
n
3
g
(
f
)
≤
5
n
0
f
"
n
þ
¤
ã
§
X
J
f
´
G
5-
¡
§
K
f
3
(
f
)
−
n
3
g
(
f
)
≤
5
n
0
f
"
y
3
·
‚
y
²
G
z
‡
¡
f
Ñ
k
š
K
Š
"
-
d
(
f
)
≥
6
"
Ï
L
R
v
1(7)
§
R
v
2(10)
§
R
v
3(4)
Ú
R
f
2
§
k
c
0
(
f
)
≥
0
"
-
d
(
f
)=5
§
d
R
v
1(6)
§
R
v
2(4)–(9)
§
R
v
3(3)
Ú
Ú
n
2.3
•
§
d
:
D‰
5
¡
Š–
•
1
5
§
…
f
3
(
f
)
−
n
3
g
(
f
)
≤
5
n
0
f
"
Ï
d
§
c
0
(
f
)
≥−
1+5
×
1
5
≥
0
"
-
f
´
G
4-
¡
§
K
Ï
L
R
v
1(5)
§
R
v
2(3)
Ú
R
v
3(2)
§
k
c
0
(
f
) =
−
2+
1
2
+
1
2
+
1
2
+
1
2
= 0
"
-
d
(
f
) = 3
"
é
u
3-
¡
f
§
^
v
1
§
v
2
Ú
v
3
^
ž
L
«
f
n
‡
º:
"
^
f
1
§
f
2
Ú
f
3
©
OL
«
†
f
k
ú
>
v
1
v
2
§
v
2
v
3
Ú
v
3
v
1
¡
"
œ
/
1.
n
4
(
f
)=3
"
X
ã
2
¤
«
§
s
1
†
f
3
v
1
:
?
é
á
§
s
2
†
f
3
v
2
:
?
é
á
§
s
3
†
f
3
v
3
:
?
é
á
"
Š
â
Ú
n
2.3
§
f
3
(
f
)
≤
1
"
f
1
§
f
2
Ú
f
3
¥
Ñ
–
k
˜
‡
5
+
-
º:
"
(1.1)
f
3
(
f
)=0
"
b
f
–
†
˜
‡
4
+
-
¡
é
á
"
K
Ï
L
R
v
1(1)-(4)
Ú
R
f
2-3
k
c
0
(
f
)
≥−
3 +
min
{
4
5
+
4
5
+
7
5
,
4
5
+
4
5
+
7
6
+
1
4
,
5
6
+
7
6
+
7
6
,
4
5
+
7
5
+
7
6
,
7
6
+
7
6
+
7
6
}≥
0
b
f
†
n
‡
3-
¡
é
á
§
=
µ
s
1
§
s
2
Ú
s
3
Ñ
´
Ð
3-
¡
"
d
Ú
n
2.3
•
f
3
(
f
) = 0
§
f
4
(
f
) = 0
"
?
Ø
±
e
n
«
Œ
U
µ
•
b
f
5
(
f
)
≥
2
"
w
,
§
f
3
(
s
1
)=0
§
f
3
(
s
2
)=0
§
f
3
(
s
3
)=0
"
X
J
s
1
§
s
2
Ú
s
3
¥–
˜
‡
k
ü
‡
5
+
-
º:
§
½
ö
˜
‡
5
+
-
º:
Ú
˜
‡
A
Ï
4-
º:
§
½
ö
ü
‡
A
Ï
4-
º:
§
K
Ï
L
R
v
1(2)
§
R
f
1(2)
Ú
R
f
3
k
c
0
(
f
)
≥−
3+
4
5
+
4
5
+
4
5
+
3
5
≥
0
"
Ä
K
§
f
1
§
f
2
Ú
f
3
–
k
ü
‡
I
‡
‰
f
D
Š
"
Ø
”
˜
„
5
§
-
d
(
f
1
)=
d
(
f
2
)=5
§
d
(
f
3
)
≥
5
"
Š
â
Ú
n
3.1
Ú
Ú
n
3.2
§
5
+
¡
‰
ƒ
€
3-
DOI:10.12677/pm.2021.1181761596
n
Ø
ê
Æ
4
(
§
¦
ï
¡
D
Š–
•
1
5
"
X
J
−
3 +
4
5
+
4
5
+
4
5
+
τ
(
f
2
→
f
) +
τ
(
f
3
→
f
)
≥
0
§
K
f
é
u
f
1
´
Ð
¶
X
J
−
3+
4
5
+
4
5
+
4
5
+
τ
(
f
2
→
f
)+
τ
(
f
3
→
f
)
<
0
§
K
f
é
u
f
1
´
€
"
Š
â
Ú
n
3.2
k
τ
(
f
1
→
f
)
≥
1
5
"
Ï
d
§
−
3+
4
5
+
4
5
+
4
5
+
τ
(
f
2
→
f
)+
τ
(
f
3
→
f
)+
τ
(
f
1
→
f
)
≥
0
"
•
b
f
5
(
f
) = 1
§
f
6
+
(
f
) = 2
"
Ø
”
˜
„
5
§
-
d
(
f
1
) =
d
(
f
3
)
≥
6
§
d
(
f
2
) = 5
"
®
•
f
3
(
s
1
)
≤
1
"
X
J
f
3
(
s
1
) = 1
§
K
Ï
L
R
v
1(1)-(2)
Ú
R
f
1-3
c
0
(
f
)
≥−
3+
5
6
+
4
5
+
4
5
+
min
{
3
5
,
1
4
+
1
4
+
1
10
,
1
4
+
1
4
+
1
5
,
1
4
+
1
3
}≥
0
"
X
J
f
3
(
s
1
) = 0
§
s
1
§
s
2
Ú
s
3
¥–
˜
‡
k
ü
‡
5
+
-
º:
§
½
ö
˜
‡
5
+
-
º:
Ú
˜
‡
A
Ï
4-
º:
§
½
ö
ü
‡
A
Ï
4-
º:
ž
§
Ï
L
R
v
1(2)
§
R
f
1(2)
Ú
R
f
3
k
c
0
(
f
)
≥−
3+
4
5
+
4
5
+
4
5
+
3
5
≥
0
"
s
1
§
s
2
Ú
s
3
¥
k
–
õ
˜
‡
5
+
-
º:
½
–
õ
˜
‡
A
Ï
4-
º:
ž
§
f
i
(
i
∈{
1
,
2
,
3
}
)
I
‡
‰
f
D
Š
"
Ï
d
§
Ï
L
Ú
n
3.1
§
Ú
n
3.2
§
R
v
1(1)-(2)
Ú
R
f
2-3
§
−
3+
4
5
+
4
5
+
4
5
+
τ
(
f
1
→
f
)+
τ
(
f
3
→
f
)
≥
0
½
ö
−
3+
4
5
+
4
5
+
4
5
+
τ
(
f
2
→
f
)+
τ
(
f
3
→
f
)+
τ
(
f
1
→
f
)
≥
0
"
•
b
f
6
+
(
f
) = 3
"
Ï
L
Ú
n
3.1
Ú
R
f
1
τ
(
f
i
→
f
)
≥
1
4
i
∈{
1
,
2
,
3
}
"
Ï
L
R
v
1(1)
Ú
R
f
2
c
0
(
f
)
≥−
3+
5
6
+
5
6
+
5
6
+
1
4
+
1
4
+
1
4
≥
0
"
(1.2)
f
3
(
f
)=1
"
X
ã
2(b)
¤
«
§
b
d
(
f
3
)=3
§
d
(
s
1
)=
d
(
s
3
)=
d
(
f
1
)=
d
(
f
2
)
≥
6
"
X
J
d
(
s
2
) = 3
§
Ï
L
R
v
1(1)
Ú
R
f
2
k
c
0
(
f
)
≥−
3+
5
6
+
5
6
+
5
6
+
1
4
+
1
4
≥
0
"
X
J
d
(
s
2
) = 4
§
Ï
L
R
v
1(1)
§
R
v
1(3)
Ú
R
f
2
k
c
0
(
f
)
≥−
3+
5
6
+
5
6
+
7
6
+
1
4
≥
0
"
X
J
d
(
s
2
)
≥
5
§
Ï
L
R
v
1(1)
Ú
R
v
1(4)
k
c
0
(
f
)
≥
−
3+
5
6
+
5
6
+
7
5
≥
0
"
œ
/
2.
n
4
(
f
) = 2
§
n
5
+
(
f
) = 1
"
Ø
”
˜
„
5
§
-
d
(
v
3
)
≥
5
"
b
f
3
(
f
) = 0
§
Š
â
R
v
2
Ú
R
v
3
§
÷
v
^
‡
5
+
-
º:
‰
3-
¡
D
Š
•
7
5
"
Ï
d
§
Ï
L
R
v
1(1)-(4)
§
R
v
2(1)-(2)
Ú
R
v
3(1)
k
c
0
(
f
)
≥−
3 +
4
5
+
4
5
+
7
5
≥
0
"
b
f
3
(
f
)=1
§
-
f
3
´
3-
¡
§
X
ã
2(c)
¤
«
§
Š
â
Ú
n
2.3
§
d
(
f
1
)=
d
(
f
2
)
≥
6
"
X
J
d
(
v
3
) = 5
§
v
3
†
n
‡
3-
¡
ƒ
§
Ï
L
R
v
1(1)
§
R
v
1(3)-(4)
§
R
v
2(1)
Ú
R
f
2
c
0
(
f
)
≥−
3+
5
6
+
17
15
+
5
6
+
1
4
≥
0
"
Ä
K
§
Ï
L
R
v
1(1)-(4)
§
R
v
2(1)-(2)
Ú
R
v
3
c
0
(
f
)
≥−
3+
4
5
+
4
5
+
7
5
≥
0
"
d
é
¡
5
§
d
(
f
2
)=3
†
d
(
f
3
)=3
˜
"
y
3
=
•
Ä
d
(
f
1
)=3
§
X
ã
2(d)
¤
«
§
d
(
f
2
)=
d
(
f
2
)
≥
6
§
Ï
L
R
v
1(1)
§
R
v
2(1)-(2)
Ú
R
v
3(1)
c
0
(
f
)
≥−
3+
7
5
+
5
6
+
5
6
≥
0
"
Figure2.
TheconfigurationsusedinTheorem0.2
ã
2.
½
n
0.2
˜
ã
œ
/
3.
n
4
(
f
) = 1
§
n
5
+
(
f
) = 2
"
Ø
”
˜
„
5
§
-
d
(
v
2
) = 4
"
b
f
3
(
f
) = 0
§
Ï
L
R
v
1(1)-(4)
§
R
v
2(1)-(2)
§
R
v
3(1)
Ú
R
f
1(2)
§
k
c
0
(
f
)
≥−
3+
7
5
+
4
5
+
7
5
−
3
5
≥
0
"
b
f
3
(
f
) = 1
§
-
d
(
f
1
) = 3
§
X
ã
2(e)
¤
«
§
d
(
f
2
) =
d
(
f
3
)
≥
6
"
Ï
L
R
v
1(1)
§
R
v
2(1)-(2)
Ú
R
v
1(1)
k
c
0
(
f
)
≥−
3+
17
15
+
7
5
+
5
6
≥
0
"
d
é
¡
5
§
d
(
f
2
) =3
†
d
(
f
1
) =3
˜
"
b
d
(
f
3
) =3
"
X
J
v
1
Ú
v
3
Ù
¥
˜
‡
´
5-
º:
§
…
†
n
‡
3-
¡
ƒ
§
,
˜
:
´
5
+
-
º:
§
Ø
”
˜
„
5
§
-
v
3
´
X
ã
2(f)
¤
«
5-
¡
§
Ï
L
R
v
1(1)
§
R
v
1(3)-(4)
§
R
v
2(1)-(2)
§
R
v
3(1)
Ú
R
f
1(1)
k
c
0
(
f
)
≥−
3+
17
15
+
17
15
+
5
6
−
1
10
≥
0
"
Ä
K
§
Ï
L
R
v
1(1)
§
R
v
1(3)-(4)
§
DOI:10.12677/pm.2021.1181761597
n
Ø
ê
Æ
4
(
§
¦
ï
R
v
2(1)-(2)
§
R
v
3(1)
Ú
R
f
1(2)
k
c
0
(
f
)
≥−
3+
7
5
+
5
6
+
7
5
−
3
5
≥
0
"
œ
/
4.
n
5
+
(
f
) = 3
"
Ï
L
R
v
2(1)-(2)
Ú
R
v
3(1)
k
c
0
(
f
)
≥−
3+
17
15
+
17
15
+
7
5
≥
0
"
y
3
·
‚
y
²
G
z
‡
:
v
k
š
K
Š
"
-
d
(
v
) = 4
"
Ï
L
Ú
n
2.2
k
f
3
(
v
)
≤
2
"
X
J
f
3
(
v
) = 2
§
Ï
L
R
v
1(1)-(2)
Ú
R
v
1(6)-(7)
k
c
0
(
v
)
≥
2
−
max
{
2
×
4
5
+2
×
1
5
,
2
×
5
6
+2
×
1
6
,
2
×
4
5
+
1
6
+
1
5
}≥
0
"
X
J
f
3
(
v
)=1
§
Ï
L
R
v
1(3)-(7)
k
c
0
(
v
)
≥
2
−
max
{
1
2
+
7
6
+2
×
1
6
,
7
5
+
f
5
(
v
)
×
1
5
+
f
6
+
(
v
)
×
1
6
}≥
0
"
X
J
f
3
(
v
) = 0
§
Ï
L
R
v
1(5)-(7)
§
k
c
0
(
v
)
≥
2
−
max
{
f
4
(
v
)
×
1
2
+
f
5
(
v
)
×
1
5
+
f
6
+
(
v
)
×
1
6
}≥
0
"
-
d
(
v
)=5
"
Ï
L
Ú
n
2.2
k
f
3
(
v
)
≤
3
"
X
J
f
3
(
v
)=3
"
Ï
L
R
v
2(1)
k
c
0
(
v
)
≥
4
−
17
15
−
17
15
−
7
5
−
2
×
1
6
≥
0
"
X
J
f
3
(
v
)=2
§
…
ü
‡
3-
¡
ƒ
§
Ï
L
R
v
2(4)
k
c
0
(
v
)
≥
4
−
max
{
2
×
7
5
+2
×
1
6
+
1
2
,
2
×
7
5
+2
×
1
6
+
3
5
,
2
×
7
5
+3
×
1
6
}≥
0
"
X
J
ü
‡
3-
¡
Ø
ƒ
§
Š
â
R
v
2(5)-
(8)
?
Ø
±
e
A
«
œ
/
µ
Ï
L
R
v
2(2)
Ú
R
v
2(5)1
§
c
0
(
v
)=4
−
3
5
−
1
5
−
2
5
−
2
×
7
5
=0
¶
Ï
L
R
v
2(2)
Ú
R
v
2(5)2
§
c
0
(
v
)=4
−
3
5
−
3
10
−
3
10
−
2
×
7
5
=0
¶
Ï
L
R
v
2(2)
Ú
R
v
2(6)
§
k
c
0
(
v
)
≥
4
−
3
5
−
2
5
−
1
6
−
2
×
7
5
≥
0
¶
Ï
L
R
v
2(2)
Ú
R
v
2(7)
§
k
c
0
(
v
)
≥
4
−
2
5
−
2
5
−
1
6
−
2
×
7
5
≥
0
¶
Ï
L
R
v
2(2)
Ú
R
v
2(8)
§
k
c
0
(
v
)
≥
4
−
3
5
−
2
×
1
6
−
2
×
7
5
≥
0
"
X
J
f
3
(
v
) = 1
§
Ï
L
R
v
2(2)-(3)
Ú
R
v
2(9)-
(10)
§
k
c
0
(
v
)
≥
4
−
7
5
−
max
{
f
4
(
v
)
×
1
2
+
f
5
(
v
)
×
3
5
+
f
6
+
(
v
)
×
1
6
}≥
0
"
X
J
f
3
(
v
)=0
"
Ï
L
R
v
2(3)
Ú
R
v
2(9)-(10)
§
k
c
0
(
v
)
≥
4
−
max
{
f
4
(
v
)
×
1
2
+
f
5
(
v
)
×
3
5
+
f
6
+
(
v
)
×
1
6
}≥
0
"
-
d
(
v
)=
k
(
k
≥
6)
"
Ï
L
R
v
3
§
X
J
k
≥
7
§
K
c
0
(
v
)
>
(2
k
−
6)
−
max
{
f
3
(
v
)
×
7
5
+ (
k
−
f
3
(
v
))
×
3
5
}≥
0
"
Ï
d
=
•
Ä
k
= 6
"
X
J
k
= 6
§
k
f
3
(
v
)
≤
4
"
X
J
f
3
(
v
) = 4
§
Ï
L
R
v
3(1)
Ú
R
v
3(4)
c
0
(
v
) = 6
−
4
×
7
5
−
2
×
1
6
≥
0
"
X
J
f
3
(
v
)
≤
3
§
Ï
L
R
v
3
k
c
0
(
v
)
≥
6
−
max
{
f
3
(
v
)
×
7
5
+
f
4
(
v
)
×
1
2
+
f
5
(
v
)
×
3
5
+
f
6
+
(
v
)
×
1
6
}≥
0
–
d
§
·
‚
y
²
é
¤
k
v
∈
V
(
G
)
Ú
f
∈
F
(
G
)
Ñ
÷
v
P
c
0
(
v
)+
P
c
0
(
f
)
≥
0
"
ù
†
Ï
L
î
.
ú
ª
o
Š
´
K
g
ñ
§
½
n
y
"
n
þ
§
·
‚
¤
é½
n
0.1
Ú
½
n
0.2
y
²
"
Ä
7
‘
8
ì
À
Ž
g
,
‰
Æ
Ä
7
(ZR2020MA045)
"
ë
•
©
z
[1]Yang,J,McAuley,J.andLeskovec,J.(2013)CommunityDetectioninNetworkswithN-
odeAttributes.
2013IEEE13thInternationalConferenceonDataMining
,Dallas,TX,7-10
December2013,1151-1156.https://doi.org/10.1109/ICDM.2013.167
[2]Bi,Y.J.,Wu,W.L.,Zhu,Y.Q.,Fan,L.D.andWang,A.L.(2014)ANature-InspiredInflu-
encePropagationModelfortheCommunityExpansionProblem.
JournalofCombinatorial
Optimization
,
28
,513-528.https://doi.org/10.1007/s10878-013-9686-9
DOI:10.12677/pm.2021.1181761598
n
Ø
ê
Æ
4
(
§
¦
ï
[3]Lancichinetti, A.and Fortunato,S.(2009) Community DetectionAlgorithms:AComparative
Analysis.
PhysicalReviewE
,
80
,ArticleID:056117.
https://doi.org/10.1103/PhysRevE.80.056117
[4]Wagenseller,P.,Wang,F.andWu,W.L.(2018)SizeMatters:AComparativeAnalysisof
CommunityDetectionAlgorithms.
IEEETransactionsonComputationalSocialSystems
,
5
,
951-960.https://doi.org/10.1109/TCSS.2018.2875626
[5]Chen,G.andWang,Y.(2011)CommunityDetectioninComplexNetworksUsingExtremal
OptimizationModularityDensity.
JournalofHuazhongUniversityofScienceandTechnology
(NaturalScienceEdition)
,
39
,82-85.
[6]Tong,G.M.,Cui,L.,Wu,W.L.,Liu,C.andDu,D.Z.(2016)Terminal-Set-EnhancedCom-
munityDetectioninSocialNetworks.
The35thAnnualIEEEInternationalConferenceon
ComputerCommunications
,SanFrancisco,CA,10-14April2016,1-9.
https://doi.org/10.1109/INFOCOM.2016.7524473
[7]Lu,Z.X.,Wu,W.L.,Chen,W.D.,Zhong,J.F.,Bi,Y.J.andGao,Z.(2013)TheMaximum
CommunityPartitionProbleminNetworks.
DiscreteMathematics,AlgorithmsandA pplica-
tions
,
5
,ArticleID:1350031.https://doi.org/10.1142/S1793830913500316
[8]Chartrand,G.,Kronk,H.V.andWall,C.E.(1968)ThePoint-ArboricityofaGraph.
Israel
JournalofMathematics
,
6
,169-175.https://doi.org/10.1007/BF02760181
[9]Chartrand,G. andKronk,H.V. (1969)ThePoint-Arboricity ofPlanar Graphs.
Journalofthe
LondonMathematicalSociety
,
44
,612-616.https://doi.org/10.1112/jlms/s1-44.1.612
[10]Fortunato,S.andHric,D.(2016)CommunityDetectioninNetworks:AUserGuide.
Physics
Reports
,
659
,1-44.https://doi.org/10.1016/j.physrep.2016.09.002
[11]Wang,L.,Wang,J.,Bi,Y.J.,Wu,W.L.,Xu,W.andLian,B.(2014)Noise-ToleranceCom-
munityDetectionandEvolutioninDynamicSocialNetworks.
JournalofCombinatorialOp-
timization
,
28
,600-612.https://doi.org/10.1007/s10878-014-9719-z
[12]Raspaud,A.andWang,W.(2008)OntheVertex-ArboricityofPlanarGraphs.
European
JournalofCombinatorics
,
29
,1064-1075.https://doi.org/10.1016/j.ejc.2007.11.022
[13]Wang, W. andLin, K.W.(2002)Choosability andEdgeChoosabilityof PlanarGraphswithout
FiveCycles.
AppliedMathematicsLetters
,
15
,561-565.
https://doi.org/10.1016/S0893-9659(02)80007-6
[14]Fijav˘z,G.,Juvan,M.,Mohar,B.and
˘
Skrekovski,R.(2002)PlanarGraphswithoutCyclesof
SpecificLengths.
EuropeanJournalofCombinatorics
,
23
,377-388.
https://doi.org/10.1006/eujc.2002.0570
[15]Huang,D.,Shui,W.C.andWang,W.(2012)OntheVertex-ArboricityofPlanarGraphs
without7-Cycles.
DiscreteMathematics
,
312
,2304-2315.
https://doi.org/10.1016/j.disc.2012.03.035
DOI:10.12677/pm.2021.1181761599
n
Ø
ê
Æ
4
(
§
¦
ï
[16]Chen,M.,Raspaud,A.andWang,W.(2012)Vertex-ArboricityofPlanarGraphswithout
IntersectingTriangles.
EuropeanJournalofCombinatorics
,
33
,905-923.
https://doi.org/10.1016/j.ejc.2011.09.017
[17]Huang,D.andWang,W.F.(2013)Vertex-ArboricityofPlanarGraphswithoutChordal6-
Cycles.
InternationalJournalofComputerMathematics
,
90
,258-272.
https://doi.org/10.1080/00207160.2012.727989
[18]Cai,H.,Wu,J.andSun,L.(2018)VertexArboricityofPlanarGraphswithoutIntersecting
5-Cycles.
JournalofCombinatorialOptimization
,
35
,365-372.
https://doi.org/10.1007/s10878-017-0168-3
[19]Chen, H.L., Teng, W.S., Wang, H.J.and Gao, H.W.(2018)Vertex Arboricityof PlanarGraphs
without5-CyclesIntersectingwith6-Cycles.
ScholarsJournalofPhysics,Mathematicsand
Statistics
,
5
,322-327.
[20]Teng,W.S.,Wang,H.J.,Chen,H.L.andLiu,B.(2019)SocialStructureDecompositionwith
SecurityIssue.
IEEEAccess
,
7
,82785-82793.https://doi.org/10.1109/ACCESS.2019.2924052
[21]Choi,I.andZhang,H.(2014)VertexArboricityofToroidalGraphswithaForbiddenCycle.
DiscreteMathematics
,
333
,101-105.https://doi.org/10.1016/j.disc.2014.06.011
[22]Tao,F.Y.andLin,W.S.(2016)OntheEquitableVertexArboricityofGraphs.
International
JournalofComputerMathematics
,
93
,844-853.
https://doi.org/10.1080/00207160.2015.1023794
[23]Yang,A.F.andYuan,J. (2007)On theVertexArboricity ofPlanar GraphsofDiameterTwo.
DiscreteMathematics
,
307
,2438-2447.https://doi.org/10.1016/j.disc.2006.10.017
[24]Guo,Z.,Zhao,H.andMao,Y.(2015)OntheEquitableVertexArboricityofCompleteTri-
partiteGraphs.
DiscreteMathematicsAlgorithmsandApplications
,
7
,225-243.
https://doi.org/10.1142/S1793830915500561
[25]Cui,X.Y.,Teng,W.S.,Liu,X.andWang,H.J.(2020)ANoteofVertexArboricityofPlanar
Graphswithout4-CyclesIntersectingwith6-Cycles.
TheoreticalComputerScience
,
836
,53-58.
https://doi.org/10.1016/j.tcs.2020.06.009
DOI:10.12677/pm.2021.1181761600
n
Ø
ê
Æ