设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(9),1643-1648
PublishedOnlineSeptember2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.119182
l•êBergman˜mA
p
ψ
Bloch˜m
VolterraÈ©Žf
–––’’’¤¤¤§§§¯¯¯
∗
*H“‰ÆêÆ†ÚOÆ§2ÀÖô
ÂvFϵ2021c88F¶¹^Fϵ2021c910F¶uÙFϵ2021c917F
Á‡
ة̇?Øl•êBergman˜mA
p
ψ
Bloch˜mVolterraÈ©Žfk.5Ú;5•
x"
'…c
•êBergman˜m§Bloch˜m§Volterra.Žf§k.5
VolterraTypeOperatorsfromBergman
SpaceswithExponentialWeightstothe
BlochSpace
YechengShi,ErminWang
∗
SchoolofMathematicsandStatistics,LingnanNormalUniversity,ZhanjiangGuangdong
Received:Aug.8
th
,2021;accepted:Sep.10
th
,2021;published:Sep.17
th
,2021
∗ÏÕŠö"
©ÙÚ^:–’¤,¯.l•êBergman˜mA
p
ψ
Bloch˜mVolterraÈ©Žf[J].nØêÆ,2021,11(9):
1643-1648.DOI:10.12677/pm.2021.119182
–’¤§¯
Abstract
WeconsidertheboundednessandcompactnessofVolterratypeoperatorsfromthe
BergmanspaceswithexponentialweightstotheBlochSpace.
Keywords
BergmanSpaceswithExponentialWei ghts,BlochSpace,VolterraTypeOperators,
Boundedness
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
D´E²¡Cþü ,H(D)´Dþ)Û¼êN.ψ´DþgNÚ¼ê,0<p<
∞ž,•êBergman˜mA
p
ψ
½Â•µ
A
p
ψ
= {f∈H(D) : kfk
p
A
p
ψ
:=
Z
D
|f(z)e
−ψ(z)
|
p
dA(z) <∞}.
-C
0
L«Dþ÷vlim
|z|→1
ρ(z) = 0¤këY¼êρ¤˜m.PL•
L= {ρ: D→R
+
: kρk
L
=sup
z,w∈D,z6=w
|ρ(z)−ρ(w)|
|z−w|
<∞,ρ∈C
0
}.
L
0
´L¥÷v ^‡µé?¿>0,•3;8E⊂D,¦|ρ(z) −ρ(w)|<|z−w|,Ù¥z,w∈D\E.
P8Ü•
W
0
= {ψ∈C
2
: ∆ψ>0,…∃ρ∈L
0
¦
1
√
∆ψ
ρ},
Ù¥∆•LaplaceŽf,ùpabL«•3~êC>0¦C
−1
b≤a≤Cb.W
0
´•CdHu,Lv,
SchusterJÑ,ƒ'ïÄ„[1]9ÙÚ^©z.
DOI:10.12677/pm.2021.1191821644nØêÆ
–’¤§¯
Bloch˜mB´dDþ÷v^‡
||f||
B
= |f(0)|+sup
z∈D
(1−|z|
2
)|f
0
(z)|<∞.
)Û¼êf|¤8Ü.
g∈H(D),½ÂVolterraÈ©ŽfT
g
•
T
g
f(z) =
Z
z
0
f(ζ)g
0
(ζ)dζ,f∈H(D).
Pommerenke[2]31977ÄkïÄÈ©ŽfT
g
3Hardy˜mH
2
k.5¯K.3dƒ,Nõ
ÆöïÄÙ¦ØÓ)Û¼ê˜mþVolterraÈ©Žf.Li3[3]¥‰ÑlIOBergman
˜mBloch˜mVolterraÈ©Žfk.5Ú;5¯K.©·‚̇•Äl‘•êO•
Bergman˜mA
p
ψ
Bloch˜mVolterraÈ©Žfk.5Ú; 5¯K.ùp·‚ I‡5¿
W
0
•¹š»•,Ïdõ‘ªŒU3Bergman˜mA
p
ψ
¥ØÈ—.ù—·‚I‡æ†[3]Ø
ÓïÄ•{.
2.ý•£
Äk,·‚‰Ñe¡(Ø.
Ún2.1ψ∈W
0
…
1
√
∆ψ
ρ∈L
0
.ef∈A
p
ψ
,K
|f(z)|≤Ce
ψ
(z)ρ(z)
−
2
p
kfk
A
p
ψ
.
y²d©z[1]Ún3.3,Œ•µ
|f(z)|≤Ce
ψ
(z)ρ(z)
−
2
p
kfk
A
p
ψ
.
éu?¿z∈D,A
2
ψ
•32)ؼêK
z
(·) = K(·,z),…dRieszL«½n
f(z) =
Z
D
f(w)K(w,z)e
−2ψ(w)
dA(w), f∈A
2
ψ
.
éu2)Ø,·‚ke¡(Ø,„©z[1]½n3.2.
Ún2.2eψ∈W
0
…
1
√
∆ψ
ρ∈L
0
,K
K(z,z)e
−2ψ(z)
ρ(z)
−2
= ∆ψ(z),z∈D.
d[1]íØ3.2±9[4]·K2.5,·‚ke¡(Ø.
Ún2.3eψ∈W
0
…
1
√
∆ψ
ρ∈L
0
,Pk
z
(w) :=
K(w,z)
K(z,z)
,k
p,z
(w) = ρ(w)
1−
2
p
k
z
(w),K
kk
p,z
k
A
p
ψ
1,
DOI:10.12677/pm.2021.1191821645nØêÆ
–’¤§¯
…|z|→1ž,k
p,z
3Dþ;f8˜—Âñu0.Ù¥K(·,z)•Bergman˜mA
2
ψ
2)Ø.
Ún2.4T
g
:A
p
ψ
→B´k.Žf,KT
g
:A
p
ψ
→B´;Žfdué?¿k. S{f
n
}⊂A
p
ψ
…
3Dþ?¿;f8˜—Âñu0,K
lim
n→∞
kT
g
f
n
k
B
= 0.
y²¿©5.{f
n
}•A
p
ψ
¥?¿k.S,dÚn2.1,k
|f
n
(z)|.e
ψ
(z)ρ(z)
−
2
p
kf
n
k
A
p
ψ
.
Ïd,{f
n
}3D?¿;f8þ˜—Âñ.dMontel½n,•3{f
n
}fS,Ø”EP•{f
n
},9)Û
¼êf,¦{f
n
}3D;f8˜—Âñuf.ŠâFatouÚn,´f∈A
p
ψ
.l
kT
g
f
n
−fk
B
→0(n→∞).
T
g
: A
p
ψ
→B´;Žf.
7‡5.k. S{f
n
}⊂A
p
ψ
÷v3Dþ?¿;f8˜—Âñu0.duT
g
: A
p
ψ
→B´;Ž
f,•3{f
n
}fS,EP•{f
n
}9f∈B,¦
lim
n→∞
kT
g
f
n
−fk
B
= 0.
¤±,f(0) = 0…
sup
z∈D
(1−|z|
2
)|f
n
(z)g
0
(z)−f(z)|→0(n→∞).
Ï•ψ∈W
0
…•gNÚ¼ê,¤±f
n
(z)g
0
(z)3Dþ˜—Âñuf
0
(z).{f
n
}3D˜—Âñu0,
g∈H(D),¤±kf
0
(z) = 0.f(z) ≡0.Ïd,·‚y²
lim
n→∞
kT
g
f
n
k
B
= 0.
3.A
p
ψ
˜mþVolterraÈ©Žf
(ܱþÚn©̇½n
½n3.1bg∈H(D),ψ∈W
0
,KT
g
: A
p
ψ
→B´k.Žf…=
sup
z∈D
(1−|z|)|g
0
(z)|e
ψ(z)
ρ
−
2
p
(z) <∞.
y²¿©5:b
sup
z∈D
(1−|z|)|g
0
(z)|e
ψ(z)
ρ
−
2
p
(z) <∞.
DOI:10.12677/pm.2021.1191821646nØêÆ
–’¤§¯
-f∈A
p
ψ
,dÚn2.1,k
(1−|z|
2
)|g
0
(z)|f(z)|.(1−|z|
2
)|g
0
(z)|e
ψ
(z)ρ(z)
−
2
p
kfk
A
p
ψ
.(1−|z|
2
)|g
0
(z)|e
ψ(z)
ρ
−
2
p
(z).
¤±,kT
g
fk
B
<∞.T
g
: A
p
ψ
→B´k.Žf.
7‡5:bT
g
: A
p
ψ
→B´k.Žf.dÚn2.4ÚÚn2.3,·‚k
(1−|z|
2
)|g
0
(z)|e
ψ(z)
ρ
−
2
p
(z) .kT
g
k
p,z
k
B
<∞.
½n3.2bg∈H(D),ψ∈W
0
,KT
g
: A
p
ψ
→B´k;Žf…=
lim
|z|→1
(1−|z|)|g
0
(z)|e
ψ(z)
ρ
−
2
p
(z) = 0.
y²¿©5:bT
g
:A
p
ψ
→B´;Žf.Pk
p,z
(w):=ρ(z)
1−
2
p
k
z
(w),Kkk
p,z
k
A
p
ψ
1,¿…
|z|→1ž,k
p,z
3Dþ;f8˜—Âñu0.
0 =lim
|z|→1
kT
g
k
p,z
k
B
&lim
|z|→1
sup
w∈D
(1−|z|
2
)|g
0
(w)|k
p,z
(w)|
&lim
|z|→1
(1−|z|
2
)|g
0
(z)|k
p,z
(z)|
&lim
|z|→1
(1−|z|
2
)|g
0
(z)|e
ψ(z)
ρ
−
2
p
.
7‡5:blim
|z|→1
(1 −|z|
2
)|g
0
(z)|e
ψ(z)
ρ
−
2
p
(z)=0,Ké?¿>0,•3r
0
∈(0,1),¦
|z|>r
0
ž,k
(1−|z|
2
)|g
0
(z)|e
ψ(z)
ρ
−
2
p
(z) <.
qÏ•ψ´î‚gNÚ¼ê,ρ∈C
0
…ρ>0,¤±|z|≤r
0
ž,w,k(1−|z|
2
)|g
0
(z)|e
ψ(z)
ρ
−
2
p
(z)<
∞k..ld½n3.1,T
g
: A
p
ψ
→B´.Žf.…·‚•,•3êM,¦
M:=sup
|w|≤r
0
(1−|w|
2
)|g
0
(w)|<∞.
{f
n
}•A
p
ψ
¥k.S,…3D;f8þ˜—Âñu0.K
kT
g
f
n
k
B
=sup
w∈D
(1−|w|
2
)|g
0
(w)|f
n
(w)|
=sup
|w|≤r
0
(1−|w|
2
)|g
0
(w)|f
n
(w)|+sup
|w|>r
0
(1−|w|
2
)|g
0
(w)|f
n
(w)|
.M|f
n
(w)|+sup
|w|>r
0
(1−|w|
2
)|g
0
(w)e
ψ
(w)ρ(w)
−
2
p
kf
n
k
A
p
ψ
.M|f
n
(w)|+
DOI:10.12677/pm.2021.1191821647nØêÆ
–’¤§¯
Ïd,n→∞ž,kT
g
f
n
k
B
→0.¤±T
g
: A
p
ψ
→B´k;Žf.
Ä7‘8
Ø©ÉI[g,‰ÆÄ7‘8(11901271)Ú*H“‰Æ‰ï‘8(1170919634)]Ï"
ë•©z
[1]Hu, Z.,Lv,X.and Schuster, A.(2019) BergmanSpaces withExponential Weights.Journalof
FunctionalAnalysis,276,1402-1429.https://doi.org/10.1016/j.jfa.2018.05.001
[2]Pommerenke,C.(1977)SchlichteFunktionenundanalytischeFunktionenvonbeschr¨ankter
mittlererOszillation.CommentariiMathematiciHelvetici,52,591-602.
https://doi.org/10.1007/BF02567392
[3]Li,S.(2008)VolterraCompositionOperatorsbetweenWeightedBergmanSpacesandBloch
TypeSpaces.JournaloftheKoreanMathematicalSociety,45,229-248.
https://doi.org/10.4134/JKMS.2008.45.1.229
[4]Û§u,¡¸,4©.•êBergman˜mA
p
ϕ
ÚA
∞
ϕ
mTeoplitzŽf[J].êÆÆ,2021,
64(4):655-668.
DOI:10.12677/pm.2021.1191821648nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.