设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2021,10(9),3200-3206
PublishedOnlineSeptember2021inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2021.109334
\>éãfà››êÚà››êK•
ÙÙÙøøøJJJùùù###MMM555JJJ
1∗
§§§>>>ùùù
1†
§§§uuu°°°
2
1
#õ“‰ŒÆêÆ‰ÆÆ§#õ¿°7à
2
#õŒÆêƆXÚ‰ÆÆ§#õ¿°7à
ÂvFϵ2021c822F¶¹^Fϵ2021c912F¶uÙFϵ2021c924F
Á‡
-G=(V,E)´˜‡ëÏã"^d
G
(u,v)L«ãG¥ü‡º:uÚvƒm•á(u,v)´•
ݧ˜‡•Ý•d
G
(u,v)(u,v)´¡Š˜‡(u,v)-ÿ/‚"ãG˜‡:f8X⊆V‰ãG
˜‡fà8§XJéX¥?¿ü‡º:a,b§3ãG¥Ñ•3˜‡(a,b)-ÿ/‚¦(a,b)-
ÿ/‚þ¤kº:ÑáuX"aq/§ãG˜‡:f8X⊆V‰ãG˜‡à8§XJ
éX¥?¿ü‡º:a,b,ãG¥z˜^(a,b)-ÿ/‚þ¤kº:ÑáuX"ãG˜‡:
f8D⊆V‰ãG˜‡››8§XJV-D¥z˜‡º:Ñ–k˜‡:3D¥.V
:f8X¡•Gfà››8§XJXQ´fà8q´››8"ãGfà››ê§´:ê•
fà››8¤•¹:ê§P•γ
wcon
(G)"ãGà››8Úà››êaq½Â§^γ
con
(G)5
L«ãGà››ê"©Ì‡ïÄ\>é˜ãafà››êÚà››êK•"
'…c
fà››ê§à››ê§››ê§§ä
TheInfluenceoftheEdgeAddingonthe
WeaklyConvexandConvexDomination
NumberofGraphs
∗1˜Šö"
†ÏÕŠö"
©ÙÚ^:ÙøJù#M5J,>ù,u°.\>éãfà››êÚà››êK•[J].A^êÆ?Ð,2021,
10(9):3200-3206.DOI:10.12677/aam.2021.109334
ÙøJù#M5J
BupatimanAilaiti
1∗
HongBian
1†
,HaizhengYu
2
1
SchoolofMathematicalSciences,XinjiangNormalUniversity,UrumqiXinjiang
2
CollegeofMathematicsandSystemSciences,XinjiangUniversity,UrumqiXinjiang
Received:Aug.22
nd
,2021;accepted:Sep.12
th
,2021;published:Sep.24
th
,2021
Abstract
LetG= (V,E)beaconnectedgraph.Thedistanced
G
(u,v)betweentwovertices uand
vinaconnectedgraphGisthelengthoftheshortest(u,v)pathinG.A(u,v)path
oflengthd
G
(u,v)iscalleda(u,v)-geodesic.AsetX⊆ViscalledweaklyconvexinGif
foreverytwoverticesa,b∈X,thereexistsan(a,b)-geodesic,allofwhosevertices
belongtoX.AsetXisconvexinGifforalla,b∈Xallverticesfromevery(a,b)-
geodesicbelongtoX.AsubsetDofVisdominatinginGifeveryvertexofV−Dhas
atleastoneneighbourinD.AsetX⊆V iscalledweaklyconvexdominatingsetinGif
itisweakly convexanddominating,andcalledconvexdominatingsetinGifitisconvex
anddominating.TheweaklyconvexdominationnumberofagraphGistheminimum
cardinalityofaweaklyconvexdominatingsetofG,whiletheconvexdominationnumber
ofagraphGistheminimumcardinalityofaconvexdominatingsetofG,denotedby
γ
wcon
(G)andγ
con
(G),respectively.Inthispaper,westudyedgeaddinganditseffect
ontheweaklyconvexdominationnumbersandconvexdominationnumbersforsome
graphs.
Keywords
WeaklyConvexDominationNumber,ConvexDominationNumber,
DominationNumber,Cycle,Tree
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
DOI:10.12677/aam.2021.1093343201A^êÆ?Ð
ÙøJù#M5J
1.0
©¥¤•ÄÑ´{ü,ÕëÏã.-G= (V,E)´˜‡{üã.3G¥,:vm •½
•N
G
(v) ={u|uv∈E(G)},4•N
G
[v] =N
G
(v)
S
{v},^E(v)L«†:vƒ'é>8Ü.
¡ãG¥:v´simplicial:,XJN
G
[v]´˜‡ã.ãG¥1Ý:¡•“f:,†1Ý:
ƒ:¡•| :.-V
L
ÚV
S
©OL«ãG¥“f:Ú| :8Ü,…n
L
= |V
L
|.ãG¥
:v¡•G•:,XJG−{v}´ØëÏ.-V
C
L«G¥•:8Ü.
ãG˜‡:f8D¡•ãG››8,XJ3V-D¥z‡:–†D¥˜‡:ƒ.
ãG¥ê•››8¤•¹:ê¡•ãG››ê,P•γ(G).Äuy¢)¹¥A^,
<‚ÅÚÚ\˜ØÓ/ª››8.››89ÙC/2•/A^uÀŒ¯K!iÿÏ&
½>åä!OŽÅä¯KÚè/ÿþ¥Ñy¢S¯K.ãG˜‡:f8D¡•ãG
ëÏ››8,XJD´››8¿…DÑfã´ëÏ.ãG¥ê•ëÏ››8¤
•¹:ê¡•ãGëÏ››ê,P•γ
c
(G).^d
G
(u,v)L«ãG¥ü‡º:uÚvƒm
•á(u,v)´•Ý,˜‡•Ý•d
G
(u,v)(u,v)´¡Š˜‡(u,v)-ÿ/‚.ãG˜‡:f
8X⊆V‰ãG˜‡fà8,XJéX¥?¿ü‡º:a,b,3ãG¥Ñ•3˜‡(a,b)-ÿ
/‚¦(a,b)-ÿ/‚þ¤kº:ÑáuX.aq/,ãG˜‡:f8X⊆V‰ãG˜‡
à8,XJéX¥?¿ü‡ º:a,b,ãG¥z˜^(a,b)-ÿ/‚þ¤kº:ÑáuX.ãG
:f8X¡•Gfà››8,XJXQ´fà8q´››8.ãG:f8X¡•Gà›
›8,XJXQ´à8q´››8.ãGfà››ê,´:ê•fà››8¤•¹:ê,P
•γ
wcon
(G).ãGà››êÚfà››êaq½Â,^γ
con
(G)5L«ãGà››ê.
à››êÚfà››ê•@´dTopp[1]JÑ,¦yÏL››8!:ë´•á,
U?ëÏ››3Ï&äO¥A^.32004c,Lema´nska[2]ïÄfà››Úà››
†Ù§››aëêƒm'X;AO/,ïÄà››êÚëÏ››êƒnKã.Ó32004
c,Raczek[3]y² (½˜‡ãfà››8Úà››8´˜‡NP-¯K.32010c,Raczek
ÚLema´nska[4]ïÄ‚¡fà››êÚà›ê,¿‰Ñ˜AÏ‚¡à››êÚfà››
ê(ƒŠ.Ó˜cLema´nska[5]‰Ñ˜‡ãfà››êNordhaus-Gaddum(J.32019
c,Rosicka[6]Šâ˜‡ãG= (V,E)ÚãGº:8V˜‡˜†π,½Â˜acÎãπG,Äk
éùacÎãà››8Úfà››85ŸŠ';Ùg,‰ÑüaAÏcÎã•x;•,
y²ãG†éAcÎãfà››êŒ±´?¿Œ;cÎãà››êÃ{^ ãG
à››ê5.½.Ó32019c,Lema´nska[7]<ÄkïÄfà››êÚëÏ››êƒm'
X,¿‰Ñ÷vγ
wcon
(G)=γ
c
(G)ãG•x;„y²3˜„œ/e,ãëÏ››ê†fà
››êŒ ±?¿Œ;d,„ïÄ>éfà››êK•.©z[8]¥ïÄ\>½>é
ã>››êK•.
©3®kïÄ(JÄ:þ,̇ïÄ\>é˜ãafà››êÚà››êK•.
2.̇(J
-G´˜‡º:ê•n{üã,g(G)“LãGŒ•.Lema´nska‰ÑãGfà››ê
TÐuº:êã¤÷v^‡.
DOI:10.12677/aam.2021.1093343202A^êÆ?Ð
ÙøJù#M5J
½n1[5]eãG´÷vδ(G) ≥2…g(G) ≥7n‡º:ëÏã,K
γ
wcon
(G) = n.
e¡½n2‰Ñà››êTÐuº:êãG¤÷vaq^‡.
½n2 eãG´÷vδ(G) ≥2…g(G) ≥6n‡º:ëÏã,K
γ
con
(G) = n.
y²-ãG´δ(G)≥2…g(G)≥6ëÏã.bγ
con
(G)<n.-D´G•à››
8.Ï•γ
con
(G)<n,KG¥•3˜‡º:x¦x6∈D.-N
G
(x)= {x
1
,...,x
p
},Ù¥p≥2(Ï
•δ(G)≥2).éu?¿x
i
,x
j
,Ù¥1≤i,j≤p,ч÷vx
i
x
j
6∈E(G),ÄKx,x
i
,x
j
EÑ
˜‡C
3
,´ù†g(G)≥6)gñ.5¿éu?¿x
i
,x
j
,Ù¥x
i
6=x
j
…1≤i,j≤p,Ñ
kd
G
(x
i
,x
j
)=2,¿…z˜éx
i
Úx
j
ƒm•á´Ñ•¹x.ÄK,e3x
i
Úx
j
ƒmé,˜^
Ø•¹x•á´x
i
,x
0
,x
j
,Kx
i
,x,x
j
,x
0
¤˜‡o,ù†g(G) ≥6)gñ.
b•3ü‡:x
1
,x
2
∈N
G
(x)¦x
1
,x
2
∈D.duD´à8,…éu?¿x
i
Úx
j
ƒmz˜‡•á´Ñ‡•¹x,´ù†x6∈D)gñ.Ïd|N
G
(x) ∩D|≤1.Ï•‡›
›x,…|N
G
(x) ∩D|≤1,Ïd,Ø”˜„5,x
1
∈N
G
(x) ∩D.Ï•δ(G)≥2,Ïdùp–
•3˜‡áuN
G
(x):x
i
¦x
i
6∈D,Ø”x
2
.duδ(G)≥2…x
2
I‡››,Ïdù
p•3˜‡:y∈N
G
(x
2
)¦y6=x…y∈D.Ï•g(G)≥6,ÏdkN
G
(y) ∩N
G
(x)=∅Ú
N
G
(y)∩N
G
(x
i
) = ∅,Ù¥1 ≤i≤p.Ï•D´à8,Ïdd
G
(y,x
1
) <3¿…•3(x
1
,y)-ÿ/‚P
1
¦P
1
¤k:ÑáuD.Ïd–•3ü‡(x
1
,y)-´:P
1
ÚP
2
=(x
1
,x,x
2
,y)Eј‡
u6.ù†g(G) ≥6)gñ.nþ,γ
con
(G) = n.
©z[7]‰ÑãGëÏ››8Úfà››8¥:¤÷v^‡.
Ún3[7]-G6=K
n
´˜‡ëÏã,Ù¥n≥3.XJD´G•ëϽfà ››8,K
z‡•:ÑáuD,…¤ksimplicial:ÑØáuD.
½n4[7]-G= (V(G),E(G))´g(G) ≥7ëÏã.K,
(1)γ
wcon
(G) = n−n
L
,Ù¥n´ãGº:ê;
(2)γ
wcon
(G) = γ
c
(G)…=éuz‡u∈V(G),u´“f:½•:.
-G“ LãGÖã.´•,éu?¿e∈E(G)Œ±¦ãG+e››ê•õ~1,Chen
<[9]y²\>¦ëÏ››ê•õ~2.ég,/¯KÒ´\>´Ø´• ¬¦ãfà›
›ê~ºe5•Ä\>éãC
n
ÚT
n
(f)à››êK•.
½n5 -C
n
´n≥3,Kéu?¿>e∈E(C
n
),Kk
γ
wcon
(C
n
)−4 ≤γ
wcon
(C
n
+e) ≤γ
wcon
(C
n
).
y²-e= uv.C
n
+eÑkú>uvü‡,Ø”^C
n
1
,C
n
2
L«ùü‡,Ù¥n
1
≤n
2
<
DOI:10.12677/aam.2021.1093343203A^êÆ?Ð
ÙøJù#M5J
n.-S
i
´C
n
i
ê•fà››8,i∈{1,2}.Šân
1
Ún
1
ØÓŠ©±eo«œ /?1?
ص
œ/1n
1
≥7,n
2
≥7.Ï•n≥7ž,γ
wcon
(C
n
)=n,Ïdγ
wcon
(C
n
1
)=n
1
,γ
wcon
(C
n
2
)=
n
2
.qÏ•u,v∈S
1
∩S
2
,Kkγ
wcon
(C
n
+e) = γ
wcon
(C
n
) = n.
œ/2n
1
∈{4,5,6},n
2
≥7.Ï•n≥7ž,γ
wcon
(C
n
)=n,Ïdγ
wcon
(C
n
2
)=n
2
.d
,Šâfà››8½Â,n
1
∈{4,5,6}ž,γ
wcon
(C
n
1
)=n
1
−2.qÏ•u,v∈S
1
∩S
2
,Ï
dγ
wcon
(C
n
+ e)=n−2.Ï•n
1
∈{4,5,6},n
2
≥7,…n
1
≤n
2
<n,Kkγ
wcon
(C
n
)=n.¤
±γ
wcon
(C
n
+e) = n−2 <γ
wcon
(C
n
) = n.
œ/3 n
1
∈{4,5,6},n
2
∈{4,5,6}.Šâfà››8½Â,n
1
∈{4,5,6},n
2
∈{4,5,6}ž,
kγ
wcon
(C
n
1
)=n
1
−2,γ
wcon
(C
n
2
)=n
2
−2.qÏ•u,v∈S
1
∩S
2
,¤±γ
wcon
(C
n
+e)=n−4.
d,Ï•n
1
∈{4,5,6},n
2
∈{4,5,6},…u,v∈C
n
1
∩C
n
2
,n∈{6,7,8,9,10},n=6ž,
γ
wcon
(C
n
) = n−2;7 ≤n≤10ž,γ
wcon
(C
n
) = n.Ïd,γ
wcon
(C
n
) >γ
wcon
(C
n
+e).
œ /4n
1
=3,n
2
≥3.XJn
2
=3,Ï•u,v∈C
n
1
∩C
n
2
,@oC
n
´˜ ‡4.Šâfà›
›8½Â§γ
wcon
(C
4
+ e)=n−3=1.¤±γ
wcon
(C
4
+ e)=1<γ
wcon
(C
4
)=n−2=2.X
Jn
2
∈{4,5,6},Šâfà››8½Â,γ
wcon
(C
n
2
)=n−2.qÏ•u,v∈(S
2
∩V(C
3
)),…u
ÚvÑU››:V(C
3
) −{u,v},Ïdγ
wcon
(C
n
+ e)=n−3.d,Ï•n
1
=3,n
2
∈{4,5,6},
…u,v∈C
3
∩C
n
2
, džn∈{5,6,7},¿…n= 7ž,γ
wcon
(C
n
) = n;5 ≤n≤6ž,γ
wcon
(C
n
) =
n−2.Ïd,γ
wcon
(C
n
)>γ
wcon
(C
n
+ e).XJn
2
≥7,@oγ
wcon
(C
n
2
)=n
2
,…u,v∈S
2
.q
Ï•u,v∈(S
2
∩V(C
3
)),…uÚvÑU››:V(C
3
)−{u,v},γ
wcon
(C
n
+e)=n−1.¤
±γ
wcon
(C
n
+e) = n−1 <γ
wcon
(C
n
) = n.
nþ¤ã,γ
wcon
(C
n
)−4 ≤γ
wcon
(C
n
+e) ≤γ
wcon
(C
n
).
Šâ½n2,Uì½n5©Û•{,Œ±‰Ñ\>éà››êaq(J.
½n6 -C
n
´n≥3,Kéu?¿>e∈E(C
n
),Kk
γ
con
(C
n
)−4 ≤γ
con
(C
n
+e) ≤γ
con
(C
n
).
½n7 -T
n
´º:ên≥3äã.Kéu?¿>e∈E(T
n
),Kk
γ
wcon
(T
n
)−2 ≤γ
wcon
(T
n
+e) ≤γ
wcon
(T
n
)+2.
y²ŠâÚn3,N´•D
0
=V−V
L
(T
n
)´T
n
•fà››8,ùpV“LT
n
º
:8.e¡•ÄT
n
+efà››8,Ù¥e= uv∈E(T
n
).rT
n
+e¤•˜^C
p
5L«,
©±en«œ/?1?Ø:
œ/1bu,v∈D
0
,@ou,v6∈V
L
(T
n
),d
T
n
(u)≥2,d
T
n
(v)≥2,¿…V
L
(T
n
)=V
L
(T
n
+e),
¤±D
0
= V−V
L
(T
n
+e).
XJC
p
, Ù¥p≥7.KV−V
L
(T
n
+e) ´T
n
+e•fà››8, ¿…Œ±γ
wcon
(T
n
+
DOI:10.12677/aam.2021.1093343204A^êÆ?Ð
ÙøJù#M5J
e) = |D
0
|= γ
wcon
(T
n
).
XJp= 4,5,6, …3C
p
þ•3ü‡ëY2Ý:x,y, KV−(V
L
(T
n
+e)∪{x,y})´T
n
+e•
fà››8, ÏdŒ±γ
wcon
(T
n
+e) = |D
0
|−2 = γ
wcon
(T
n
)−2.eC
p
vkü‡ëY2Ý
:x,y, p= 5,6ž,D
0
´T
n
+e•fà››8, Ïdγ
wcon
(T
n
+e) = |D
0
|= γ
wcon
(T
n
).
p=4ž,eC
p
þk˜‡2Ý:,Kγ
wcon
(T
n
+e)=|D
0
|−1= γ
wcon
(T
n
)−1,eC
p
þvk2Ý
:,Kkγ
wcon
(T
n
+e) = |D
0
|= γ
wcon
(T
n
).
XJp=3,½ÂC
3
þ1n‡:•ω.Šâω∈V
C
(T
n
+ e)½ω6∈V
C
(T
n
+ e),KkD
0
½D
0
−ω´T
n
+e´•fà››8.
Ïd,3ù«œ¹ekγ
wcon
(T
n
+e) ∈{|D
0
|,|D
0
|−1,|D
0
|−2}.
œ/2b|D
0
∩{u,v}|=1,·‚Ø”u∈D
0
,v∈V−D
0
,@od
T
n
(u) ≥2…d
T
n
(v) =1.
5¿v∈V
L
(T
n
)−V
L
(T
n
+e),ÏdkD
0
= V−(V
L
(T
n
+e)∪{v})´T
n
•fà››8.
XJC
p
, Ù¥p≥7.KV−V
L
(T
n
+e)´T
n
+e•fà››8, ¿…Œ±γ
wcon
(T
n
+
e) = |D
0
|+1 = γ
wcon
(T
n
)+1.
XJp=4,5,6,…3C
p
þ•3ü‡ëY2Ý:x,y,KV−(V
L
(T
n
+e)∪{x,y})´T
n
+e
•fà››8,ÏdŒ±γ
wcon
(T
n
+e)=|D
0
|−1=γ
wcon
(T
n
)−1.eC
p
vk
ü‡ëY2Ý:,p=5,6 ž,V−V
L
(T
n
+ e) ´T
n
+ e•fà››8,ÏdŒ±
γ
wcon
(T
n
+e) = |D
0
|+1 = γ
wcon
(T
n
)+1.p= 4ž,eC
p
þk˜‡2Ý:,KD
0
´T
n
+e
•fà››8,γ
wcon
(T
n
+e) = |D
0
|= γ
wcon
(T
n
).
XJp= 3, -C
3
þ1n‡:•ω.Šâω∈V
C
(T
n
+e)½ω6∈V
C
(T
n
+e),kD
0
½D
0
−ω
´T
n
+e´•fà››8.
Ïd,3ù«œ¹ekγ
wcon
(T
n
+e) ∈{|D
0
|−1,|D
0
|,|D
0
|+1}.
œ/3-u,v∈V−D
0
,Kd
T
n
(u)=1=d
T
n
(v).5¿u,v∈V
L
(T
n
) −V
L
(T
n
+ e).Ïd
kD
0
= V−(V
L
(T
n
+e)∪{u,v})´T
n
•fà››8.
XJC
p
, Ù¥p≥7.KV−V
L
(T
n
+e)´T
n
+e•fà››8, ¿…Œ±γ
wcon
(T
n
+
e) = |D
0
|+2 = γ
wcon
(T
n
)+2.
XJp=4,5,6.Ï•u,v∈V−D
0
,¤±3C
p
þ•3ü‡ëY2Ý:u,v,ÏdŒV−
(V
L
(T
n
+e)∪{u,v})´T
n
+e•fà››8,¿…γ
wcon
(T
n
+e) = |D
0
|= γ
wcon
(T
n
).
XJp=3,@oD
0
´T
n
+ e•fà››ê,¿…Œ±γ
wcon
(T
n
+ e)=|D
0
|=
γ
wcon
(T
n
).Ïd,3ù«œ¹e,kγ
wcon
(T
n
+e) ∈{|D
0
|,|D
0
|+2}.
nþŒ•,éuT
n
kγ
wcon
(T
n
+e) ∈{|D
0
|−2,|D
0
|−1,|D
0
|,|D
0
|+1,|D
0
|+2}.
Šâ½n2±9½n7aq©Û•{,éN´íÑ\>éT
n
à››êaq(J.
½n8 -T
n
´º:ên≥3äã.Kéu?¿>e∈E(T
n
),Kk
γ
con
(T
n
)−2 ≤γ
con
(T
n
+e) ≤γ
con
(T
n
)+2.
DOI:10.12677/aam.2021.1093343205A^êÆ?Ð
ÙøJù#M5J
Ä7‘8
I[g,‰ÆÄ7‘8(11761070,61662079)¶2021c#õ‘Æg£«g,Ä7éÜ‘
8(2021D01C078)¶2020c#õ“‰ŒÆ˜6;’!˜6‘§‘8]Ï"
ë•©z
[1]Topp,J.(2002)PersonalCommunication.Gda´nskUniversityofTechnology,Gda´nsk.
[2]Lema´nska,M. (2004)Weakly Convex and ConvexDominationNumbers.OpusculaMathemat-
ica,24,181-188.
[3]Raczek,J.(2004)NP-CompletenessofWeaklyConvexandConvexDominatingSetDecision
Problems.OpusculaMathematica,24,189-196.
[4]Raczek,J.andLema´nska,M.(2010)ANoteontheWeaklyConvexandConvexDomination
NumbersofaTorus.DiscreteAppliedMathematics,158,1708-1713.
https://doi.org/10.1016/j.dam.2010.06.001
[5]Lema´nska,M.(2010)Nordhaus-GaddumResultsforWeaklyConvexDominationNumberof
aGraph.DiscussionesMathematicaeGraphTheory,30,257-263.
https://doi.org/10.7151/dmgt.1491
[6]Rosicka,M.(2019)ConvexandWeaklyConvexDominationinPrismGraphs.Discussiones
MathematicaeGraphTheory,39,741-755.https://doi.org/10.7151/dmgt.2207
[7]Dettlaff,M.,Lema´nska,M.andOsula,D.(2019)OntheConnectedandWeaklyConvex
DominationNumbers.arXiv:1902.07505v1
[8]Cš,ÏI.†>››ƒ'üaã[J].#õŒÆÆ(g,‰Æ‡),2019,36(1):11-16+38.
[9]Chen,X.J.,Sun,L.andMa,D.X.(2004)ConnectedDominationCriticalGraphs.Applied
MathematicsLetters,158,503-507.https://doi.org/10.1016/S0893-9659(04)90118-8
DOI:10.12677/aam.2021.1093343206A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.