设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2021,10(10),3390-3398
PublishedOnlineOctober2021inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2021.1010356
AaIC-²¡ãòz5
XXXõõõhhh
úô“‰ŒÆ§êƆOŽÅ‰ÆÆ§úô7u
ÂvFϵ2021c918F¶¹^Fϵ2021c1014F¶uÙFϵ2021c1021F
Á‡
eãGz˜‡fãHÑkδ(H)≤k,K¡G´k-òz.Šâعk-(k∈{3,5,6})²¡ã
´3-òz,©y²عk-IC-²¡ã´4-òz.©„?˜Úy²3-†4-Ø
ƒ,3-†5-؃½4-†4-؃IC-²¡ã•´4-òz.Óž,©‰ÑØ
¹k-(k∈{3,4,5,6})…4-KIC-²¡ã~f"
'…c
IC-²¡ã§òz5§=£
DegeneracyofSomeClassesofIC-Planar
Graphs
HonghuiTian
DepartmentofMathematics,ZhejiangNormalUniversity,JinhuaZhejiang
Received:Sep.18
th
,2021;accepted:Oct.14
th
,2021;published:Oct.21
st
,2021
Abstract
IfeverysubgraphH ofgraphGhasδ(H)≤k,thenGisk-degenerate.Aplanar
©ÙÚ^:Xõh.AaIC-²¡ãòz5[J].A^êÆ?Ð,2021,10(10):3390-3398.
DOI:10.12677/aam.2021.1010356
Xõh
graphwithoutk-cycles(k∈{3,5,6})is3-degenerate,thispaperprovesthatanIC-
planargraphwithoutk-cyclesis4-degenerate.Thispaperisfurtherprovedthatthe
IC-planargraphwith3-cycl enotadjacentto4-cycle,3-cyclenotadjacentto5-cycle
or4-cyclenotadjacentto4-cycleisalso4-degenerate.Andwegiveanexampleof
4-regularIC-planargraphswithoutk-cycles(k∈{3,4,5,6}).
Keywords
IC-PlanarGraph,Degeneracy,Discharging
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
©¤?ØãÑ´k•{üÕã.©¥™\`²⊄©[1].V(G),E(G)©OL«
ãGº:8 Ú>8.²¡ã´ã3²¡þ˜«i\,¦?¿ü^>=3à:?ƒ.eG´²
¡ã,·‚^F(G)5L«ãG¡8.XJãGŒ±i\²¡þ,¦z^>•õ˜g,K
¡Ù•1-²¡ã,T²¡i\¡•1-²¡i\.1-²¡ã´Ringel[2]u1965cïIJ¡ã:-¡/
ÚžJÑ.eãG´1-²¡ã…•3˜«²¡i\,¦¹:>|¤8Ü´ãG˜‡
š(=?¿ü^ >o‡à:ÑØ-Ü),K¡ãG´IC-²¡ã,T²¡i\¡•IC-²¡i
\.IC-²¡ã´Alberson[3]32008cJÑ5,¿ßŽz‡IC-²¡ãÑ´5-Œ/.dߎ5
Kral†Stacho[4]y²¤á.eãGIC-²¡i\÷vÙ:‡ê´¤kIC-²¡ i\¥•,
K¡dIC-²¡i\••`IC-²¡i\.
G´IC-²¡ã…´•`IC-²¡i\.-C(G)´G¥¤k:|¤8Ü,E
0
(G)´G¥Ø
¹:>|¤8Ü.UXe•ª½ÂG'鲡ãG
×
:V(G
×
)=V(G)∪C(G),E(G
×
)=
E
0
(G) ∪{xz,yz|xy∈E(G) \E
0
(G),…z´¹3>xyþ:}.KG
×
´²¡ã,…é?¿z∈
C(G),kd
G
×
(z)=4.¡C(G)¥:•b:,V(G)¥:•ý:.dIC-²¡ã½Â•?¿ü‡
b:3G
×
¥Øƒ,…z˜‡ý:–õ†˜‡b:ƒ.eG
×
¥¡f–†˜‡b:'é,K
¡f•b¡;؆b:'é¡¡•ý¡.
-v∈V(G),¡:v¤k:|¤8Ü•:v•,PŠN
G
(v).¡d
G
(v)= |N
G
(v)|•v
Ýê.δ(G)=min{d
G
(v)|v∈V(G)}Ú∆(G)=max{d
G
(v)|v∈V(G)}©O¡ŠG•ÝÚ•
ŒÝ.G´IC-²¡ã,f∈F(G
×
).¡†¡fƒ'é>ê•¡fÝê(z^•>OŽüg),P
•d
G
×
(f).v∈V(G),XJd
G
(v)=k,≥k,½≤k,K¡v•k-:,k
+
-:½k
−
-:.aq/,Œ
DOI:10.12677/aam.2021.10103563391A^êÆ?Ð
Xõh
±½Âk-¡,k
+
-¡½k
−
-¡.-f∈F(G
×
),ef>.:U^ž•••g•v
1
,v
2
,v
3
,···,v
n
,
KŒPŠf=[v
1
v
2
···v
n
].^d
k
(f)Úd
k
+
(f)©OL«†f'ék-:†k
+
-:‡ê;^f
i
(v),
f
i
+
(v)Úf
i
−
(v)©OL«G
×
¥†v'éi-¡,i
+
-¡Úi
−
-¡‡ê,^α(v)5L«†v'éb3-
¡‡ê.
eãGz˜‡fãHÑkδ(H)≤k,K¡ãG´k-òz.Šâëϲ¡ãEulerúªÚ
ºÃ½n´?¿˜‡²¡ãÑ´5-òz;?¿˜‡Ø¹3-²¡ãÑ´3-òz.2002c,
WangÚLih[5]ü Æöy²ع5-²¡ã´3-òz.Óc,Fijvaz[6]y²ع6-
²¡ã´3-òz.©|^þã(J,y²عk-(k∈{3,5,6})IC-²¡ãÑ´4-òz.
¿‰Ñعk-(k∈{3,4,5,6})…4-KIC-²¡ã.Óž,©?˜Úy² 3-Ú4-؃,
3-Ú5-؃½4-Ú4-؃IC-²¡ã•´4-òz.
2.3-؆4-ƒIC-²¡ãòz5
½½½nnn2.1.عk-(k∈{3,5,6})IC-²¡ãÑ´4-òz.
y².G´IC-²¡ã…®IC-²¡i\,E
0
(G)´G¥Ø¹:>|¤8Ü,E
1
(G)´G¥¹
:>|¤8Ü.KdIC-²¡ã½Â•,dE
0
(G)¥>ÑfãG
1
´²¡ã,dE
1
(G)¥
>Ñfã´1-Kã.dK¿•G
1
´Ø¹k-(k∈{3,5,6})²¡ã.G
1
´3-òz.l
G´4-òz.
½½½nnn2.2.3-؆4-ƒIC-²¡ã´4-òz.
y².G´½n2.2:ê•4‡~ã.w,G´ëÏ,G´•`IC-²¡i\.w,
äó2.1¤á.
äó2.1δ(G) ≥5.
Ï•G´3-؆4-ƒIC-²¡ã,¤±äó2.2¤á.
äó2.2ý3-¡†ý3-¡Øƒ.
äó2.3z˜‡5
+
-:v–'é2‡4
+
-¡.
y².dv–õ†˜‡b:•α(v)≤2.α(v)=0,däó2.2•f
3
(v)≤b
d
G
(v )
2
c.v'é
4
+
-¡‡ê≥d
G
(v)−b
d
G
(v )
2
c≥3.α(v) =1ž,Ø”†v'éb3-¡•f
1
= [vv
1
v
2
]…v
2
•b
:.K†v'é…±vv
2
•>.¡7•4
+
-¡.däó2.2•f
3
(v)≤d
d
G
(v )−2
2
e+ 1=d
d
G
(v )
2
e.v'
é4
+
-¡‡ê≥d
G
(v) −d
d
G
(v )
2
e≥2.α(v)=2ž,dv–õƒ˜‡b:•,†v'éü‡
b3-¡7•f
1
=[vv
1
v
2
]Úf
2
=[vv
2
v
3
]…v
2
•b:.dž,†v'é…±vv
1
(½vv
3
)•>.>ØÓ
uf
1
(½f
2
)¡•4
+
-¡.v–'éü‡4
+
-¡.nþ,z˜‡5
+
-:–'é2‡4
+
-¡.
äó2.4z˜‡b:–õ'é2‡b3-¡.
y².‡y{.v´b:,…Ù3G
×
¥4‡:•v
1
,v
2
,v
3
,v
4
…3²¡þ•^ž••ü.
Kv
1
v
3
∈E(G)…v
2
v
4
∈E(G).bf
1
=[vv
1
v
2
],f
2
=[vv
2
v
3
]9f
3
=[vv
3
v
4
]´3-¡.KG¥¹ƒ
3-v
1
v
2
v
3
v
1
Ú4-v
1
v
3
v
4
v
2
v
1
,gñ.¤±,z˜‡b:–õ'é2‡b3-¡.
e¡·‚^=£•{¤½n2.2y².év∈V(G
×
),-ch(v)=d
G
×
(v) −6;éf∈
DOI:10.12677/aam.2021.10103563392A^êÆ?Ð
Xõh
F(G
×
),-ch(f) = 2d
G
×
(f)−6.(Üî.úª|V(G
×
)|−|E(G
×
)|+|F(G
×
)|= 2ںýn,Œ±
e¡ðªµ
X
x∈V(G
×
)∪F(G
×
)
ch(x) =
X
x∈V(G
×
)
(d
G
×
(v)−6)+
X
x∈F(G
×
)
(2d
G
×
(f)−6) = −12
e¡½Â·=£5K,…3=£L§¥,oÚ±ØC.-ch
0
(x)´x∈V(G
×
) ∪
F(G
×
)3²L=£ƒ•ª.eUy²é¤kx∈V(G
×
)∪F(G
×
),kch
0
(x)≥0.ù
Ò†þ¡ðª/¤gñ,l¤½n2.2y².
·‚½ÂXe=£5Kµ
R1µz˜‡4
+
-¡=
2d
G
×
(f)−6
d
G
×
(f)
‰'éz˜‡:.
²LR1ƒ,z˜‡5
+
-:v•β(v).
R2µz˜‡5
+
-:òmax{0,β(v)}=‰†§ƒb:.
dR1Œäó2.5¤á.
äó2.51)z‡4-¡=
1
2
‰¤'é:.
2)z‡4-¡=
4
5
‰¤'é:.
3)z‡6
+
-¡=1‰¤'é:.
e¡yéu∀x∈V(G
×
)∪F(G
×
),Ñkch
0
(x) ≥0.
f∈F(G
×
).ed
G
×
(f)=3,Kch
0
(f)=ch(f) = 2d
G
×
(v)−6 =0.ed
G
×
(f)≥4,KdR1•,
ch
0
(f) = ch(f)−
2d
G
×
(f)−6
d
G
×
(f)
×d
G
×
(f) = 0.
v∈V(G
×
).ed
G
×
(v)≥5,Kd=£5K•,•‡yβ(v)≥0.däó2.3,ä
ó2.5ÚR1Œ±β(v)≥d
G
×
(v) −6+ 2×
1
2
≥0.e¡d
G
×
(v)=4.däó2.1•v•b:.
v3G
×
¥4‡:•v
1
,v
2
,v
3
,v
4
…3²¡þ•^ž••ü.-f
i
´±vv
i
,vv
i+1
•>.¡,
i= 1,2,3,4…v
5
= v
1
.däó2.1•d
G
×
(v
i
) ≥5,i= 1,2,3,4.dIC-²¡ã½Â•,v
i
3G
×
¥
:(Øv)•ý:.
œ¹1µv؆b3-¡'é
däó2.5•,ch
0
(v) ≥d
G
×
(v)−6+
1
2
×4 = 0.
œ¹2µv†˜‡b3-¡'é
Ø”d
G
×
(f
1
)=3,=f
1
=[vv
1
v
2
].K†v
3
Úv
4
ƒ:Ñ´ý:.däó2.2•,f
3
(v
3
)≤
d
d
G
×
(v
3
)−2
2
e.v
3
–†d
G
×
(v
3
) −f
3
(v
3
)≥d
G
×
(v
3
) −d
d
G
×
(v
3
)−2
2
e≥3‡4
+
-¡.lβ(v
3
)≥
d
G
×
(v
3
)−6+
1
2
×3 =
1
2
.dR2•v
3
–=
1
2
‰v.däó2.5•, ch
0
(v) ≥d
G
×
(v)−6+
1
2
×3+
1
2
= 0.
œ¹3µv†ü‡b3-¡'é
f
1
=[vv
1
v
2
]…f
2
=[vv
2
v
3
].Kd3-؆4-…v
1
,v
2
,v
3
:•ý:•,±v
1
v
2
•
>.>…ØÓuf
1
¡•5
+
-¡.Ón,±v
2
v
3
•>.>…ØÓuf
2
¡•5
+
-¡.däó2.5•,
DOI:10.12677/aam.2021.10103563393A^êÆ?Ð
Xõh
β(v
2
)≥d
G
×
(v
2
) −6 +
4
5
×2=
3
5
.dR2•v
2
–=
3
5
‰v.däó2.2•f
3
(v
4
)≤d
d
G
×
(v
4
)−2
2
e.
¤±v
4
–†d
G
×
(v
4
) −f
3
(v
4
)≥d
G
×
(v
4
) −d
d
G
×
(v
4
)−2
2
e≥3‡4
+
-¡.ldäó2.5•β(v
4
)≥
d
G
×
(v
4
)−6+
1
2
×3 =
1
2
,…dR2•v
4
–=
1
2
‰v.däó2.5•ch
0
(v) ≥d
G
×
(v)−6+
3
5
+
1
2
+
1
2
×2 =
1
10
.
f
1
=[vv
1
v
2
]…f
3
=[vv
3
v
4
].Kv
i
†4-v
1
v
2
v
3
v
4
v
1
'é,i=1,2,3,4.d3-†4-Ø•,
±v
1
v
2
•>.>…ØÓuf
1
¡•4
+
−¡.Ón,±v
3
v
4
•>.>…ØÓuf
3
¡•4
+
−¡.dä
ó2.2•,f
3
(v
i
) ≤1+d
d
G
×
(v
i
)−3
2
e= d
d
G
×
(v
i
)−1
2
e,i= 1,2,3,4.lv
i
–†d
G
×
(v
3
)−d
d
G
×
(v
3
)−1
2
e≥
3‡4
+
−¡'é.ldäó2.5•,β(v
i
)≥d
G
×
(v
i
)−6+
1
2
×3=
1
2
.dR2•,v
i
(i= 1,2,3,4)–
=
1
2
‰v.ch
0
(v) ≥d
G
×
(v)−6+
1
2
×4 = 0.
d½n2.2Œ±eíØ.
íííØØØ2.3.ع4-IC-²¡ã´4-òz.
d½n2.1ÚíØ2.3Œ±eíØ.
íííØØØ2.4.عk-(k∈{3,4,5,6})IC-²¡ã´4-òz.
e¡·‚‰Ñ~f`²íØ2.4(Ø´;.ã1´Ø¹3-†5-4-KIC-²¡ã.
›¡Nã‚ã´Ø¹4-4-KIC-²¡ã.K
5
´Ø¹6-4-KIC-²¡ã.
Figure1.4-regularBipartiteIC-planargraph
ã1.4-KÜIC-²¡ã
3.3-؆5-ƒIC-²¡ãòz5
½½½nnn3.1.3-؆5-ƒIC-²¡ã´4-òz.
y².G´½n3.1:ê4‡~ã.w,G´ëÏ,G´•`IC-²¡i\.w,ä
ó3.1¤á.
äó3.1δ(G) ≥5.
DOI:10.12677/aam.2021.10103563394A^êÆ?Ð
Xõh
v∈V(G
×
)´˜‡ý:.-v
1
,v
2
,···,v
d
´v3G
×
…¥:…3²¡þ•^ž••ü.
-f
i
´±vv
i
,vv
i+1
•>.>¡,Ù¥i=1,2,···,d…v
d+1
=v
1
.-f
i
,f
i+1
,f
i+2
•ƒUn‡¡.
d3-؆5-•f
i
,f
i+1
,f
i+2
¥7k˜‡4
+
-¡½b3-¡.äó3.2¤á.
äó3.2z˜‡ý:v؆n‡ƒUý3-¡'é.
äó3.3z‡5
+
-:v–'é2‡4
+
-¡.
y².dv–õ†˜‡b:•α(v)≤2.α(v)=0,däó3.2•f
3
(v)≤b
2d
G
(v )
3
c.v–'
éd
G
×
(v)−f
3
(v)≥d
G
×
(v)−b
2d
G
(v )
3
c≥2‡4
+
-¡.α(v)=1ž,Ø”†v'éb3-¡•f
1
=
[vv
1
v
2
]…v
2
•b:.K±vv
2
•>.>…ØÓuf¡•4
+
-¡.däó3.2•f
3
(v)≤d
2(d
G
(v )−1)
3
e.
v–'éd
G
×
(v)−f
3
(v)≥d
G
×
(v)−b
2(d
G
(v )−1)
3
c≥2‡4
+
-¡.α(v)= 2ž,dv–õƒ˜‡
b:•,†v'éü‡b3-¡7•f
1
=[vv
1
v
2
]Úf
2
=[vv
2
v
3
],…v
2
•b:.-f
3
,f
4
©O±vv
3
•>
.>…ØÓuf
2
¡Ú±vv
1
•>.>…ØÓuf
1
¡.ed
G
×
(f
3
) ≥4…d
G
×
(f
4
) ≥4,Kv–'é
ü‡4
+
-¡.ed
G
×
(f
3
)=3,=f
3
=[vv
3
v
4
],Kd3-؆5-•±vv
4
•>.>…ØÓuf
3
¡
9f
4
•4
+
-¡.v–'éü‡4
+
-¡.nþ,z˜‡5
+
-:–'é2‡4
+
-¡.
e¡·‚^=£5K¤½n3.1y².
·‚æ^†½n2.2ƒÓЩ¼ê9=£5K.e5,·‚I‡y²é¤kx∈
V(G
×
)∪F(G
×
),kch
0
(x) ≥0.íц½n2.2˜gñ,l¤é½n3.1y².
dR1Œäó3.4¤á.
äó3.41)z‡4-¡=
1
2
‰¤'é:.
2)z‡4-¡=
4
5
‰¤'é:.
3)z‡6
+
-¡=1‰¤'é:.
e¡yéu∀x∈V(G
×
)∪F(G
×
),Ñkch
0
(x) ≥0.
f∈F(G
×
).ed
G
×
(f)=3,Kch
0
(f)=ch(f) = 2d
G
×
(v)−6 =0.ed
G
×
(f)≥4,KdR1•,
ch
0
(f) = ch(f)−
2d
G
×
(f)−6
d
G
×
(f)
×d
G
×
(f) = 0.
v∈V(G
×
).ed
G
×
(v)≥5,Kd=£5K•,•‡yβ(v)≥0.ÏLäó3.3,
äó3.4ÚR1Œ•β(v)≥d
G
×
(v)−6+2×
1
2
≥0.ed
G
×
(v)=4.däó3.1•v•b:.
v3G
×
¥4‡:•v
1
,v
2
,v
3
,v
4
…3²¡þ•^ž••ü.-f
i
´±vv
i
,vv
i+1
•>.
¡,i=1,2,3,4…v
5
=v
1
.däó3.1•d
G
×
(v
i
)≥5,i=1,2,3,4.dIC-²¡ã½Â•,v
i
3G
×
¥
:(Øv)•ý:,i= 1,2,3,4.
œ¹1µv†o‡b3-¡'é
Kf
1
=[vv
1
v
2
],f
2
=[vv
2
v
3
],f
3
=[vv
3
v
4
]…f
4
=[vv
4
v
1
].dv
1
•†˜‡b:ƒ•v
1
3G
×
¥
ØvÙ{:•ý:.-f
0
´±v
1
v
2
•>.>…ØÓuf
1
¡,f
00
´±v
4
v
1
•>.>…ØÓ
uf
4
¡.-f
0
=[v
1
v
2
x
1
···x
k
].ed
G
×
(f
0
)=3,=f
0
=[v
1
v
2
x
1
],KG¥¹ƒ3-v
1
v
2
x
1
v
1
Ú5-
v
1
x
1
v
2
v
3
v
4
v
1
,gñ.ed
G
×
(f
0
) = 4,=f
0
= [v
1
v
2
x
1
x
2
],dIC-²¡ã½Â•x
1
†x
2
•ý:.dδ(G) ≥
5•x
1
,x
2
/∈{v
1
,v
2
,v
3
,v
4
},KG¥¹ƒ3-v
1
v
2
x
1
v
1
Ú5-v
1
x
2
x
1
v
2
v
3
v
1
,gñ.d
G
×
(f
0
)≥
5.dé¡5,d
G
×
(f
00
)≥5.ldäó3.4•,β(v)≥d
G
×
(v) −6+
4
5
×2=
3
5
.dR2•,v
1
–=
DOI:10.12677/aam.2021.10103563395A^êÆ?Ð
Xõh

3
5
‰v.dé¡5,v
2
,v
3
,v
4
ˆ–=
3
5
‰v.Ïd,ch
0
(v) ≥d
G
×
(v)−6+4×
3
5
=
2
5
.
œ¹2µv†n‡b3-¡'é.
Ø”f
1
=[vv
1
v
2
],f
2
=[vv
2
v
3
]†f
3
=[vv
3
v
4
].eyd
G
×
(f
4
)≥6.¯¢þ,XJd
G
×
(f
4
)=4,
=f
4
= [vv
4
xv
2
],Kdäó3.1•x/∈{v
1
,v
2
,v
3
,v
4
},G¥¹ƒ3-v
1
v
2
x
1
v
1
Ú5-v
1
v
2
v
3
v
4
xv
1
,
gñ.XJd
G
×
(f
4
)=5,=f
4
=[vv
4
x
1
x
2
v
2
],@odäó3.1•x
1
,x
2
/∈{v
1
,v
2
,v
3
,v
4
},¤±G¥¹
ƒ3-v
1
v
2
x
1
v
1
Ú5-v
1
v
3
v
4
x
1
x
2
v
1
,gñ.¤±,d
G
×
(f
4
)≥6.däó3.3Ú3.4•,β(v
1
)≥
d
G
×
(v
1
) −6+
1
2
+ 1=
1
2
.dR2•,v
1
–=
1
2
‰v.Ón,v
4
–=
1
2
‰v.Ïd,ch
0
(v)≥
d
G
×
(v)−6+1+
1
2
= 0.
œ¹3µv†ü‡b3-¡'é.
kf
1
=[vv
1
v
2
]†f
2
=[vv
2
v
3
].eyd
G
×
(f
3
)≥5.¯¢þ,XJd
G
×
(f
3
)=4,=f
3
=
[vv
3
xv
4
],Kdäó3.1•x/∈{v
1
,v
2
,v
3
,v
4
},G¥¹ƒ3-v
1
v
2
v
3
v
1
Ú5-v
1
v
3
xv
4
v
2
v
1
,gñ.
d
G
×
(f
3
)≥5.dé¡5,d
G
×
(f
4
)≥5.däó3.3Ú3.4•,β(v
3
)≥d
G
×
(v
1
) −6 +
1
2
+
4
5
=
3
10
.
dR2•,v
3
–=
3
10
‰v.dé¡5,v
4
–=
3
10
‰v.Ïd,däó3.4•ch
0
(v)≥d
G
×
(v) −6+
2×
4
5
+2×
3
10
=
1
5
.
2f
1
=[vv
1
v
2
]Úf
3
=[vv
3
v
4
].ed
G
×
(f
2
)≥5½d
G
×
(f
4
)≥5,Ø”d
G
×
(f
2
)≥5,Kdä
ó3.3Ú3.4•,β(v
2
)≥d
G
×
(v
1
) −6 +
1
2
+
4
5
=
3
10
.dR2•,v
2
–=
3
10
‰v.Ón,v
3
–=

3
10
‰v.@odäó3.4•ch
0
(v)≥d
G
×
(v)−6+2×
4
5
+2×
3
10
=
1
5
.ed
G
×
(f
2
) =d
G
×
(f
4
) =4,
=f
2
=[vv
2
xv
3
]Úf
4
=[vv
4
yv
1
].däó3.1•x,y/∈{v
1
,v
2
,v
3
,v
4
}.-f
0
´±v
2
x•>.>…ØÓ
uf
2
¡,…f
0
=[v
2
xz
1
···z
k
].ed
G
×
(f
0
)=3,KG¥¹ƒ3-v
2
xz
1
v
2
Ú5-v
2
z
1
xv
3
v
4
v
2
,g
ñ.d
G
×
(f
0
)≥4.aqŒ±y²±v
1
v
2
•>.>…ØÓuf
1
¡•4
+
-¡.däó3.4•,β(v
1
)≥
d
G
×
(v
1
)−6+
1
2
×3 =
1
2
.dé¡5, kβ(v
i
) ≥
1
2
, i= 2,3,4.dR2•,v
i
(i= 1,2,3,4)–=
1
2
‰v.
Ïd,däó3.4•ch
0
(v) ≥d
G
×
(v)−6+2×
1
2
+4×
1
2
= 1.
œ¹4µv†˜‡b3-¡'é.
Ø”d
G
×
(f
1
)=3,=f
1
=[vv
1
v
2
].däó3.2•,f
3
(v
3
)≤d
2(d
G
×
(v
3
)−2)
3
e.lv
3
–'
éd
G
×
(v
3
) −f
3
(v
3
)≥d
G
×
(v
3
) −d
2(d
G
×
(v
3
)−2)
3
e≥3‡4
+
-¡.däó3.4•,β(v
3
)≥d
G
×
(v
3
) −6 +
1
2
×3 =
1
2
.dR2•,v
3
–=
1
2
‰v.Ïd,däó3.4•ch
0
(v) ≥d
G
×
(v)−6+3×
1
2
+×
1
2
= 0.
œ¹5µv؆b3-¡'é
däó3.4•,ch
0
(v) ≥d
G
×
(v)−6+
1
2
×4 = 0.
4.4-؆4-ƒIC-²¡ãòz5
½½½nnn4.1.4-؆4-ƒIC-²¡ã´4-òz.
y².G´½n4.1:ê4‡~ã.w,G´ëÏ,G´•`IC-²¡i\.w,ä
ó4.1¤á.
äó4.1δ(G) ≥5.
v∈V(G
×
)´˜‡ý:.-v
1
,v
2
,d¸ots,v
d
´v3G
×
…¥:…3²¡þ•^ž••
DOI:10.12677/aam.2021.10103563396A^êÆ?Ð
Xõh
ü.-f
i
´±vv
i
,vv
i+1
•>.>¡,Ù¥i=1,2,···,d…v
d+1
=v
1
.d4-؆4-
•f
i
,f
i+1
,f
i+2
¥7k˜‡4
+
-¡½b3-¡.äó4.2¤á.
äó4.2z˜‡ý:v؆n‡ƒUý3-¡'é.
aqäó3.3y²,Œäó4.3¤á.
äó4.3z‡5
+
-:v–'é2‡4
+
-¡.
äó4.4z˜‡b:–õ'é3‡b3-¡.
y².v´b:,…Ù3G
×
¥4‡:•v
1
,v
2
,v
3
,v
4
¿…3²¡þ•^ž••ü.Kv
1
v
3
∈
E(G)…v
2
v
4
∈E(G).-f
i
´±vv
i
Úvv
i+1
•>.>¡,Ù¥i=1,2,3,4…v
5
=v
1
.·‚b
f
1
=[vv
1
v
2
],f
2
=[vv
2
v
3
],f
3
=[vv
3
v
4
]…f
4
=[vv
4
v
1
].KG¥¹ƒ4-v
1
v
2
v
3
v
4
v
1
Ú4-
v
1
v
3
v
4
v
2
v
1
,gñ.¤±,z˜‡b:–õ'é3‡b3-¡.
e¡·‚^=£5K¤½n4y².
·‚æ^†½n2.2ƒÓЩ¼ê9=£5K.e5,·‚I‡y²é¤kx∈
V(G
×
)∪F(G
×
),kch
0
(x) ≥0.líц½n2.2˜gñ,l¤é½n4.1y².
dR1Œäó4.5¤á.
äó4.51)z‡4-¡=
1
2
‰¤'é:.
2)z‡4-¡=
4
5
‰¤'é:.
3)z‡6
+
-¡=1‰¤'é:.
e¡yéu∀x∈V(G
×
)∪F(G
×
),Ñkch
0
(x) ≥0.
f∈F(G
×
).ed
G
×
(f)=3,Kch
0
(f)=ch(f) = 2d
G
×
(v)−6 =0.ed
G
×
(f)≥4,KdR1•,
ch
0
(f) = ch(f)−
2d
G
×
(f)−6
d
G
×
(f)
×d
G
×
(f) = 0.
v∈V(G
×
).ed
G
×
(v)≥5,d=£5K•,Iyβ(v)≥0.däó4.3,äó4.4ÚR1•β(v)≥
d
G
×
(v)−6+2×
1
2
≥0.ed
G
×
(v) = 4.däó4.1•v•b:.-v3G
×
¥4‡:•v
1
,v
2
,v
3
,v
4
…
3²¡þ•^ž••ü.Kv
1
v
3
∈E(G)…v
2
v
4
∈E(G).-f
i
´±vv
i
,vv
i+1
•>.¡,
i=1,2,3,4…v
5
=v
1
.däó4.4•,v–õ'é3‡b3-¡.däó4.1•d
G
×
(v
i
)≥5,i=1,2,3,4.
dIC-²¡ã½Â•,v
i
3G
×
¥:(Øv)•ý:,i= 1,2,3,4.
œ¹1µv†n‡b3-¡'é.
Ø”f
1
=[vv
1
v
2
],f
3
=[vv
3
v
4
]†f
4
=[vv
4
v
1
].eyd
G
×
(f
2
)≥5.¯¢þ,ed
G
×
(f
2
)=4,
=f
4
= [vv
2
xv
3
],Kdäó4.1•x/∈{v
1
,v
2
,v
3
,v
4
}.G¥¹ƒ4-v
1
v
2
xv
3
v
1
Ú4-v
1
v
2
v
4
v
3
v
1
,
gñ.¤±d
G
×
(f
2
)≥5.-f
0
´±v
1
v
2
•>.>…ØÓuf
1
¡.ed
G
×
(f
0
)=3,=f
0
=
[v
1
v
2
y
1
],däó4.1•y
1
/∈{v
1
,v
2
,v
3
,v
4
}.G¥¹ƒ4-v
1
y
1
v
2
v
4
v
1
Ú4-v
1
v
2
v
4
v
3
v
1
,g
ñ.ed
G
×
(f
0
)=4,=f
0
=[v
1
v
2
y
1
y
2
],däó4.1•y
1
,y
2
/∈{v
1
,v
2
,v
3
,v
4
},y
1
,y
2
´ý:,G¥
¹ƒ4-v
1
v
2
y
1
y
2
v
1
Ú4-v
1
v
2
v
4
v
3
v
1
,gñ.d
G
×
(f
0
)≥5,ldäó4.5•,β(v
2
)≥
d
G
×
(v
2
)−6+
4
5
×2=
3
5
.dR2•,v
2
–=
3
5
‰v.dé¡5,v
3
–=
3
5
‰v.dä
ó4.5•ch
0
(v) ≥d
G
×
(v)−6+
4
5
+2×
3
5
= 0.
DOI:10.12677/aam.2021.10103563397A^êÆ?Ð
Xõh
œ¹2µv†ü‡b3-¡'é.
kf
3
= [vv
3
v
4
]…f
4
= [vv
4
v
1
].kyf
1
Úf
2
¥–k˜‡5
+
-¡.¯¢þ, ef
1
= [vv
1
xv
2
]…f
2
=
[vv
2
yv
3
],däó4.1•x6= y…x,y/∈{v
1
,v
2
,v
3
,v
4
},džG¥¹ƒ4-v
1
xv
4
v
2
v
1
Ú4-v
2
yv
3
v
4
v
2
,g
ñ.f
1
Úf
2
¥–k˜‡´5
+
-¡.däó4.2•,f
3
(v
2
)≤d
2(d
G
×
(v
2
)−2)
3
e.v
2
–†d
G
×
(v
2
) −
f
3
(v
2
) ≥d
G
×
(v
2
)−d
2(d
G
×
(v
2
)−2)
3
e≥3 ‡4
+
-¡.däó4.5•, β(v
2
) ≥d
G
×
(v
2
)−6+
1
2
×2+
4
5
=
4
5
.
dR2•,v
2
–=
4
5
‰v.däó4.5•ch
0
(v) ≥d
G
×
(v)−6+
1
2
+
4
5
+
4
5
=
1
10
.
2f
1
=[vv
1
v
2
]Úf
3
=[vv
3
v
4
].eyd
G
×
(f
2
)≥5…d
G
×
(f
4
)≥5.¯¢þ,dé¡5Ø
”f
2
=[vv
2
xv
3
].däó4.1•x6=y…x,y/∈{v
1
,v
2
,v
3
,v
4
},G¥¹ƒ4-v
2
xv
3
v
4
v
2
Ú4-
v
1
v
2
v
4
v
3
v
1
,gñ.d
G
×
(f
2
) ≥5…d
G
×
(f
4
) ≥5.däó4.5•,β(v
i
) ≥d
G
×
(v
i
)−6+
1
2
+
4
5
=
3
10
,i=
1,2,3,4.dR2•,v
i
–=
3
10
‰v,i= 1,2,3,4.däó4.5•ch
0
(v) ≥d
G
×
(v)−6+4×
3
10
+2×
4
5
=
4
5
.
œ¹3µv†˜‡b3-¡'é.
Ø”d
G
×
(f
1
) = 3,=f
1
= [vv
1
v
2
].däó4.2•, f
3
(v
3
) ≤d
2(d
G
×
(v
3
)−2)
3
e.v
3
–†d
G
×
(v
3
)−
f
3
(v
3
) ≥d
G
×
(v
3
)−d
2(d
G
×
(v
3
)−2)
3
e≥3‡4
+
-¡'é.däó4.5•,β(v
3
) ≥d
G
×
(v
3
)−6+
1
2
×3 =
1
2
.
dR2•,v
3
–=
1
2
‰v.Ïd,däó4.5•ch
0
(v) ≥d
G
×
(v)−6+3×
1
2
+
1
2
= 0.
œ¹4µv؆b3-¡'é
däó4.5•,ch
0
(v) ≥d
G
×
(v)−6+
1
2
×4 = 0.
ë•©z
[1]Bondy,J.A.andMurty,U.S.R.(1976)GraphTheorywithApplications.North-Holland,New
York.
[2]Ringel,G.(1965)EinSechsfarbenproblemaufderKugel.AbhandlungenausdemMathema-
tischenSeminarderUniversit¨atHamburg,29,107-117.(InGerman)
https://doi.org/10.1007/BF02996313
[3]Alberson, M. (2008)Chromatic Number, IndependentRatio, and CrossingNumber. ArsMath-
ematicaContemporanea,1,1-6.https://doi.org/10.26493/1855-3974.10.2d0
[4]Kral,D.andStacho,L.(2010)ColoringPlaneGraphswithIndependentCrossings.Journal
ofGraphTheory,64,184-205.https://doi.org/10.1002/jgt.20448
[5]Wang,W.andLih,K.W.(2002)ChoosabilityandEdgeChoosabilityPlanarGraphswithout
FiveCycles.AppliedMathematicsLetters,15,561-565.
https://doi.org/10.1016/S0893-9659(02)80007-6
[6]Fijavz,G.,Juvan,M.,Mohar,B.andSkrekovski,R.(2002)PlanarGraphswithoutCyclesof
SpecificLengths.EuropeanJournalofCombinatorics,23,377-388.
https://doi.org/10.1006/eujc.2002.0570
DOI:10.12677/aam.2021.10103563398A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.