设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2021,10(11),3618-3622
PublishedOnlineNovemb er2021inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2021.1011382
˜a“êãCayley5
LLL§§§ÙÙÙ‡‡‡
∗
B²ŒÆêƆÚOÆ§B²B
ÂvFϵ2021c102F¶¹^Fϵ2021c1023F¶uÙFϵ2021c114F
Á‡
R´˜‡k•‚"©Äu“êãØÄ¯¢§ïĘ a-‡ãxCayley5Ÿ§E 
“êãBΓ
n
(R;f
2
,...,f
n
)˜‡Ã•fx§Ù¥z‡ãÑ´Cayleyã§3dÄ:þ?˜Ú•Äù
a“êã•Œ"
'…c
Cayleyã§Hamiltonã§2Â¡N+
CayleyPropertiesofaClassof
AlgebraicGraphs
FuyuanYang,ChaoZhang
∗
SchoolofMathematicsandStatistics,GuizhouUniversity,GuiyangGuizhou
Received:Oct.2
nd
,2021;accepted:Oct.23
rd
,2021;published:Nov.4
th
,2021
Abstract
LetRbeafinitering.Basedonthebasicfactsofalgebraicgraphtheory,thispaper
studiestheCayleypropertiesofanimportantfamilyofgraphs,andconstructsan
∗ÏÕŠöEmail:zhangc@amss.ac.cn
©ÙÚ^:L,Ù‡.˜a“êãCayley5[J].A^êÆ?Ð,2021,10(11):3618-3622.
DOI:10.12677/aam.2021.1011382
L§Ù‡
infinitesubfamilyofalgebraicgraphsBΓ
n
(R;f
2
,...,f
n
),inwhicheachgraphisCayley
graph.Onthisbasis,themaximalcycleofthiskindofalgebraicgraphisfurther
considered.
Keywords
CayleyGraph,HamiltonianGraph,GeneralizedDihedralGroup
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
©¥§¤kãÑ´{üÃloopÕã"•§|½Âã•@´dLazebnikJÑ˜a
ã§•Ð^5)û4ŠãØ¥¯K[1]§LazebnikÚWoldarïáùaã˜-‡5Ÿ[2]§
•)K5ÚVK5"2002c§©Ù[3]?Ø˜XŒé¡•§ |½Âã¿½§‚´
Äëϧù˜XãØ´Cayleyã¿…¼êØ´é¡"d§ãBΓ
n
(R;f
2
,...,f
n
)•õ5Ÿ
Ú¯KŒ±3Lazebnik©Ù[4]¥é"3A^•¡§UstimenkoÚ¦ÜŠöò•§|½Âã
A^u?ènØÚ—èÆ[5]"
CayleyãCay(G,S)´±+G¥ƒ•º:§±f8S½Â>˜aã§§†Hamiltonã
2•ïÄ[6]"Lazebnik3©Ù[2]5.2!¥‰Ñã˜úm¯K§©Ì‡ïÄÙ¥
˜‡-‡úm¯K§=•§|½Âã=¼ê(½ãBΓ
n
(R;f
2
,...,f
n
)´Cayleyã½ö
´Hamiltonã§ù´˜‡k…k¿Â¯K§©E˜X•§|½ÂCayleyã§
¿…ãBΓ
2
(F
q
;p
1
l
1
)•Œ"
2.ý•£
Γ´˜‡ã§·‚o´^V(Γ)L«º:8§^E(Γ)L«>8§x∼yL«º:xÚyƒ"
½Â1[2]R´k•‚§¼êf
i
:R
2i−2
→R´?¿‰½¼ê"·‚½Â©ãBΓ
n
=
BΓ
n
(R;f
2
,...,f
n
)"§ü‡Ü8´©OuR
n
P
n
ÚL
n
§P
n
ÚL
n
¥ƒ©O¡•:(p)=
(p
1
,...,p
n
)Ú‚[l] = [l
1
,...,l
n
]"·‚½Âº:(p)Ú[l]…=e¡n−1‡^‡¤áµ
p
2
+l
2
= f
2
(p
1
,l
1
),
p
3
+l
3
= f
3
(p
1
,l
1
,p
2
,l
2
),
......
p
n
+l
n
= f
n
(p
1
,l
1
,p
2
,l
2
,...,p
n−1
,l
n−1
).
DOI:10.12677/aam.2021.10113823619A^êÆ?Ð
L§Ù‡
w,§XJR´r§@oãBΓ
n
(R;f
2
,...,f
n
)º:ê´2r
n
…´r−K§Ï•éu?Û
º:a∈V(BΓ
n
)Úx∈R§•3•˜º:b∈V(BΓ
n
)§¦b†aƒ§¿…b1˜‡‹I´x"
½Â2[7]G´+§S´Gf8"k•ãΓ=Cay(G,S)´Cayleyã§XJCay(G,S)º
:8•G…ü‡º:x,y∈Gƒ§…=yx
−1
∈S"XJS
−1
=S§KT'X´é¡§
džCayleyãCay(G,S)d˜‡Ã•ã"
½Â3Γ´˜‡ã§H´gÓ+Aut(Γ)˜‡f+"XJH3V(Γ)´D4…éu ?
¿v∈V(Γ)Úσ∈H§¦σ(v) = v§@oσ´ðgÓ§K¡H3V(Γ)þ´K"
Ún1[7]ãΓ´+GCayleyã…=Aut(Γ)•¹†GÓf+3V(Γ)þ´K"
½Â4+G´2Â¡N+§XJ§k˜‡•ê•2†f+AÚ˜‡•2ƒπ∈
G\A§é?¿g∈A§¦πgπ= g
−1
"3ù«œ¹e§·‚PŠG= hπ,Ai"
½Â5[8]•¹ãΓz‡º:´»¡•ΓHamilton´»¶aq/§ΓHamilton´•
¹Γz‡º:"eãΓ•¹Hamilton§K¡ãΓ´Hamiltonã½ö´hamiltonian"
Ún2[6]G´k•+§S´Gf8"d÷v§
(1)S´G)¤8§
(2)A´G5p−f+é,ƒêp§…
(3)st
−1
∈Aé¤ks,t∈S§
@oCay(G,S)k˜‡Hamliton"
3.̇(J
e¡E˜X•§|½ÂãBΓ
n
(R;f
2
,...,f
n
)Ñ´Cayleyã"
½n1e{f
i
|i= 2,...,n}÷v±eœ¹§KãBΓ
n
(R;f
2
,...,f
n
)´Cayleyã"
(1)f
i
=
i−1
P
s=1
a
s
(p
s
+l
s
)
b
s
+c§Ù¥a
s
,c∈R´~ê…b
s
´ê¶
(2)n= 2…f
2
= cp
1
l
1
é~êc∈R§Ù¥R´†‚…2
−1
∈R¶
(3)f
n
=
n−1
P
s=1
b
s
(p
s
l
s
)+
n−1
P
s=1
c
s
(p
s
+l
s
)
d
s
+
n−1
P
s=1
e
s
(p
s
l
s
)
mp
+cÚf
i
=
i−1
P
s=1
a
i,s
(p
s
+l
s
)
b
i,s
+d
i
éi=2,···,n−1§Ù¥R´Ap…2
−1
∈R†‚§mp´Ûê§a
i,s
,b
s
,c
s
,e
s
,c,d
i
∈R§
b
i,s
,d
s
´ê¶
(4)f
m
= p
m−1
l
m−1
§f
i
= p
1
+l
1
é2 ≤i<mÚf
i
= p
m−1
+l
m−1
ém<i≤n§Ù¥R´†
‚…2
−1
∈R"
y²µéu1 ≤k<i≤nÚx∈R§·‚e¡Nφ,σ
i,x
: R
n
→R
n
§
φ: (p
1
,...,p
n
) 7→[p
1
,...,p
n
],[ l
1
,...,l
n
] 7→(l
1
,...,l
n
).
σ
k,x
: (p) 7→(p
1
,...,p
k
+x,p
k+1
+b
k+1,k
,...,p
i
+b
i,k
,...,p
n
+b
n,k
)
[ l] 7→[ l
1
,...,l
k
−x,l
k+1
+y
k+1,k
,...,l
i
+y
i,k
,...,l
n
+y
n,k
].
DOI:10.12677/aam.2021.10113823620A^êÆ?Ð
L§Ù‡
éu(1)§½Âb
i,k
= 0§y
i,k
= 0"
éu(2)§-b
2,1
= c(−p
1
x−
1
2
x
2
)§y
2,1
= c(l
1
x−
1
2
x
2
)"
éu(3)§b
i,k
= y
i,k
= 0éuk<i<n§…
b
n,k
=
n−1
X
s=1
b
s
(−p
s
x−
1
2
x
2
)+
n−1
X
s=1
e
s
(−(p
s
x)
mp
−
1
2
x
2mp
),
y
n,k
=
n−1
X
s=1
b
s
(l
s
x−
1
2
x
2
)+
n−1
X
s=1
e
s
((l
s
x)
mp
−
1
2
x
2mp
).
éu(4)§-b
i,k
= −p
1
x−
1
2
x
2
,y
i,k
= l
1
x−
1
2
x
2
é1 ≤k<m<i≤n§b
i,k
= y
i,k
= 0éuÙ¦
œ¹"éu?¿x,y∈R·‚ØJyNφ,σ
i,x
´ãBΓ
n
gÓ…e¡†5¤áµ
σ
k,x
σ
j,y
= σ
j,y
σ
k,x
,φσ
k,x
φ= σ
k,−x
= σ
−1
k,x
.
A= hσ
k,x
|k= 1,...,n;x∈RiÚG= hφ,Ai"ØJyA´˜‡†+"
d§|φ|=2§é1≤k≤n§8Ü{σ
k,x
|x∈R}kr‡ƒ"duσ
k,x
σ
k,y
=σ
k,x+y
§K
†+Akr
n
‡gÓ§ÏdG=hφ,Ai≤Aut(BΓ
n
)´2Â¡N+…k2r
n
‡ƒ"·‚Œ±
yG3V(BΓ
n
)þ´K"dÚn1§Œ•BΓ
n
´2Â¡N+þCayleyã"
y3©•ÄãBΓ
2
(F
q
;p
1
l
1
)ÚãBΓ
2
(F
q
;p
1
+l
1
)•Œ§©Ù[3]¥½n%¹BΓ
2
(F
q
;p
1
l
1
)´
ëÏ§e¡íØŒ•BΓ
2
(F
q
;p
1
l
1
)k˜‡Hamilton"
íØ1F
q
´˜‡k••§Ù¥q =p
k
…p´Ûƒê§KãBΓ
2
(F
q
;p
1
l
1
)´Hamiltonã§
ãBΓ
2
(F
q
;p
1
+l
1
)k˜‡•Ý•2q"
y²µd½n1Œ•ãBΓ
2
(F
q
;p
1
l
1
)ÚBΓ
2
(F
q
;p
1
+l
1
)´2Â¡N+þCayleyãCay(G,S)"
éuãBΓ
2
(F
q
;p
1
l
1
)§ÄkãBΓ
2
(F
q
;p
1
l
1
)´ëÏ§dÚn1¥Ïé)¤8hSi§Œ•φσ
2,
x
2
2
σ
1,x
∈
hSidu(0) ∼[x,0] é?¿x∈F
q
"-x= 0§u´φ∈hSi§σ
2,x
2
,σ
2,−x
2
∈hSi§·‚kσ
2,−
x
2
2
∈hSi
Úσ
1,x
∈hSi§x
2
+y
2
= zk)(x,y)é?¿z∈F
q
§u´σ
2,z
∈hSi§Œ•ãBΓ(F
q
;p
1
l
1
)ëÏ"Œ
±yCay(G,S)÷vÚn2^‡§u´ãBΓ
2
(F
q
;p
1
l
1
)k˜‡Hamliton"éuãBΓ
2
(F
q
;p
1
+
l
1
)ÓCay(G
0
,S
0
)§du(0)∼[x,x]§Ùë8S
0
)¤8ÜhS
0
i•hφσ
1,x
σ
2,x
i§d½n1¥†
5Œ•hφσ
1,x
σ
2,x
i=hφ,σ
1,x
σ
2,x
i´2q§ãBΓ
2
(F
q
;p
1
+l
1
)k˜‡•Ý•2q"
Ä7‘8
©dB²Ž‰Ee‘8(1OÒµ`‰ÜÄ:[2020]1Y405)]Ï"
ë•©z
[1]Lazebnik,F. andUstimenko,V.A.(1993)New Examplesof Graphswithout SmallCyclesand
ofLargeSize.EuropeanJournalofCombinatorics,14,445-460.
DOI:10.12677/aam.2021.10113823621A^êÆ?Ð
L§Ù‡
https://doi.org/10.1006/eujc.1993.1048
[2]Lazebnik,F.andWoldar,A.J.(2001)GeneralPropertiesofSomeFamiliesofGraphsDefined
bySystemsofEquations.JournalofGraphTheory,38,65-86.
https://doi.org/10.1002/jgt.1024
[3]Lazebnik,F.andViglione,R.(2002)AnInfiniteSeriesofRegularEdge)ButNotVertex-
TransitiveGraphs.JournalofGraphTheory,41,249-258.https://doi.org/10.1002/jgt.10064
[4]Lazebnik,F.,Sun,S.andWang,Y.(2017)SomeFamiliesofGraphs,HypergraphsandDi-
graphsDefinedbySystemsofEquations:ASurvey.LectureNotesofSeminarioInterdisci-
plinarediMatematica,14,105-142.
[5]Klisowski,M.andUstimenko,V.(2012)OntheComparisonofCryptographicalProperties
ofTwoDifferentFamiliesofGraphswithLargeCycleIndicator.MathematicsinComputer
Science,6,181-198.
[6]Morris,D.W.(2012)2-GeneratedCayleyDigraphsonNilpotentGroupsHaveHamiltonian
Paths.ContributionstoDiscreteMathematics,7,41-47.
https://doi.org/10.11575/cdm.v7i1.62051
[7]Biggs,N.(1992)AlgebraicGraphTheory.CambridgeUniversityPress,NewYork.
[8]Bondy,J.A.andMurty,U.S.R.(1976)GraphTheorywithApplications.Macmillan,London.
DOI:10.12677/aam.2021.10113823622A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.