设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2021,10(11),3758-3769
PublishedOnlineNovemb er2021inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2021.1011398
'uŒÆ)ž¤üzƉ©Û
ôôôHHH§§§£££
B²ŒÆêƆÚOÆ§B²B
ÂvFϵ2021c109F¶¹^Fϵ2021c1030F¶uÙFϵ2021c1111F
Á‡
21-V±5§<‚ž¤Y²²wJp§,ŒÆ)ž¤Š•¬ž¤¥•̇Ü
©§¦‚ž¤•ªõ«õ!ž¤(¥yÑõz§´ØÜnž¤%‘?Œ„"©ò
ÄuüzƉnØ•£§ïá[•Ú!Æ)g·+n!pZéŒÆ)$
%ž¤1•üzƉ."äN5`§©ÙÄk0ïÄµ!89ÙïÄ¿Â"Ùg§
éüzƉ.?1£ã"2g§?1ï[•!p!ŒÆ)n•üzƉ.§&¢Ì
NüÑÀJ§¿A^MATLABé.?1ꊕý¢§•?1o("ïÄL²§þï
:(0,0,0),(0,0,1),(1,1,1)´TXÚüz-½üѧ…3˜½^‡e§Æ)´Ä$%ž¤É[
ÌÚ¬K•"
'…c
üzƉ§ŒÆ)§$%ž¤§üz-½üѧꊕý
AnEvolutionaryGameAnalysisof
CollegeStudents’Consumption
JiangnanWang,XiaolingQiu
Scho olofMathematicsandStatistics,GuizhouUniversity,GuiyangGuizhou
Received:Oct.9
th
,2021;accepted:Oct.30
th
,2021;published:Nov.11
th
,2021
©ÙÚ^:ôH,£ .'uŒÆ)ž¤üzƉ©Û[J].A^êÆ?Ð,2021,10(11):3758-3769.
DOI:10.12677/aam.2021.1011398
ôH§£
Abstract
Since the21stcentury, people’sconsumptionlevelhas been obviously improved.How-
ever, as the most important part of social consumption, college students’ consumption
hasvariousconsumptionpatternsanddiversifiedconsumptionstructures,butunrea-
sonable consumptioncanbeseeneverywhere.Based on theknowledge of evolutionary
gametheory,thisarticleestablishesanevolutionarygamemodelofthelow-carbon
consumptionbehaviorofcollegestudentsontheguidanceofparents,students’self-
management,anduniversityintervention.Specifically,thearticlefirstintroducesthe
researchbackground,purposeandresearchsignificance.Second,theevolutionary
gamemodelisdescribed.Thirdly,itconstructsatripartiteevolutionarygamemodel
ofparents,colleges,andcollegestudents,exploresthemainbody’sstrategicchoices,
andusesMATLABtoconductnumericalsimulationexperimentsonthemodel,and
finally concludes.Researchhas shown thatthe equilibriumpoint (0,0,0),(0,0,1),(1,1,1)
istheevolutionarystablestrategyofthesystem,andundercertainconditions,stu-
dents’low-carbonconsumptionisaffectedbyfamilyandsociety.
Keywords
EvolutionaryGame,CollegeStudents,Low-CarbonConsumption,
EvolutionaryStabilityStrategy,NumericalSimulation
Copyright
c
2021byauthor(s)andHansPublishersInc.
ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
‘ X¬²LÅÚuЧ<‚ž¤Y²ÅÚJ,§ŒÆ)ž¤S.Ú•ª½õ½Ñ
u)˜XUC"
ŒÆ)?uÆ)'…žÏ§ff¤c§qvk²L¢å§ž¤'E,§d+N•A
ϧ•3XØÓu¬þÙ¦ž¤+Nž¤%n†ž¤1•"Äk§ŒÆ)ž¤I¦•r
¶Ùg§Æ)…’´ÆS§¿vk²LÕá§Œ/É•›[1]"‡cž¤*g±9¢
ž ¤¢åK•“ŒÆ)ž¤œ¹"ŒÆ)+Nž¤S.†*géu¬ž¤+N
DOI:10.12677/aam.2021.10113983759A^êÆ?Ð
ôH§£
ž¤kX†K•§¤±§ïÄŒÆ)ž¤œ¹´8c•É'5:ƒ˜"å¹û(2016)ï
Ä(JL²§ŒÆ)ž¤*g†1••N´ÉI1K•"¨ïÄÑÉZýiÒ.†
˜Ú.˜ŒÆ)•U››)‡cž¤1•§,`O˜p.N´ÚuŒÆ)‡cž¤[2]"
‰ý?1Æ)$%ž¤†pmüzƉ©Û[3]"öu3ÄuELES.µeéŒÆ
)ž¤(‰Ü©ïÄ[4]"Ü•l$%ž¤ÝÑu§ãÆ)$%ž¤•3¯K±
9ϧ¿`²7L/ÏÆ![Ì!¬±9‡<åþ§õŒÆ)$%ž¤‚1[5]"o
ƒ§$%ž¤´˜‡[ð{K§·‚ATÌÄ‚1$%ž¤"
·IÆöéuÆ)ž¤ïČܩ•Ê33¯òNw½öž¤å»þ§3üzƉþ
ïÄ"32010c‰l!Š åéŒÆ)$%ž¤˜Ú$%¿£‰N¿‰ÑX
ïÆ§¿l+nÚ˜þJÑéü[6]"2011c4+œéŒÆ)$%ž¤˜ ?1&ħ(J
´A¿©už¬![Ì!Æåþ§N!Æ)g·+nUå[7]"2013cÜL1!ÂDr
ÆöépÆ)$%ž¤üщXïħ$%ž¤vkýÚåÆ)5¿§ ·‚nA•
Æ)¢‚œ¹§¦$%ž¤*gÚ1•K\Æ)+N¥[8]"2014c•CéÆ)?1$%
ž ¤1•%n?1ïħ•L²§‚¸!‡NAŸ!ž¤ݱ9Øåþ¬K•Æ)ž
¤*g[9]"2018cšUu©Û$%ž¤A±9yG§,Šâ•3¯K§JÑƒA
éüÚïÆ[10]"2020c‰ýÄuüzƉnا ïáp†Æ)$%ž¤Ɖ.§©
Ûü•Ɖ§¿JÑ˜Zýüѧr¦Æ)?1$%ž¤[3]"
Ï•8céÆ)ž¤üzƉ©Ûƒ'ïÄ(J„'"y§Ïd©lüzƉ••ïá
n•Ɖ.¿?1ꊕý§(Ø´µþï:(0,0,0),(0,0,1),(1,1,1)´TXÚüz
-½üѧ…3˜½^‡e§Æ)´Ä$%ž¤É[ÌÚ¬K•"
2.n•ÌN1•b9.ïá
ÙÄu[Ì!ÆéŒÆ)ž¤E¤K•§ïp![•!Æ)ž¤+Nnömn
•üzƉ.§Ïd§g.Ɖ••µp![•!Æ)ž¤+N§n‡Æ‰•Ñ´k
•n5§…±g|È•Œz•8I§ÑäkgÌÆSUå"
lpÝ5`µŒÆ)ž¤ò¬K•p••¡¡§Ïd§pŒ±ÀJÈ4ZýU
CÆ)ž¤*§lü$Æ¤§È4Zý¬Gј½¤£±e{¡/È4Zý0¤¶
p•Œ±ØZÆ))¹§—ÆŒ¡ÈL¤§Æ)vk¤ûÐS.£±e{¡/ØÈ
4 Zý0¤"‰Ñ±eÄÎÒœ¹Bu©Û[3][11][12][13]µpÀJØÈ4ZýÂÕS;b
pÀJÈ4Zý§pdu+n¤GÑ¤•C
1
,dukp+nœ¹e§Æ)?1$%
ž¤ž¤GÑ¤C
2
;pØÈ4Zýœ¹e,Æ)?1$%ž¤žI‡GÑ¤C
3
;p?1
È4Zýœ¹e§[•Úž§ŒÆ)$%ž¤ò¬~Y>±9 ÔL¤§=ü$p$E
¤§bp3$E¤þÂÕH
1
;dž§ŒÆ)æ$%ž¤§J,ŒÆ)oNƒŸ§
p3•ÆŸþþÂÕM
1
,,NypéÆ)é¬I?ú§pÂÕF
1
;p
†[ÌÙ¥˜•™ë†Zý½öü•þØë†Æ)ž¤œ¹ž§Jزw§ŒÆ)$%ž¤ò
¬~Y>±9 ÔL¤§=ü$p$E¤§bp3$E¤þÂÕH
2
;dž§
ŒÆ)æ$%ž¤§J,ŒÆ)oNƒŸ§ p3•ÆŸþþÂÕM
2
,,Ny pé
Æ)é¬I?ú§pÂÕF
2
.
DOI:10.12677/aam.2021.10113983760A^êÆ?Ð
ôH§£
é[•Ý5`µ[•kü«ÀJ§ ˜«´/Ú0Æ)$%ž¤§,˜«´/ØÚ0
Æ)$%ž¤§b[•ÀJØÚÂÕK;[•ÀJÚÆ)$%ž¤§GÑ+n¤
•A
1
,[•ÚÆ)§Æ)ÀJ$%ž¤‡GÑ¤•A
2
[•ØÚœ¹e§Æ)?1$%ž¤
I‡GÑ¤•A
3
;3[•Úe§pÈ4Zý§Æ)?1$%ž¤‰[•‘5ÂÃY
1
;p
†[ÌÙ¥˜•™ë†Z½öü•þØë†ZÆ)ž¤ž§Jزw§Æ)?1$%ž¤
‰[•‘5ÂÃY
2
.
éÆ)ž¤+NÝ5`µÆ)•kü«üѵ˜´/$%ž¤0§´/š$%ž¤0§
Æ)ÀJš$%ž¤žÂÃP,éuÆ)5`?1$%ž¤§k5gÆÂç•k5g[
ÌÂç٥§¼Æ…uJ™ÂÕN
1
,J,gƒŸ±9ºÂÕN
2
;,˜•
¡§¼[•L±9yÂÕN
3
,XJ[•½öpØZÆ)§¦+Æ)?1$%ž
¤•ج¼ƒAøyÚ¨v"XJp±9[ÌZ§ Æ)ÀJš$%ž¤§Æ)ž¤+
Nòɨv§Æ)ÉÆ¨v•N
4
,É[•¨v•N
5
.Ù¥§þã¤këêþŒu
",H
1
>H
2
,M
1
>M
2
,F
1
>F
2
,A
3
>A
2
,Y
1
>Y
2
.
Äuþãëêb§Œp![Ì!Æ)n•Ɖ.|GÝXL1¤«µ
Table1.Paymentmatrixofthethree-partygamemodelofuniversities,families,andstudents
L1.p![Ì!Æ)n•Ɖ.|GÝ
p[Ì
Æ)ž¤+N
$%ž¤zš$%ž¤1−z
È4Zýx
Úy
S+H
1
+M
1
+F
1
−C
1
S−C
1
K−A
1
+Y
1
K−A
1
P+N
1
+N
2
+N
3
−C
2
−A
3
P−N
4
−N
5
ØÚ1−y
S+H
2
+M
2
+F
2
−C
1
S−C
1
K+Y
2
K
P+N
1
+N
2
−C
2
P−N
4
ØÈ4Zý1−x
Úy
S+H
2
+M
2
+F
2
S
K−A
1
+Y
2
K−A
1
P+N
2
+N
3
−A
2
P−N
5
ØÚ1−y
S+H
2
+M
2
+F
2
S
K+Y
2
K
P+N
2
−A
3
−C
3
P
3..-½5©Û
bpæ/È4Zý0üÑVÇ•x,æ/ØÈ4Zý0üÑVÇ•1−x;[•æ
/Ú0üÑVÇ•y,æ/ØÚ0üÑVÇ•1−y;Æ)ž¤+Næ/$%ž¤0VÇ
•z,æ/š$%ž¤0VÇ•1−z.
DOI:10.12677/aam.2021.10113983761A^êÆ?Ð
ôH§£
3.1.püÑE›Ä•§©Û
p©Oæ/È4Zý0Ú/šÈ4Zý0üÑÏ"ÂéO´U
x1
,U
x2
.K
U
x1
=yz(S+H
1
+M
1
+F
1
−C
1
)+y(1−z)(S−C
1
)+(1−y)z(S+H
2
+M
2
+F
2
−C
1
)
+(1−y)(1−z)(S−C
1
)
=yz(M
1
+H
1
+F
1
−M
2
−H
2
−F
2
)+z(H
2
+M
2
+F
2
)+S−C
1
,
(1)
U
x2
=yz(S+H
2
+M
2
+F
2
)+(1−y)(1−z)S+(1−y)z(S+H
2
+M
2
+F
2
)+y(1−z)S
=z(S+H
2
+M
2
+F
2
)+(1−z)S.
(2)
dúª(1),(2)ŒpÀJüÑE›Ä•§´µ
F(x)=
dx
dt
=x(1−x)(U
x1
−U
x2
)
=x(1−x)[yz(M
1
+H
1
+F
1
−M
2
−H
2
−F
2
)−C
1
].
lE›Ä•§-½5½nŒ•:
(I)y=
C
1
z(M
1
+H
1
+F
1
−M
2
−H
2
−F
2
)
ž,F(x)≡0,ù`²éu?¿xÑ´-½G§
•Ò´`§ÃØpÀJÈ4Zý„´ØÈ4Zý§ÙüÑÑ´-½üÑ"
(II)y6=
C
1
z(M
1
+H
1
+F
1
−M
2
−H
2
−F
2
)
ž§-F(x)=0,•kx=0,x=1žùü:´
-½G§éF(x)¦§XJ3,:§êu"§ù:Ò•-½:§džqŒ©•ü«œ
¹µ
(1)0<y<
C
1
z(M
1
+H
1
+F
1
−M
2
−H
2
−F
2
)
ž,F
0
(x)|
x=0
<0,F
0
(x)|
x=1
>0,Ñx=0´
üz-½üѧ•Ò´`§‘Xžm•í£§p¬ÀJÅì•/ØÈ4Zý0üÑ=C;
(2)0<
C
1
z(M
1
+H
1
+F
1
−M
2
−H
2
−F
2
)
<y<1žF
0
(x)|
x=0
>0,F
0
(x)|
x=1
<0,Ñx=
1ž´-½üѧ•Ò´`§‘Xžm•í£§p¬ÀJÅì•/È4Zý0üÑ=C"
d þã©ÛŒ•§pÀJüÑüzØ=¬É[ÌÀJüÑK•§„¬ÉÆ
)ž¤+NüÑK•§Ødƒ§p$1¤!•ÆŸþëêCzѬépÀ
JüÑüz?1K•"
3.2.[ÌüÑE›Ä•§©Û
[Ì©Oæ/Ú0Ú/ØÚ0üÑÏ"ÂéO´U
y1
,U
y 2
.K
U
y1
=xz(K−A
1
+Y
1
)+(1−x)(1−z)(K−A
1
)+z(1−x)(K−A
1
+Y
2
)+x(1−z)(K−A
1
)
=xz(Y
1
−Y
2
)+zY
2
+K−A
1
,
(3)
DOI:10.12677/aam.2021.10113983762A^êÆ?Ð
ôH§£
U
y2
=xz(K+Y
2
)+x(1−z)K+(1−x)z(K+Y
2
)+(1−x)(1−z)K
=zY
2
+K.
(4)
dúª(3),(4)Œ[ÌÀJüÑE›Ä•§´µ
F(y)=
dy
dt
=y(1−y)(U
y 1
−U
y 2
)
=y(1−y)[xz(Y
1
−Y
2
)−A
1
].
lE›Ä•§-½5½nŒ•µ
(I)z=
A
1
x(Y
1
−Y
2
)
ž§F(y)≡0,ù`²éu˜ƒyÑ´-½G"•Ò´`§ÃØ[ÌÀ
JÚ„´ØÚ§ÙüÑÑ´-½üÑ"
(II)z6=
A
1
x(Y
1
−Y
2
)
ž§-F(y)=0=ky=0,y=1ü‡:´-½G§éF(y)¦§XJ
3,:§êu"§ù:Ò•-½:§džqŒ©•ü«œ¹µ
(1)0<z<
A
1
x(Y
1
−Y
2
)
<1ž§F
0
(y)|
y =0
<0,F
0
(y)|
y =1
>0,Ñy=0´üz-½üѧ•
Ò´`§‘Xžm•í£§[̬ÀJÅì•/ØÚ0üÑ=C;
(2)0<
A
1
x(Y
1
−Y
2
)
<z<1ž§F
0
(y)|
y =0
>0,F
0
(y)|
y =1
<0,Ñy=1žüz-½üѧ•
Ò´`§‘Xžm•í£§[̬ÀJÅì•/Ú0üÑ=C"
d þã©Û•§[•ÀJüÑüzÉõ«œ¹K•§[•ÂÃëêѬK•
[•üzüÑ"
3.3.Æ)üÑE›Ä•§©Û
Æ)©Oæ/$%ž¤0Ú/š$%ž¤0üÑÏ"ÂéO´U
z1
,U
z2
.K
U
z1
=x(N
1
−C
2
+A
3
+C
3
)+xy(A
2
−C
3
)+y(N
3
−A
2
+A
3
+C
3
)+P+N
2
−A
3
−C
3
,
(5)
U
z2
=P−xN
4
−yN
5
.
(6)
dúª(5),(6)ŒÆ)ž¤+NûüE›Ä•§µ
F(z)=
dz
dt
=z(1−z)(U
z1
−U
z2
)
=z(1−z)[x(N
1
−C
2
+A
3
+C
3
+N
4
)+y(N
3
−A
2
+A
3
+C
3
+N
5
)
+xy(A
2
−C
3
)+N
2
−A
3
−C
3
].
dþã•§E›Ä•§-½5½n•µ(Ù¥E
1
=N
3
−A
2
+A
3
+C
3
+N
5
,E
2
=
N
1
−C
2
+A
3
+C
3
+N
4
)
DOI:10.12677/aam.2021.10113983763A^êÆ?Ð
ôH§£
(I)x=
−yE
1
−N
2
+A
3
+C
3
E
2
+yA
2
−yC
3
ž§F(z)≡0ù`²éu¤kzÑ´?u-½G§•Ò´
`§ÃØÆ)ž¤+N´ÀJ$%ž¤„´š$%ž¤§ÙüÑÑ´-½üÑ"
(II)x6=
−yE
1
−N
2
+A
3
+C
3
E
2
+yA
2
−yC
3
ž§=kz=0,z=1ü:?´-½G§éF(z)¦§XJ
3,:§êu"§ù:Ò•-½:§džqŒ©•ü«œ¹µ
(1)0<x<
−yE
1
−N
2
+A
3
+C
3
E
1
+yA
2
−yC
3
<1ž,F
0
(z)|
z=0
<0,F
0
(z)|
z=1
>0,¤±z=0´üz-
½üѧ•Ò´`§‘Xžm•í£§Æ)ž¤+N¬ÀJÅ앚$%ž¤üÑ=C;
(2)
−yE
1
−N
2
+A
3
+C
3
E
2
+yA
2
−yC
3
<x<1žF
0
(z)|
z=0
>0,F
0
(z)|
z=1
<0,¤±z=1´üz-½ü
ѧ•Ò´`§‘Xžm•í£§Æ)ž¤+NÀJÅì•$%ž¤üÑ=C"
dþã©ÛŒ§Æ)ž¤+NÀJüÑØ=¬É[ÌK•„¬ÉpK•§
…pø¨![Ìø¨ëêѬK•Æ)üÑ"
3.4.n•üzüÑ©Û
y3̇lXÚˆ‡þï:?uì?-½G^‡Ñu§éTXÚ-½5©ÛïÄ"
e´p![Ì!Æ)mE›Ä•§µ

















F(x)=x(1−x)[yz(M
1
+H
1
+F
1
−M
2
−H
2
−F
2
)−C
1
]
F(y)=y(1−y)[xz(Y
1
−Y
2
)−A
1
]
F(z)=z(1−z)[x(N
1
−C
2
+A
3
+C
3
+N
4
)+y(N
3
−A
2
+A
3
+C
3
+N
5
)+xy(A
2
−C
3
)
+N
2
−A
3
−C
3
].
XÚþï:•(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1),(x
∗
,y
∗
,z
∗
),qdu
õ+NüzƉE›ÄXÚþï)˜½´î‚BŸþï)§¤±Ø^• Ä:(x
∗
,y
∗
,z
∗
)
[14].|^JacobiÝéþãl‡E›Äþï:-½5?1©Û§éF(x),F(y),F(z)¦ 
JacobiÝ[15]µÙ¥A=M
1
+H
1
+F
1
−M
2
−H
2
−F
2
,B=N
1
−C
2
+A
3
+C
3
+N
4
,C=
N
3
−A
2
+A
3
+C
3
+N
5
,D=N
2
−A
3
−C
3
.
J=







∂F(x)
∂x
∂F(x)
∂y
∂F(x)
∂z
∂F(y)
∂x
∂F(y)
∂y
∂F(y)
∂z
∂F(z)
∂x
∂F(z)
∂y
∂F(z)
∂z







=






(1−2x)(yzA−C
1
)x(1−x)zAx(1−x)yA
y(1−y)z(Y
1
−Y
2
)(1−2y)[xz(Y
1
−Y
2
)−A
1
]y(1−y)x(Y
1
−Y
2
)
z(1−z)[B+y(A
2
−C
3
)]z(1−z)(C+xA
2
−xC
3
)(1−2z)[xB+yC+xy(A
2
−C
3
+D)]






DOI:10.12677/aam.2021.10113983764A^êÆ?Ð
ôH§£
ŠâüzƉnØƒ'•£:9oäÊìÅ1˜{•[16]§ò?Û˜‡þï:“
JacobiÝ¥§Xed Ý¤kAŠÑ´Kê§@o•ù‡þï:•ì?-½:§XÚ
•¬Åì?u-½G¶Xed Ý¥–k˜‡AŠ´§@où‡þï:Ò´Ø-½:§
TXÚ•¬?uØ-½G"ˆþï:-½5½dL2¤«[17]£5µ)ÒpÎÒ“LA
ŠKÒ§sL«™•¤"
Table2.Judgmentofthestabilityofeachequilibriumpoint
L2.ˆþï:-½5½
þï:AŠ9ÙÎÒG
(0,0,0)−C
1
(−),−A
1
(−),N
2
−A
3
−C
3
(s)^‡1
(0,0,1)−C
1
(−),−A
1
(−),−(N
2
−A
3
−C
3
)(s)^‡2
(0,1,0)−C
1
(−),A
1
(+),N
3
−A
2
+N
5
+N
2
(s)Ø-½
(0,1,1)M
1
+H
1
+F
1
−M
2
−H
2
−F
2
−C
1
(s),A
1
(+),−N
3
+A
2
−N
5
−N
2
(s)Ø-½
(1,0,0)C
1
(+),−A
1
(−),N
1
+N
2
−C
2
+N
4
(s)Ø-½
(1,0,1)C
1
(+),Y
1
−Y
2
−A
1
(−),C
2
−N
4
−N
1
−N
2
(s)Ø-½
(1,1,0)C
1
(+),A
1
(+),N
1
+A
3
+N
3
+N
5
+N
2
−C
2
+N
4
(s)Ø-½
(1,1,1)
M
2
+H
2
+F
2
+C
1
−M
1
−H
1
−F
1
(s),Y
2
−Y
1
+A
1
(s),
C
2
−N
4
−N
1
−N
3
−N
5
−N
2
−A
3
(s)
^‡3
4.üz(J©Û
L3‰Ñþï:-½5^‡§©Ûe(Jµ
Table3.Stabilityconditionsofequilibriumpoint
L3.þï:-½5^‡
þï:-½5^‡?Ò
(0,0,0)N
2
<A
3
+C
3
^‡1
(0,0,1)A
3
+C
3
<N
2
^‡2
(1,1,1)
M
2
+H
2
+F
2
+C
1
<M
1
+H
1
+F
1
,Y
2
+A
1
<Y
1
,
C
2
<N
4
+N
1
+N
3
+N
5
+N
2
+A
3
(s)
^‡3
p![ÌÚÆ)üÑ•ª´/ØÈ4Zý0!/ØÚ0Ú/š$%ž¤0üѧ•Ò´
`þï:(0,0,0)´TXÚüz-½üѧ´I‡÷v˜½^‡µN
2
<A
3
+C
3
ž§p•
ªªuØÈ4Zý§[̪uØÚ§Æ)ª•uš$%ž¤üÑ"
p![ÌÚÆ)üÑ•ª´/ØÈ4Zý0!/ØÚ0Ú/$%ž¤0üѧ•Ò´`§
þï:(0,0,1)´TXÚüz-½üѧ´ÓI‡÷v˜½^‡µA
3
+C
3
<N
2
ž§p
ªuØÈ4Zý![̪uØÚÚÆ)ž¤+Nªu$%ž¤üÑ"
p![ÌÚÆ)üÑ•ª´/È4Zý0!/Ú0Ú/$%ž¤0üѧ•Ò´`§þ
ï:(1,1,1)´TXÚüz-½üѧ´ÓI‡÷v˜½^‡µM
2
+H
2
+F
2
+C
1
<
DOI:10.12677/aam.2021.10113983765A^êÆ?Ð
ôH§£
M
1
+H
1
+F
1
,Y
2
+A
1
<Y
1
,C
2
<N
4
+N
1
+N
3
+N
5
+N
2
+A
3
ž¶p•ªÀJÈ4Zý![
ÌÀJÚ!Æ)ÀJ$%ž¤üÑ"
5.•ý©Û
•U†*?1©Ûp![ Ì!Æ)nöüz´»±9• ªG§e¡òéþã
n«œ¸¥ëêäNDЧ^MATLAB^‡‰êŠ•ý©Û§5µëêI‡÷vµ¤këêþ
Œu"§H
1
>H
2
,M
1
>M
2
,F
1
>F
2
,A
3
>A
2
,Y
1
>Y
2
.
(1)éþï:(0,0,0)©Û§dc¡•3þï:(0,0,0)?uì?-½^‡ž7L÷vN
2
<
A
3
+C
3
…¤këêþŒu"§H
1
>H
2
,M
1
>M
2
,F
1
>F
2
,A
3
>A
2
,Y
1
>Y
2
,M
1
=30,H
1
=
40,F
1
=20,M
2
=20,H
2
=30,F
2
=15,C
1
=30,Y
1
=20,Y
2
=15,A
1
=20,N
1
=10,C
2
=
10,A
3
=15,C
3
=10,N
4
=10,N
3
=10,A
2
=10,N
5
=10,N
2
=8,•ý(JXã1(a)¤«[17]"b
pæ/È4Zý0VÇ´x=0.2,[ÌÀJ/Ú0VÇ•y=0.4,Æ)ÀJ$%ž¤
VÇ•z=0.8KTXÚüz-½üÑ•ýXã1(b)¤«[18]µ
Figure1.(a)Evolutionto[0,0,0];(b)Simulationdiagramofevolutionarystabilitystrategyofuniversities,
families,andstudents
ã1.(a)üz[0,0,0];(b)p,[Ì,Æ)üz-½5üÑ•ýã
dã1•§N
2
<A
3
+C
3
…¤këêþŒu"§H
1
>H
2
,M
1
>M
2
,F
1
>F
2
,A
3
>
A
2
,Y
1
>Y
2
.^‡ ž§p![Ì!Æ)üÑ•þï:?1üz§•?u-½G"ù‡n
Ø©Û(J´Ün"
(2)éþï:(0,0,1)©Û§dc¡•3þï:(0,0,1)?uì?-½^‡ž7L÷vA
3
+C
3
<
N
2
…¤këêþŒu"§H
1
>H
2
,M
1
>M
2
,F
1
>F
2
,A
3
>A
2
,Y
1
>Y
2
,M
1
=50,H
1
=
40,F
1
=30,M
2
=40,H
2
=30,F
2
=25,C
1
=30,Y
1
=45,Y
2
=30,A
1
=35,N
1
=10,C
2
=
10,A
3
=15,C
3
=15,N
4
=10,N
3
=10,A
2
=8,N
5
=10,N
2
=35,•ý(JXã2(a)¤«"b
pæ/È4Zý0VÇ´x=0.2,[ÌÀJ/Ú0VÇ•y=0.4,Æ)ÀJ$%ž¤
VÇ•z=0.8KTXÚüz-½üÑ•ýXã2(b)¤«
DOI:10.12677/aam.2021.10113983766A^êÆ?Ð
ôH§£
Figure2.(a)Evolutionto[0,0,1];(b)Simulationdiagramofevolutionarystabilitystrategyofuniversities,
families,andstudents
ã2.(a)üz[0,0,1];(b)p,[Ì,Æ)üz-½5üÑ•ýã
dã2•§N
2
<A
3
+C
3
…¤këêþŒu"§H
1
>H
2
,M
1
>M
2
,F
1
>F
2
^‡ž§
p![Ì!Æ)üÑ•þï:(0,0,1)?1üz§•?u -½G"ù‡nØ©Û(J
´Ün"
(3)éþï:(1,1,1)©Û§dc¡•3þï:(1,1,1)?uì?-½^‡ž7L÷vM
2
+
H
2
+F
2
+C
1
<M
1
+H
1
+F
1
,Y
2
+A
1
<Y
1
,C
2
<N
4
+N
1
+N
3
+N
5
+N
2
+A
3
(s),…¤kë
êþŒu "§H
1
>H
2
,M
1
>M
2
,F
1
>F
2
.•ý(JXeã3(a)¤«"bpÀJ/È4Zý0
VÇ•x=0.2,[ÌÀJ/Ú0VÇ•y=0.4,Æ)ÀJ$%ž¤VÇ•z=0.8,KTX
Úüz-½üÑ•ýXã3(b)¤«
Figure3.(a)Evolutionto[1,1,1];(b)Simulationdiagramofevolutionarystabilitystrategyofuniversities,
families,andstudents
ã3.(a)üz[1,1,1];(b)p,[Ì,Æ)üz-½5üÑ•ýã
DOI:10.12677/aam.2021.10113983767A^êÆ?Ð
ôH§£
dã3•§M
2
+H
2
+F
2
+C
1
<M
1
+H
1
+F
1
,Y
2
+A
1
<Y
1
,C
2
<N
4
+N
1
+N
3
+N
5
+
N
2
+A
3
(s)…¤këêþŒu"§H
1
>H
2
,M
1
>M
2
,F
1
>F
2
.^‡ž§p![Ì!Æ)ü
Ñ•þï:(1,1,1)?1üz§•?u-½G"ù‡nØ©Û(J´Ün"
6.(Ø
©ïÄ´p![Ì!Æ)ÀJ1•§ÏLŒþ©z§ Šâƒ'üzƉ•£§
±p![Ì!Æ)•ÌNïáp![Ì!Æ)nöüzƉ.§¿XÚ/©Ûp![
Ì!Æ)nömüÑüzL§§„?1n‘ꊕý©Û§Ñe(ص p![Ì!
Æ)+N?1n•üzƉžkµ
(1)J,gƒŸ±9ºÂÃu3[•ØÚœ¹e§Æ)?1$%ž¤I‡GÑ
¤†pØÈ4Zýœ¹e,Æ)?1$%ž¤žI‡GÑ¤ƒÚž§p•ªªuØÈ
4Zý§[̪uØÚ§Æ)ª•uš$%ž¤üÑ"
(2)[•3ØÚœ¹e§Æ)?1$%ž¤I‡GÑ¤†pØÈ4Zýœ¹e,Æ)?
1$%ž¤žI‡GÑ¤ƒÚuJ,gƒŸ±9ºÂÞ§pªuØÈ4Z
ý![̪uØÚÚÆ)ž¤+Nªu$%ž¤üÑ"
(3)p†[ÌÙ¥˜••™ë†Zý½öü•þØë†Æ)ž¤œ¹ž§Jزw§Œ
Æ)æ$%ž¤§J,ŒÆ)oNƒŸ§p3•ÆŸþþÂÃ,ŒÆ)$%ž¤ò¬
~Y>±9 ÔL¤§=ü$p$E¤¶÷v©¥JM
2
+H
2
+F
2
+C
1
<
M
1
+H
1
+F
1
,Y
2
+A
1
<Y
1
,C
2
<N
1
+N
3
+N
5
+N
2
+A
3
+N
4
ž;p•ªÀJÈ4Zý![Ì
ÀJÚ!Æ)ÀJ$%ž¤üÑ"
Ä7‘8
B²ŒÆSRT‘8]7]ÏBŒSRTi(2019)371Ò¶I[g,‰ÆÄ7‘8(12061020)¶B²
Ž˜e‰ÆÄ7(`‰ÜKYi[2021]088Ò)¶B²Ž‰Ee‰ÆÄ7(`‰ ÜÄ:[2019]1123Ò)¶
B²ŒÆÚ?<âÄ7(No.201811)]Ï‘8"
ë•©z
[1]$™.&Û“ŒÆ)ž¤(†ž¤1•[J].y“E•(&E‡),2020(2):225-225.
[2]å¹û.ŒÆ)[Ìnã˜•ª!ž¤dŠ*† ž¤1•'X[D]:[a ¬Æ Ø©].mµ:
àHŒÆ,2016.
[3]‰ý.pÈ4Zý†ŒÆ)$%ž¤1•üzƉ©Û[J].y“û’,2020(23):28-30.
[4]öu,@(C,ù.ÄuELES.é·IŒÆ)ž¤(¢yïÄ[J].•SnóŒÆÆ
(¬‰Æ‡),2019,32(3):134-139.
[5]Ü•.Ú“ŒÆ)$%ž¤1•eZÞ„[J].{›†¬,2019(35):140-141.
[6]‰l,Šå.ŒÆ)$%¿£Ú$%ž¤˜N†ïÆ[C]//¥Iû¬Æ¬.¥Iû¬Æ
¬1›n3Æâï?¬Ø©8,2010:6.
DOI:10.12677/aam.2021.10113983768A^êÆ?Ð
ôH§£
[7]4+œ.ŒÆ)$%ž¤˜&Ä[D]:[a¬Æ Ø©].€²:€²ŒÆ,2011.
[8]ÜL1,ÂDr.pÆ)$%ž¤üÑïÄ[J].¥I¤<˜,2013(13):60-62.
[9]•C.ŒÆ)$%ž¤1•%nïÄ[D]:[a¬Æ Ø©].MT:MTó§ŒÆ,2014.
[10]šUu.ŒÆ)$%ž¤1•ïÄ—±H®½ôw«pÆ)•~[J].dŠó§,2018,37(8):
108-111.
[11]•p,ou¬.$%ž¤1•K•σ9ZýüÑ©Û[J].¥I‰EØ,2012(9):42-47.
[12]q±,ÂL.ÄuƉØpãÖ,<â6”ˆÅéü©Û[J].œ‰Æ,2015,33(1):43-48.
[13]Fõ,¿²¿.p“ìè•£•üzƉ©Û[J].œ‰Æ,2013,31(5):142-146.
[14]Ritzberger,K.andWeibull,J.W.(1995)EvolutionarySelectioninNormal-FormGames.E-
conometrica,63,1371-1399.https://doi.org/10.2307/2171774
[15]Friedman,D.(1991)ASimpleTestableModelofDoubleAuctionMarkets.JournalofEconomic
BehaviorOrganization,15,47-70.https://doi.org/10.1016/0167-2681(91)90004-H
[16]©Y,±¬,Ô+.Äun•Ɖð••’í2.9üz´»[J].ÚO†ûü,2019,
35(5):68-72.
[17]•uc,_©).Äun•Ɖ•ð•üz.9üÑ©Û[J].²LêÆ,2020,37(2):
88-95.
[18]oÆ©.è’†ž¤+NmüzƉï9•ýïÄ[D]:[a¬Æ Ø©].Qì:w‰EŒÆ,
2020.
DOI:10.12677/aam.2021.10113983769A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.