设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2021,10(11),3835-3840
PublishedOnlineNovemb er2021inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2021.1011407
\Bergman˜mBloch˜mVolterra
È©Žf
¯¯¯§§§NNN[[[[[[
∗
*H“‰ÆêÆ†ÚOÆ§2ÀÖô
ÂvFϵ2021c1015F¶¹^Fϵ2021c115F¶uÙFϵ2021c1117F
Á‡
ة̇?ØlB´ekoll´epBergman˜mA
p
ω
Bloch˜mBVolterraÈ©Žf
k.5Ú;5•x"
'…c
\Bergman˜m§Bloch˜m§VolterraÈ©Žf
VolterraTypeOperatorsfromWeighted
BergmanSpacetotheBlochSpace
ErminWang,JiajiaXu
∗
SchoolofMathematicsandStatistics,LingnanNormalUniversity,ZhanjiangGuangdong
Received:Oct.15
th
,2021;accepted:Nov.5
th
,2021;published:Nov.17
th
,2021
Abstract
WeconsidertheboundednessandcompactnessofVolterratypeoperatorsfromthe
∗ÏÕŠö"
©ÙÚ^:¯,N[[.\Bergman˜mBloch˜mVolterraÈ©Žf[J].A^êÆ?Ð,2021,10(11):
3835-3840.DOI:10.12677/aam.2021.1011407
¯,N[[
weightedBergmanspacesinducedbyB´ekoll´efunctionstotheBlochSpace.
Keywords
WeightedBergmanSpaces,BlochSpace,VolterraTypeOperators
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
D´E²¡Cþü ,H(D)´Dþ)Û¼êN.·‚^dAL«DþIO¡
ÈÿÝ.‰½DþšKŒÈ¼êω,0 <p<∞ž,\Bergman˜mA
p
ω
½Â•µ
A
p
ω
= {f∈H(D) : kfk
p
L
p
ω
:=
Z
D
|f(z)|
p
ω(z)dA(z) <∞}.
©¥•Äω´¤¢B´ekoll´e.η>−1,-dA
η
= (η+1)(1−|z|
2
)
η
dA.p
0
>1,η>−1
ž,eéu?¿Carleson•¬
S(θ,h) = {z= re
iα
: 1−h<r<1,|θ−α|<
h
2
},θ∈[0,2π],h∈(0,1),
þ•3~êk>0,¦

Z
S(θ,h)
ωdA
η

Z
S(θ,h)
ω
−
p
0
0
p
0
dA
η

p
0
p
0
0
≤k[A
η
(S(θ,h))]
p
0
,
Ù¥
1
p
0
+
1
p
0
0
= 1,K¡¼êωáu8ÜB
p
0
(η).'uùa¼êŒë•©z[1–3].
P
K
η
z
(w) =
1
(1−wz)
η+2
,w∈D.
K
η
z
= K
η
(·,z)¡•A
2
(1−|z|
2
)
η
2)ؼê.
Bloch˜mB´dDþ÷v^‡
kfk
B
= |f(0)|+sup
z∈D
(1−|z|
2
)|f
0
(z)|<∞.
)Û¼êf|¤8Ü.
DOI:10.12677/aam.2021.10114073836A^êÆ?Ð
¯,N[[
g∈H(D),½ÂVolterraÈ©ŽfT
g
•
T
g
f(z) =
Z
z
0
f(ζ)g
0
(ζ)dζ,f∈H(D).
Pommerenke3[4]¥ÄkïÄÈ©ŽfT
g
3Hardy˜mH
2
k.5¯K.3dƒ,N
õÆöïÄÙ¦ØÓ) Û¼ê˜mþVolterraÈ©Žf. Li3[5]¥‰ÑlIOBergman
˜mBloch˜mVolterraÈ©Žfk.5Ú;5¯K.©·‚̇•ÄdB´ekoll´ep
Bergman˜mA
p
ω
Bloch˜mVolterraÈ©Žfk.5Ú;5¯K.
3©¥,·‚^a.bL«•3~êC>0¦a≤Cb,abL«•3~êC>0¦
C
−1
a≤b≤Ca.
2.ý•£
Äk,·‚‰Ñe¡(Ø,„©z[2].
Ún2.1p
0
>1,p>0,0 <α<1,ω∈B
p
0
(η).Ké?¿f∈A
p
ω
,k
|f(z)|≤
C

R
D
z,α
ωdA

1/p
kfk
A
p
ω
.
Ù¥C´†z∈DÃ'~ê.
éu2)ØK
γ
z
,·‚ke¡L
p
ω
‰êO,„©z[3].
Ún2.2-p>0,p
0
>1,α∈(0,1),η>−1…p
0
≥p.b
ω
(1−|z|
2
)
η
∈B
p
0
(η), γ≥(η+2)p
0
/p−
2.K
K(z,z) 
Z
D
z,α
ωdA
!
−1
;kK
γ
z
k
L
p
ω


R
D
z,α
ωdA

1/p
(1−|z|)
γ+2
.
e¡(؉ÑT
g
: A
p
ω
→B´;Žf˜‡¿‡^ ‡,TÚny²†©z[6]¥Ún2.4
aq,·‚3dŽÑy²L§.
Ún2.3T
g
:A
p
ω
→B´k.Žf,KT
g
:A
p
ω
→B´;Žf¿‡^‡´é?¿k.S
{f
n
}⊂A
p
ω
…3D?¿;f8˜—Âñu0,K
lim
n→∞
kT
g
f
n
k
B
= 0.
3.A
p
ω
BþVolterraÈ©Žf
(ܱþÚn,·‚y3ïÄVolterraÈ©ŽfT
g
lA
p
ω
Bþk.5Ú;5•x,
Xe½n.
DOI:10.12677/aam.2021.10114073837A^êÆ?Ð
¯,N[[
½n3.1bp>0,p
0
>1,α∈(0,1),η>−1,g∈H(D),
ω
(1−|z|
2
)
η
∈B
p
0
(η),KT
g
:A
p
ω
→B´
k.Žf…=
sup
z∈D
(1−|z|
2
)|g
0
(z)|
1

R
D
z,α
ωdA

1/p
<∞.
y²7‡5:bT
g
: A
p
ω
→B´k.Žf.-
k
p,z
(w) =
K
γ+1
z
(w)
kK
γ+1
z
k
L
p
ω
,z∈D,
Ù¥γ≥(η+2)p
0
/p−2.w,,kk
p,z
k
L
p
ω
= 1,k
kT
g
k
p,z
k
B
≤kT
g
k
A
p
ω
→B
kk
p,z
k
L
p
ω
= kT
g
k
A
p
ω
→B
.
,˜•¡,dÚn2.2,·‚k
|k
p,z
(w)|=
|K
γ+1
z
(w)|
kK
γ+1
z
k
L
p
ω
&
1

R
D
z,α
ωdA

1/p
.
nþ,
(1−|z|
2
)|g
0
(z)|
1

R
D
z,α
ωdA

1/p
.kT
g
k
p,z
k
B
<∞.
¿©5:b
sup
z∈D
(1−|z|
2
)|g
0
(z)|
1

R
D
z,α
ωdA

1/p
<∞.
Ké?¿f∈A
p
ω
,dÚn2.1,k
(1−|z|
2
)|g
0
(z)|f(z)|.(1−|z|
2
)|g
0
(z)|
1

R
D
z,α
ωdA

1/p
kfk
A
p
ω
.(1−|z|
2
)|g
0
(z)|
1

R
D
z,α
ωdA

1/p
.
¤±,kT
g
fk
B
<∞.T
g
: A
p
ω
→B´k.Žf.
½n3.2bp>0,p
0
>1,α∈(0,1),η>−1, g∈H(D),
ω
(1−|z|
2
)
η
∈B
p
0
(η),KT
g
: A
p
ω
→B´;
Žf…=
lim
|z|→1
(1−|z|)|g
0
(z)|
1

R
D
z,α
ωdA

1/p
= 0.
y²7‡5:bT
g
:A
p
ω
→B´;Žf.d u|z|→1ž, k
p,z
3D?¿;f8þ˜—
DOI:10.12677/aam.2021.10114073838A^êÆ?Ð
¯,N[[
Âñu0.l
0 =lim
|z|→1
kT
g
k
p,z
k
B
&lim
|z|→1
sup
w∈D
(1−|z|
2
)|g
0
(w)|k
p,z
(w)|
&lim
|z|→1
(1−|z|
2
)|g
0
(z)|k
p,z
(z)|
&lim
|z|→1
(1−|z|
2
)|g
0
(z)|
1

R
D
z,α
ωdA

1/p
.
l,
lim
|z|→1
(1−|z|)|g
0
(z)|
1

R
D
z,α
ωdA

1/p
= 0.
¿©5:blim
|z|→1
(1−|z|
2
)|g
0
(z)|
1

R
D
z,α
ωdA

1/p
=0,Ké?¿>0,•3r
0
∈(0,1),¦
|z|>r
0
ž,k
(1−|z|
2
)|g
0
(z)|
1

R
D
z,α
ωdA

1/p
<.
q|z|≤r
0
ž,k
(1−|z|
2
)|g
0
(z)|
1

R
D
z,α
ωdA

1/p
<∞.
ld½n3.1•,T
g
: A
p
ω
→B´k.Žf.¿…·‚•,•3êM,¦
M:=sup
|w|≤r
0
(1−|w|
2
)|g
0
(w)|<∞.
{f
n
}•A
p
ω
¥k.S,…3D;f8þ˜—Âñu0.K
kT
g
f
n
k
B
=sup
w∈D
(1−|w|
2
)|g
0
(w)|f
n
(w)|
=sup
|w|≤r
0
(1−|w|
2
)|g
0
(w)|f
n
(w)|+sup
|w|>r
0
(1−|w|
2
)|g
0
(w)|f
n
(w)|
.M|f
n
(w)|+sup
|w|>r
0
(1−|w|
2
)|g
0
(w)|
1

R
D
w,α
ωdA

1/p
kf
n
k
L
p
ω
.M|f
n
(w)|+
Ïd,n→∞ž, kT
g
f
n
k
B
→0.¤±T
g
: A
p
ω
→B´k;Žf.
Ä7‘8
Ø©ÉI[g,‰ÆÄ7‘8(12001258)Ú*H“‰Æ‰ï‘8(ZL1925)]Ï"
DOI:10.12677/aam.2021.10114073839A^êÆ?Ð
¯,N[[
ë•©z
[1]B´ekoll´e,D.(1981/1982)In´egalit´e`apoidspourleprojecteurderBergmandanslabouleunite
deC
n
.StudiaMathematica,71,305-323.https://doi.org/10.4064/sm-71-3-305-323
[2]Constantin,O.(2007)DiscretizationsofIntegralOperatorsandAtomicDecompositionsin
Vector-ValuedWeightedBergmanSpaces.IntegralEquationsandOperatorTheory,59,523-
554.https://doi.org/10.1007/s00020-007-1536-7
[3]Constantin,O.(2010)CarlesonEmbeddingsandSomeClassesofOperatorsonWeighted
BergmanSpaces.JournalofMathematicalAnalysisandApplications,365,668-682.
https://doi.org/10.1016/j.jmaa.2009.11.035
[4]Pommerenke,C.(1977)SchlichteFunktionenundanalytischeFunktionenvonbeschr¨ankter
mittlererOszillation.CommentariiMathematiciHelvetici,52,591-602.
https://doi.org/10.1007/BF02567392
[5]Li,S.(2008)VolterraCompositionOperatorsbetweenWeightedBergmanSpacesandBloch
TypeSpaces.JournaloftheKoreanMathematicalSociety,45,229-248.
https://doi.org/10.4134/JKMS.2008.45.1.229
[6]–’¤,¯.l•êBergman˜mA
p
ψ
Bloch˜mVolterraÈ©Žf[J].nØêÆ,
2021(11):1643-1648.https://doi.org/10.12677/PM.2021.119182
DOI:10.12677/aam.2021.10114073840A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.