设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2021,10(11),3850-3864
PublishedOnlineNovemb er2021inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2021.1011409
DÕƒ u¢¯K1wz
•{ïÄ
444¡¡¡ZZZ§§§$$$½½½777
∗
B²ŒÆ§êƆÚOÆ§B²B
ÂvFϵ2021c1017F¶¹^Fϵ2021c117F¶uÙFϵ2021c1119F
Á‡
éD Õƒ u¢¯K§©ïáDÕ•˜¦`z."Ä k§òØëYDÕK¼êtµ
•ëYCapped-L1K¼ê"|^••êÚ••-½:ïáTtµ¯K˜•`5^
‡"?˜Ú§©Û••-½:e.5Ÿ§¿ïátµ¯K†©¯KÛ)d5"•
§©ïÆæ^1wz•{¦)T¯K"E8I¼ê1wz¼ê§¿ïá1w¯K†
tµ¯K)˜—5§•¦^1wz•{¦)T¯KJønØy"
'…c
DÕƒ u¢¯K§•˜¦O§••-½:§1wz•{
ResearchonSmoothingMethod
forSparsePhaseRetrieval
Problems
XiaojiaLiu,DingtaoPeng
∗
SchoolofMathematicsandStatistics,GuizhouUniversity,GuiyangGuizhou
Received:Oct.17
th
,2021;accepted:Nov.7
th
,2021;published:Nov.19
th
,2021
∗ÏÕŠö"
©ÙÚ^:4¡Z,$½7.DÕƒ u¢¯K1wz•{ïÄ[J].A^êÆ?Ð,2021,10(11):3850-3864.
DOI:10.12677/aam.2021.1011409
4¡Z§$½7
Abstract
Forsparsephaseretrievalproblems,thispaperconstructedaclassofsparseleast
absolutedeviationoptimizationmodel.First,weusedthecontinuousCapped-L1
regularizationfunctiontorelaxthediscontinuoussparsityfunction.Byvirtueof
directionalderivativesandthedirectionalstationarypoints,weprovidedthefirst-
orderoptimalityconditionfortherelaxedoptimizationproblem.Furthermore,we
derived thelowerboundpropertyofthedirectionalstationary points, basedonwhich
weprovedtheequivalencebetweentheoriginalproblemandtherelaxedproblemin
thesenseofglobalsolutions.Finally,weadvisedusingsmoothingmethodstosolve
therelaxedproblem.Weproposedaclassofsmoothfunctiontoapproximatethe
objectivefunction,andestablishedtheconsistencyofthesolutionsofthesmoothing
problemandtherelaxedproblem.Ourresultprovidesatheoreticalbasisforusing
smoothingmethodstosolvesparsephaseretrievalproblems.
Keywords
SparsePhaseRetrievalProblem,LeastAbsoluteEstimate,Directional
StationaryPoint,SmoothingMethod
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
1.1.DÕƒ u¢
ƒ u¢3X-‚¬NÆ[1]!>fw‡º[2]!û¤”[3]!U©Æ[4]+•kX-‡A^.
du1ÅªÇLp,¦>fÿþC˜Ã{†P¹1Åƒ &E,Ï~•U*ÿrÝ
&E,ƒ &EÏ~‘1ÅýŒõê&E•ä¢^dŠ,ÏdI‡|^*ÿrÝ&E
éƒ ?1¡E,ùÒ´ƒ u¢.äN5`,鉽*ÿêâ{a
i
,y
i
}
N
i=1
,Ïé÷vy
i
= |ha
i
,xi|
2
,
i= 1,···,N•þx.duD(•3,Ï~•ÄXegÝþ£8.:
y
i
= |ha
i
,xi|
2
+ε
i
,i= 1,···,N,(1)
DOI:10.12677/aam.2021.10114093851A^êÆ?Ð
4¡Z§$½7
Ù¥ε
i
´‘ÅØ‘,÷vE(ε
i
)=0,E(ε
2
i
)=σ
2
.duý¢&Òx
0
äkDÕ5£=x
0
ŒÜ©
©þ•"¤,Šâù˜k&E,<‚kF"Šâ*ÿ¡EÑý¢&Ò.
éuDÕƒ u¢ ¯K,y•©z(X[5][6][7][8][9])Œõ´Äu •¦O•{?1¦
),=æ^Xe•¦›”¼ê:
1
N
N
X
i=1
((a
>
i
x)
2
−y
i
)
2
.(2)
,,•3É~*ÿнD(ª• u-—©Ùž,•¦•{¬˜ŒÉ~êâ3O¥Š^,
l)Œ .Ïd,•¦O-è5f.ƒ ó,•˜¦Oج˜ŒØ,
äk Ð-è5Ú|Z6Uå.u´©z[10][11][12]æ^•˜¦O•{?nƒ u¢ ¯
K,=æ^Xe•˜¦›”¼ê:
1
N
N
X
i=1
|(a
>
i
x)
2
−y
i
|.(3)
•ÄD(-—©Ù±9ý¢&ÒD Õ5,g,/´ÏL¦)XeDÕ`z.5?nDÕ
ƒ u¢¯K:
min
x∈R
n
1
N
N
X
i=1
|(a
>
i
x)
2
−y
i
|+λkxk
0
,(4)
Ù¥,kxk
0
L«• þ xš"©þ‡ ê,λ>0´Kzëê.,,T¯K›”¼êÚK¼êþ
´šà!š1w,K¼ê$–´šLipscthiz!ØëY,ÏdT¯K¦)´NPJ.
Äukxk
0
tµKzEâ,·‚¯K(4)tµ.:
min
x∈R
n
1
N
N
X
i=1
|(a
>
i
x)
2
−y
i
|+R(x),(5)
Ù¥,R(x):R
n
→R´kxk
0
,˜tµ¼ê,~„tµ¼êkL
1
,SCAD,MCP,Capped-L
1
[13].tµ¯K´ëY,•,´šàš1w,éÙ¦)E›©(J.
éu/X¯K(5)šàš1w`z¯K,ïÄö‚Ï~Ï LClarkeg‡©½Âcritical:•xÙ
•`5^‡,X©z[14][15][16][17].|^¼êàL«,Pang<[15]JÑlifted-½:
Vg,¿y²,éu•x):•`5,lifted-½:`ucritical:.Ahn<[18]ÏL˜••
ê½Âà`z¯K••-½:,ïáT¯K•`5^‡.éuà`z¯K,Cui
<[19]?ØAa-½:'X,(JL²,ÏL••ê½Â••-½:ruÙ§g‡©½Â
-½:,U•Ð/•)•`5.Ïd,©}Á^••ê5•xtµ¯K(5)••-½:,ï
áÙ˜•`5^‡.
,˜‡I‡•Ä¯K´:¯Ktµ¯K´Äd?éuÄu•¦•{‚5£8`z
.,[14]éuL
0
KJÑ˜qëYàtµ,¿©Ûtµ¯K†©Û)d5.[20]©
DOI:10.12677/aam.2021.10114093852A^êÆ?Ð
4¡Z§$½7
ÛMCP,SCAD,Capped-L
1
a.tµ¯K†L
0
¯KÛ)d5±9ÛÜ)•¹'
X.éuL
0
KÛLipschitzëY`z¯K,[17]ïÄCapped-L
1
Ktµ¯K†L
0
¯K
Û)!•`Šd5ÚÛÜ)•¹'X.[21]é|DÕ`z¯KïÄ|Capped-L
1
Ktµ
¯K†©|DÕ`z¯KÛ)!•`Šd5ÚÛÜ)•¹'X.éu ·‚¤•ÄÄu
•˜¦› ”gÝþ£8`z¯K,§tµ¯K†L
0
¯K'X ´N,I‡?1\
ïÄ.
É[17][20][21]©éu,©•ÄXeCapped-L
1
tµ¯K:
min
x∈R
n
1
N
N
X
i=1
|(a
>
i
x)
2
−y
i
|+λ
n
X
i=1
min{1,|x
i
|/v}.(6)
Ù¥φ
CapL1
(t) = min{1,|t|/v}´Capped-L
1
tµ¼ê,v>0´‰½ëê.
©Ì‡óŠXe:
(1)‰Ñtµ¯K8I¼ê••ê,ÏL••ê½Âtµ¯K••-½:,•x¯
K(6)˜•`5^‡,¿…©ÛT-½:äN/ª.d,„©Û••-½:e.
5Ÿ,ïá¯K(6)†¯K(4))d5nØ.
(2)du¯K(6)¥›”¼ê†K¼êÑ´š1w,éuXÛO ޝK(6)••-½:,·‚
ïÆæ^1wz•{.Äké¯K ›”¼ê?11w%C,1wCq¯K.ÏLnØ
©Û,·‚ïá1wzCq¯K†¯K(6))˜—5.ù•¦^1wz•{¦)¯K(6)J
ønØyÚŒ1••.
1.2.ÎÒ†(
±eÎÒ0B©.é?¿t∈R,|t|L«týéŠ.éu˜‡8ÜC,|C|L«8Ü¥ƒ‡
ê.ÎÒ¼êsgn(t)½Â•:
sgn(t) :=















1,t>0,
0,t= 0,
−1,t<0.
-x,y∈R
n
,x
T
y=
P
n
i=1
x
i
y
i
.kxk
1
L«•þx1-‰ê,kxkL«•þx2-‰ê, |x|= (|x
1
|,···,|x
n
|)
T
.
d,P•þx| 8•Γ(x)={i∈{1,···,n}:x
i
6=0}=Γ
1
(x)∪Γ
2
(x)Ù¥,Γ
1
={i:|x
i
|<
v},Γ
2
={i:|x
i
|≥v}.½Â•I8I
1
(x):={i∈{1,···,N:(a
>
i
x)
2
−y
i
6=0},I
2
(x):={i∈
{1,···,N}: (a
>
i
x)
2
−y
i
= 0}.Ødƒ,Ù§ÎÒ¬3©¥äN`².
©(Xe:1Ü©,|^••ê½Â¯K(6)••-½:,•x¯K ˜•
`5^‡.·‚‰Ñ••-½:äNLˆ±9e.5Ÿ.d,ÄuùnØ,y²¯K(4)†
¯K(6))d5.1nÜ©,ï¯K(6)˜a1wz¼ê,ïá 1w%C¯K†¯K(6))
˜—5,•¦^1wz•{¦)¯K(6)JønØy.1oÜ©,{üo(.
DOI:10.12677/aam.2021.10114093853A^êÆ?Ð
4¡Z§$½7
2.•`5^‡
2.1..(6)••-½:
d[13][19]Œ•,ƒ'uU?-½:,C--½:,OK:ó,••ê½Â••-½:U
•Ð•x)•`5.!,·‚½Â¯K(6)••-½:,©ÛÙäN/ª±9e .5Ÿ,¿…
ïá¯K(4)†¯K(6)d5'X.Äk,·‚‰Ñ••ꆯK(6)••-½:Ä½Â.
½Â2.1f:R
n
→R3:x∈R
n
?ÛÜLipschitzëY…••Œ‡.K¼êf3:x?÷•
•w∈R
n
••ê½Â•
f
0
(x;w) := lim
τ↓0
f(x+τw)−f(x)
τ
.
½Â2.2¡bx∈R
n
´.(6)••-½:,e
F
0
(bx;x−bx)+Φ
0
(bx;x−bx) ≥0,∀x∈R
n
.
Peng<[13]y²••-½:äkXeÛÜ•`5Ÿ.
½n2.1[13]-¼êf:R
n
→R3:bx∈R
n
?´ÛÜLipschitzëY…••Œ‡,kXeü^5
Ÿ¤á:
(i)ebx´¼êfÛÜ•Š,@obx´¼êf••-½:;
(ii)bx´î‚ÛÜ•Š¿÷v˜O•5^‡,=•3bx+•WÚδ>0,¦
f(x) ≥f(bx)+δkx−bxk,∀x∈W,(7)
…=bx÷v
f
0
(bx;x−bx) >0,∀x∈R
n
\{bx}.(8)
e¡,·‚ïįK(6)••-½:äNLˆ.
½n2.2ebx∈R
n
´.(6)••-½:,K
2
N

X
i∈I
1
sgn((a
>
i
bx)
2
−y
i
)·a
>
i
bxa
>
i
(x−bx)+
X
i∈I
2
|a
>
i
bxa
>
i
(x−bx)|

+
n
X
i=1
φ
0
(bx
i
;x
i
−bx
i
) ≥0,
DOI:10.12677/aam.2021.10114093854A^êÆ?Ð
4¡Z§$½7
Ù¥I
1
,I
2
½Â„§1.2,…
φ
0
(bx
i
;x
i
−bx
i
) =



























λ|x
i
|
v
bx
i
= 0,
sgn(bx
i
)λ(x
i
−bx
i
)
v
|bx
i
|∈(0,v),
max{0,
sgn(bx
i
)λ(x
i
−bx
i
)
v
} |bx
i
|= v,
0otherwise.
(9)
y².d••ê½Â,¼êΦ3:bx?••ê•
Φ
0
(bx;x−bx) =
n
X
i=1
φ
0
(bx
i
;x
i
−bx
i
),(10)
Ù¥φ
0
(bx
i
;x
i
−bx
i
)½ÂX(9)¤«.ƒ'ƒe,›”¼êF3:bx?••êOŽ•E,.8
ÜI
1
,I
2
½Â„ÎÒ`².d••ê½Â,
F
0
(bx;x−bx)=
1
N
·lim
t↓0
P
N
i=1
{|(a
>
i
(bx+t(x−bx)))
2
−y
i
|−|(a
>
i
bx)
2
−y
i
|}
t
=
1
N
·lim
t↓0
P
N
i=1
{|(a
>
i
bx)
2
+t
2
(a
>
i
(x−bx))
2
+2ta
>
i
bxa
>
i
(x−bx)−y
i
|−|(a
>
i
bx)
2
−y
i
|}
t
i∈I
1
ž,(a
>
i
bx)
2
6= y
i
,
f
0
i
(bx;x−bx)=lim
t↓0
sgn((a
>
i
bx)
2
−y
i
)·{t
2
(a
>
i
(x−bx))
2
+2ta
>
i
bxa
>
i
(x−bx)}
t
=2sgn((a
>
i
bx)
2
−y
i
)·a
>
i
bxa
>
i
(x−bx).(11)
i∈I
2
ž,(a
>
i
bx)
2
= y
i
,u´
f
0
i
(bx;x−bx)=lim
t↓0
|t
2
(a
>
i
(x−bx))
2
+2ta
>
i
bxa
>
i
(x−bx)|
t
=2|a
>
i
bxa
>
i
(x−bx)|.(12)
u´,d(11)(12)Œ,›”¼êF3:bx?••ê
F
0
(bx;x−bx) =
2
N

X
i∈I
1
sgn((a
>
i
bx)
2
−y
i
)·a
>
i
bxa
>
i
(x−bx)+
X
i∈I
2
|a
>
i
bxa
>
i
(x−bx)|

.(13)
(Ü(10)†(13),T(ؤá.
DOI:10.12677/aam.2021.10114093855A^êÆ?Ð
4¡Z§$½7
2.2.••-½:e.5Ÿ†)d5
e¡©Û.(6)••-½:e.5Ÿ.-L: R
n
→R½Â•
L(x) :=





N
X
i=1
|a
>
i
xa
i
|





1
.
5¿,v→0ž,φ
0
−
(v):= lim
t↑v
φ
0
(t)>0 →∞.u´•3x
∗
±9¿©v¦F(x
∗
)>Υ >
c,φ
0
−
(v) >(2/N)L(x
∗
)¤á,Ù¥c>0´,˜~ê.ÀëêΥ,v,λ±9x
∗
÷v:
F(x
∗
) >Υ,φ
0
−
(v) >
2
N
L(x
∗
).
½n2.3bx∈R
n
´.(6)••-½:,…
F(bx) ≤Υ,φ
0
−
(v) >
2
N
L(x
∗
),
Ké?¿i= 1,···,n,
|bx
i
|≥v½|bx
i
|= 0.
y².•I‡y²8ÜΓ
1
= ∅.bΓ
1
6= ∅.Ï•bx∈R
n
´.(6)••-½:,
F
0
(bx;x−bx)+Φ
0
(bx;x−bx) ≥0,∀x∈R
n
.
dx?¿5,Œéx?1DŠ,-x
j
=bx
j
,j∈Γ
2
,…x
j
6=bx
j
,j∈Γ
1
.u´,
F
0
(bx;x−bx)+
X
j∈Γ
1
φ
0
(bx
j
;x
j
−bx
j
) ≥0.(14)
,,éu¤½Âx,d(13)Œ,
F
0
(bx;x−bx) =
2
N

X
j∈Γ
1

X
i∈I
1
sgn((a
>
i
bx)
2
−y
i
)·a
>
i
bxa
i

j
(x
j
−bx
j
)+
X
j∈Γ
1

X
i∈I
2
|a
>
i
bxa
i
|

j
|x
j
−bx
j
|

.
5¿,
X
j∈Γ
1

X
i∈I
1
sgn((a
>
i
bx)
2
−y
i
)·a
>
i
bxa
i

j
(x
j
−bx
j
) ≤
X
j∈Γ
1

X
i∈I
1
|a
>
i
bxa
i
|

j
|x
j
−bx
j
|.
u´,
F
0
(bx;x−bx)≤
2
N

X
j∈Γ
1

X
i∈I
1
|a
>
i
bxa
i
|

j
|x
j
−bx
j
|+
X
j∈Γ
1

X
i∈I
2
|a
>
i
bxa
i
|

j
|x
j
−bx
j
|

=
2
N

X
j∈Γ
1

N
X
i=1
|a
>
i
bxa
i
|

j
|x
j
−bx
j
|

.(15)
DOI:10.12677/aam.2021.10114093856A^êÆ?Ð
4¡Z§$½7
-x
j
=bx
j
−bx
j
,>0,j∈Γ
1
.(Ü(14)†(15),
X
j∈Γ
1
φ
0
(bx
j
)|bx
j
|≤
2
N

X
j∈Γ
1

N
X
i=1
|a
>
i
bxa
i
|

j
|bx
j
|

≤
2
N
L(x
∗
)
X
j∈Γ
1
|bx
j
|.
dué?¿j∈Γ
1
,φ
0
(bx
j
) = λ/v.u´,λ/v≤(2/N)L(x
∗
),†®•^‡λ/v>(2/N)L(x
∗
)gñ.T
(ؤá.
e¡,·‚?دK(4)†¯K(6))'X.
½n2.4λ/v≥(2/N)L(x
∗
),
(i)ebx∈R
n
´¯K(6)Û•`),…÷vF(bx) ≤Υ,Kbx´¯K(4)Û•`).
(ii)ebx∈R
n
´¯K(4)Û•`),…¯K(6)Û)x
0
•3¿÷vF(x
0
)≤Υ,Kbx´¯
K(6)Û•`).
y².(i)bx∈R
n
´¯K(6)Û•`),Kbx∈R
n
´¯K(6)••-½:.dF(bx)≤Υ
9e.½n2.3,Φ(bx) = λkbxk
0
.u´
F(bx)+λkbxk
0
= F(bx)+Φ(bx) <F(x)+Φ(x) ≤F(x)+λkxk
0
.
Ïd,bx´¯K(4)Û•`).
(ii)bx∈R
n
´¯K(4)Û•` ),bx∈R
n
Ø´¯K(6)Û• `).x
0
´¯K(6)
Û•`),KF(x
0
) ≤Υ.d½n®•^‡9e.½n2.3,Φ(x
0
) = λkx
0
k
0
.u´
F(x
0
)+λkx
0
k
0
= F(x
0
)+Φ(x
0
) <F(bx)+Φ(bx) ≤F(bx)+λkbxk
0
.
ù†bx∈R
n
´¯K(4)Û•`)gñ.Ïdbx´¯K(6)Û•`).
5¿,¯K(6)Û)x
0
´˜½•3,ù´Ï•UCÛ)©þÎÒ,جUC¯
K(6)8I¼êŠ,ù´dƒ u¢¯K5Ÿû½.
3.1wz•{
¯K(6)´˜šà!š1w`z¯K,†¦)´(J.!·‚ï¯K(6)˜a1w¼
ê.¿y²1w¯K••-½:?¿à:´¯K••-½:.ùnØ•¯K(6)¦)
JønØy.
£[22],ý銼ê|t|,t∈R˜a1w¼êŒ±½Â•
e
θ(t,µ) :=



|t|if|t|≥µ,
t
2
2µ
+
µ
2
if|t|<µ.
DOI:10.12677/aam.2021.10114093857A^êÆ?Ð
4¡Z§$½7
Ù¥µ>0´1wëê.dd·‚¯K(6)¥›”¼ê1w¼ê
e
F(x,µ) :=
1
N
N
X
i=1
e
f
i
(x,µ),(16)
Ù¥,
e
f
i
(x,µ) =
e
θ((a
T
i
x)
2
−y
i
,µ).P{1,···,N}= C
µ
1
(x)∪C
µ
2
(x)∪C
µ
3
(x),Ù¥C
µ
1
(x) = {1,···,N:
|(a
T
i
x)
2
−y
i
|<µ},C
µ
2
(x) = {1,···,N: |(a
T
i
x)
2
−y
i
|>µ},C
µ
3
(x) = {1,···,N: |(a
T
i
x)
2
−y
i
|= µ}.
e¡,·‚©Û1w¼ê
e
F(x,µ)˜5Ÿ.
Ún3.1éu¼ê(16),eã(ؤá:
(1)lim
z→x,µ↓0
e
F(z,µ) = F(x).
(2)('uxLipschitzëY5)•3˜‡~êL>0¦é?¿µ∈(0,µ],¦∇
e
F(x,µ) ´Lipschitz
ëY,…Lipschitz~ê´Lµ
−1
.
(3)('uµLipschitzëY5)|
e
F(x,µ
1
)−
e
F(x,µ
2
)|≤|µ
1
−µ
2
|.
(4)(˜—5†f˜—5)?¿i∈I
1
(x),klim
z→x,µ↓0
h∇
e
f
i
(z,µ),wi=f
0
i
(x;w),∀w∈R
n
¤á;?
¿i∈I
2
(x),klimsup
z→0,µ↓0
h∇
e
f
i
(z,µ),wi= f
0
i
(x;w),∀w∈R
n
¤á.
y².(1)dC
µ
1
(x),C
µ
2
(x),C
µ
3
(x)½Â,
|
e
F(z,µ)−F(x)|=
N
X
i=1

e
f
i
(z,µ)−f
i
(x,µ)

=
N
X
i=1

e
f
i
(z,µ)−
e
f
i
(x,µ)+
e
f
i
(x,µ)−f
i
(x,µ)

=
N
X
i=1

e
f
i
(z,µ)−
e
f
i
(x,µ))

+
X
i∈C
µ
1
(x)

e
f
i
(x,µ)−f
i
(x,µ)

=Π
1
+Π
2
.
d¼ê
e
fëY5Œ•
lim
z→x,µ↓0
Π
1
= 0.(17)
éuΠ
2
,N´
X
i∈C
µ
1
(x)

e
f
i
(x,µ)−f
i
(x,µ)

≤|C
µ
1
(x)|
µ
2
→0, (µ→0).(18)
(Ü(17)†(18),u´(Ø(1)¤á.
(2)d1w¼ê½Â,∇
e
F(x,µ) =
1
N
P
N
i=1
∇
e
f
i
(x,µ).
DOI:10.12677/aam.2021.10114093858A^êÆ?Ð
4¡Z§$½7
i∈C
µ
1
(x)ž,
∇
e
f
i
(x,µ) = 2

(a
T
i
x)
2
−y
i
µ

a
i
a
T
i
x,(19)
i∈C
µ
2
(x)∪C
µ
3
(x)ž,
∇
e
f
i
(x,µ) = 2sgn((a
T
i
x)
2
−y
i
)a
i
a
T
i
x.(20)
d©z[23]¥Š½n2.3.7,é?¿x,z∈R
n
,
∇
e
F(x,µ)−∇
e
F(z,µ) ∈(∂(∇
e
F(u,µ)))
T
(x−z),(21)
Ù¥u´‚ã[z,x]þ,˜:,∂(∇
e
F(u,µ))L«•þ¼ê∇
e
F(·,µ)3:u?Clarkeg‡©.i∈
C
µ
1
(u)ž,∂(∇
e
f
i
(u,µ)) = ∇
2
e
f
i
(u,µ) = [
2(a
T
i
u)
2
µ
+2]a
i
a
T
i
.i∈C
µ
2
(u)ž,∂(∇
e
f
i
(u,µ)) = ∇
2
e
f
i
(u,µ) =
2sgn((a
T
i
x)
2
−y
i
)a
i
a
T
i
.i∈C
µ
3
(u)ž,dClarkeg‡©½ÂŒ•,
∂(∇
e
f
i
(u,µ)) = con{2sgn((a
T
i
x)
2
−y
i
),[
2(a
T
i
u)
2
µ
+2]}a
i
a
T
i
.
¯¢þ,é?¿a∈con{2sgn((a
T
i
x)
2
−y
i
),[2(a
T
i
u)
2
µ
−1
+2]},a≤2y
i
µ
−1
+4 ≤(2y
i
+µ)µ
−1
.u´

∂(∇
e
F(u,µ))) ⊆
1
N

X
i∈C
µ
1
(u)∪C
µ
1
(u)
∇
2
e
f
i
(u,µ)+
X
i∈C
µ
3
(u)
∂(∇
e
f
i
(u,µ))

.(22)
(Ü(21),(22)Œ,•3V∈∂(∇
e
F(u,µ))¦eã'X¤á:
∇
e
F(x,µ)−∇
e
F(z,µ)=V
T
(x−z) ≤(2y+µ)µ
−1
λ
max
(
N
X
i=1
a
i
a
T
i
)kx−zk,
Ù¥y=max{y
i
,i=1,···,N}.5¿,(2y+µ)µ
−1
λ
max
(
P
N
i=1
a
i
a
T
i
)´˜~ê,…†CþxÃ',
u´(Ø(2)¤á.
(3)Ø”˜„5,bµ
2
≥µ
1
>0.é?¿i∈C
µ
2
2
(x)∪C
µ
2
3
(x),
e
θ((a
T
i
x)
2
−y
i
,µ
1
) =
e
θ((a
T
i
x)
2
−y
i
,µ
2
) = |(a
T
i
x)
2
−y
i
|.
Ïd,
e
f
i
(x,µ
1
)−
e
f
i
(x,µ
2
) = 0,i∈C
µ
2
2
(x)∪C
µ
2
3
(x).(23)
é?¿i∈C
µ
1
2
(x)∪C
µ
1
3
(x)∩C
µ
2
1
(x),
e
θ((a
T
i
x)
2
−y
i
,µ
2
) >
e
θ((a
T
i
x)
2
−y
i
,µ
1
) = |(a
T
i
x)
2
−y
i
|.(24)
DOI:10.12677/aam.2021.10114093859A^êÆ?Ð
4¡Z§$½7
dž,((a
T
i
x)
2
−y
i
)
2
/2µ
2
≤µ
2
2
/2µ
2
= µ
2
/2,…|(a
T
i
x)
2
−y
i
|≥µ
1
,u´d1w¼ê½Â9(24)
e
θ((a
T
i
x)
2
−y
i
,µ
2
)−
e
θ((a
T
i
x)
2
−y
i
,µ
1
) =
((a
T
i
x)
2
−y
i
)
2
2µ
2
+
µ
2
2
−|(a
T
i
x)
2
−y
i
|≤µ
2
−µ
1
.
Ïd,
e
f
i
(x,µ
2
)−
e
f
i
(x,µ
1
) ≤µ
2
−µ
1
,i∈C
µ
1
2
(x)∪C
µ
1
3
(x)∩C
µ
2
1
(x).(25)
é?¿i∈C
µ
1
1
(x),(a
T
i
x)
2
−y
i
<µ
1
≤µ
2
,
e
θ((a
T
i
x)
2
−y
i
,µ
1
) =
((a
T
i
x)
2
−y
i
)
2
2µ
1
+
µ
1
2
,
e
θ((a
T
i
x)
2
−y
i
,µ
2
) =
((a
T
i
x)
2
−y
i
)
2
2µ
2
+
µ
2
2
.
u´,
e
θ((a
T
i
x)
2
−y
i
,µ
2
)−
e
θ((a
T
i
x)
2
−y
i
,µ
1
) = (
1
2µ
2
−
1
2µ
1
)((a
T
i
x)
2
−y
i
)
2
+
µ
2
−µ
1
2
≤(
1
2µ
2
−
1
2µ
1
)µ
2
1
+
µ
2
−µ
1
2
≤
µ
2
2
2µ
2
−
µ
2
1
2µ
1
+
µ
2
−µ
1
2
= µ
2
−µ
1
.
Ïd,
e
f
i
(x,µ
2
)−
e
f
i
(x,µ
1
) ≤µ
2
−µ
1
,i∈C
µ
1
1
(x).(26)
,˜•¡, (C
µ
2
2
(x)∪C
µ
2
3
(x))∪(C
µ
1
2
(x)∪C
µ
1
3
(x)∩C
µ
2
1
(x))∪C
µ
1
1
(x) = {1,···,N},(Ü(23),(25),
(26)Œ
e
F(x,µ
2
)−
e
F(x,µ
1
) ≤
1
N
N(µ
2
−µ
1
) = µ
2
−µ
1
.
(Ø(3)¤á.
(4)é?¿i∈I
1
(x),=|(a
T
i
x)
2
−y
i
|6=0.•3µ>0¦|(a
T
i
x)
2
−y
i
|>µ.dž,i∈C
µ
2
(x).
k
e
f
i
=f
i
¤á,…§‚3:z
k
?Œ‡.u´lim
µ↓0
h∇
e
f
i
(x,µ),wi=h∇f
i
(x,µ),wi=f
0
i
(x;w).d
,d∇
e
f
i
ëY5Œ•,z→xž,∇
e
f
i
(z,µ) →∇
e
f
i
(x,µ).(Üþã'X,
lim
z→x,µ↓0
h∇
e
f(z,µ),wi=lim
z→x,µ↓0

h∇
e
f(z,µ),wi−h∇
e
f(x,µ),wi

+lim
z→x,µ↓0
h∇
e
f(x,µ),wi
=0+lim
µ↓0
h∇
e
f(x,µ),wi= f
0
i
(x;w).
u´(4)¥1˜^(ؤá.
é?¿i∈I
2
(x),=|(a
T
i
x)
2
−y
i
|=0.é?¿µ>0þk|(a
T
i
x)
2
−y
i
|<µ.-{z
k
}´Âñx
DOI:10.12677/aam.2021.10114093860A^êÆ?Ð
4¡Z§$½7
?¿:.e|(a
T
i
z
k
)
2
−y
i
|<µ,=i∈C
µ
1
,(ܪf(19),K
limsup
z→x,µ↓0,
|(a
T
i
z)
2
−y
i
|<µ
h∇
e
f(z,µ),wi=limsup
z→x,µ↓0,
|(a
T
i
z)
2
−y
i
|<µ
2(
(a
T
i
z)
2
−y
i
µ
)a
T
i
za
T
i
w= 2|a
T
i
za
T
i
w|= f
0
i
(x;w),
Ù¥1‡ª¤á´Ï•k¿©Œž, •3÷v|(a
T
i
z
k
)
2
−y
i
|<µ, |(a
T
i
z
k
)
2
−y
i
|→µ…(a
T
i
z)
2
−
y
i
†a
T
i
za
T
i
wÓÒ:{z
k
}.e|(a
T
i
z
k
)
2
−y
i
|≥µ,Ki∈C
µ
2
.dž
e
f
i
=f
i
,…§‚3:z
k
?Œ‡.
(ܪf(20),u´
limsup
z→x,µ↓0,
|(a
T
i
z)
2
−y
i
|≥µ
h∇
e
f(z,µ),wi=limsup
z→x,µ↓0,
|(a
T
i
z)
2
−y
i
|≥µ
2sgn((a
T
i
z)
2
−y
i
)a
T
i
za
T
i
w= 2|a
T
i
za
T
i
w|= f
0
i
(x;w),
Ù¥1‡ª¤á´Ï•k¿©Œž,• 3÷v|(a
T
i
z
k
)
2
−y
i
|≥µ,…(a
T
i
z)
2
−y
i
†a
T
i
za
T
i
wÓ
Ò:{z
k
}.nþ¤ã(4)¥1^(ؤá.(Øy.
(Üþã1wzEâ,·‚˜‡›”¼êëYŒ‡`z¯K:
min
x∈R
n
e
F(x,µ)+Φ(x).(27)
ebx
µ
´þã¯K••-½:,K
h∇
e
F(bx
µ
),x−bx
µ
i+Φ
0
(bx
µ
;x−bx
µ
) ≥0,∀x∈R
n
,
=
e
F
0
(bx
µ
,x−bx
µ
)+Φ
0
(bx
µ
;x−bx
µ
) ≥0,∀x∈R
n
.
e¡,·‚òïÄ:{bx
µ
k
}à:5Ÿ,Ù¥{bx
µ
k
}•••-½:,µ
k
>0,k=1,2,···,…
k→∞ž,µ
k
→0.
½n3.1({bx
µ
k
}à:˜— 5)-bx
µ
k
´µ=µ
k
ž¯K(27)••-½:.eµ
k
>0,k= 1,2,···,
…k→∞ž,µ
k
→0.K:{bx
µ
k
}?¿à:•¯K(6)••-½:.
y².-bx•:{bx
µ
k
}à:.Ø”˜„5,·‚b{bx
µ
k
}Âñbx.Ï•bx
µ
k
´µ=µ
k
ž¯
K(27)••-½:,Ïd
h∇
e
F(bx
µ
k
),x−bx
µ
k
i+Φ
0
(bx
µ
k
;x−bx
µ
k
) ≥0,∀x∈R
n
.
dÚn3.1¥(4)Œ•,ei∈I
1
(bx),K
lim
k→∞
h∇
e
f(bx
µ
k
,µ
k
),wi= f
0
(bx;x−bx).
ei∈I
2
(bx),K
limsup
k→∞
h∇
e
f(bx
µ
k
,µ
k
),wi= f
0
(bx;x−bx).
DOI:10.12677/aam.2021.10114093861A^êÆ?Ð
4¡Z§$½7
Ïd,éu?¿x∈R
n
,
0≤lim
k→∞
h∇
e
F(bx
µ
k
),x−bx
µ
i+Φ
0
(bx
µ
k
;x−bx
µ
k
)
=lim
k→∞
X
i∈I
1
(bx)

h∇
e
f(bx
µ
k
),x−bx
µ
i+
X
i∈I
2
(bx)
h∇
e
f(bx
µ
k
),x−bx
µ
i

+Φ
0
(bx;x−bx)
≤
X
i∈I
1
(bx)
lim
k→∞
h∇
e
f(bx
µ
k
),x−bx
µ
i+
X
i∈I
2
(bx)
limsup
k→∞
h∇
e
f(bx
µ
k
),x−bx
µ
i+Φ
0
(bx;x−bx)
=
N
X
i=1
f
0
i
(bx,x−bx)+Φ
0
(bx;x−bx).
u´bx•¯K(6)••-½:,(Øy.
þã½nØ=ïá¯K(6)† 1w¯K(27)-½:ƒméX,Óž••¦^1wz•{¦)
T¯KJønØy.
4.o(
©éDÕƒ u¢¯K?1`zïÚ©Û.Äu.-è5• Ä,·‚JÑDÕ•˜
¦`z..éuØëYDÕK¼ê,æ^tµ•{,DÕƒ u¢¯K‘Capped-L1
K•˜¦`z..|^••-½:,•xšàš1wtµ¯K˜•`5^‡, ©Û•
•-½:e.5Ÿ,±d‰Ñtµ¯K†©¯KÛ)d5.•,ïÆæ^1wz•{
¦)š1wtµ¯K,AO/,·‚ïá1w¯K†t µK¯K)˜—5,•¦^1wz•
{¦)T¯KJønØy.
Ä7‘8
I[g,‰ÆÄ7‘8(11861020)!B²Žpg3Æ<âM#M’J`]Ï-:‘
8([2018]03)!B²Ž‰EOy‘8(ZK[2021]009))ÚB²Ž“c‰E<⤕‘8([2018]121).
ë•©z
[1]Harrison, R. (1993)Phase Problemin Crystallography.JournaloftheOpticalSocietyofAmer-
icaA,10,1046-1055.https://doi.org/10.1364/JOSAA.10.001046
[2]Miao,J.,Ishikawa,T.andShen,Q.(2008)ExtendingX-RayCrystallographytoAllowthe
ImagingofNoncrystallineMaterials,Cells,andSingleProteinComplexes.AnnualReviewof
PhysicalChemistry,59,387-410.
https://doi.org/10.1146/annurev.physchem.59.032607.093642
[3]Bunk, O., Diaz, A. and Pfeiffer, F.(2014) Diffractive Imaging forPeriodic Samples:Retrieving
One-DimensionalConcentrationProfilesacrossMicrofluidicChannels.ActaCrystallographica
DOI:10.12677/aam.2021.10114093862A^êÆ?Ð
4¡Z§$½7
SectionA:FoundationsofCrystallography,63,306-314.
https://doi.org/10.1107/S0108767307021903
[4]Dainty,J. andFienup, J. (1987) Phase Retrieval andImage Reconstructionfor Astronomy. In:
Stark, H., Ed.,ImageRecovery:TheoryandApplication,Academic Press,San Diego, 231-275.
[5]Cai,T.,Li,X.andMa,Z.(2016)OptimalRatesofConvergenceforNoisySparsePhase
RetrievalviaThresholdedWirtingerFlow.TheAnnalsofStatistics,44,2221-2251.
https://doi.org/10.1214/16-AOS1443
[6]Sun,J.,Qu,Q.andWright,J.(2018)AGeometricAnalysisofPhaseRetrieval.Foundations
ofComputationalMathematics,18,1131-1198.https://doi.org/10.1007/s10208-017-9365-9
[7]Shechtman,Y.,Beck,A.andEldar,Y.(2014)GESPAR:EfficientPhaseRetrievalofSparse
Signals.IEEETransactionsonSignalProcessing,62,928-938.
https://doi.org/10.1109/TSP.2013.2297687
[8]Cand`es,E., Li,X.andSoltanolkotabi,M.(2015)PhaseRetrievalviaWirtingerFlow:Theory
andAlgorithms.IEEETransactionsonInformationTheory,61,1985-2007.
https://doi.org/10.1109/TIT.2015.2399924
[9]Yang,Z.,Yang,L.,Fang,E., etal.(2019)MisspecifiedNonconvex StatisticalOptimizationfor
SparsePhaseRetrieval.MathematicalProgramming,176,545-571.
https://doi.org/10.1007/s10107-019-01364-5
[10]Davis,D.,Drusvyatskiy,D.andPaquette,C.(2020)TheNonsmoothLandscapeofPhase
Retrieval.IMAJournalofNumericalAnalysis,40,2652-2695.
https://doi.org/10.1093/imanum/drz031
[11]Eldar,Y.andMendelson,S.(2013)PhaseRetrieval:StabilityandRecoveryGuarantees.
AppliedandComputationalHarmonicAnalysis,36,473-494.
https://doi.org/10.1016/j.acha.2013.08.003
[12]Duchi,J.andRuan,F.(2019)Solving(Most)ofaSetofQuadraticEqualities:Composite
OptimizationforRobustPhaseRetrieval.InformationandInference:AJournaloftheIMA,
8,471-529.https://doi.org/10.1093/imaiai/iay015
[13]Peng, D.andChen,X.(2020)ComputationofSecond-OrderDirectionalStationaryPointsfor
GroupSparseOptimization.OptimizationMethodsandSoftware,35,348-376.
https://doi.org/10.1080/10556788.2019.1684492
[14]Le,T.,Pham,D.,Le,H.,etal.(2015)ApproximationApproachesforSparseOptimization.
EuropeanJournalofOperationalResearch,244,26-46.
https://doi.org/10.1016/j.ejor.2014.11.031
[15]Pang,J.,Razaviyayn,M.andAlvarado,A.(2017)ComputingB-StationaryPointsofNons-
moothDCPrograms.MathematicsofOperationsResearch,42,95-118.
https://doi.org/10.1287/moor.2016.0795
DOI:10.12677/aam.2021.10114093863A^êÆ?Ð
4¡Z§$½7
[16]Gong,P.,Zhang,C.,Lu,Z.,etal.(2013)AGeneralIterativeShrinkageandThresholding
AlgorithmforNonconvexRegularizedOptimizationProblems.Proceedingsofthe30thInter-
nationalConferenceonMachineLearning,28,37-45.
[17]Bian,W.andChen,X.(2020)ASmoothingProximalGradientAlgorithmforNonsmooth
ConvexRegressionwithCardinalityPenalty.SIAMJournalonNumericalAnalysis,58,858-
883.https://doi.org/10.1137/18M1186009
[18]Ahn,M., Pang,J.and Xin,J. (2017)Difference-of-Convex Learning:Directional Stationarity,
Optimality,andSparsity.SIAMJournalonOptimization,27,1637-1665.
https://doi.org/10.1137/16M1084754
[19]Cui,Y.,Pang,J.andSen,B.(2018)CompositeDifference-MaxProgramsforModernStatis-
ticalEstimationProblems.SIAMJournalonOptimization,28,3344-3374.
https://doi.org/10.1137/18M117337X
[20]Soubies,E.,Blanc-F´eraud,L.andAubert,G.(2017)AUnifiedViewofExactContinuous
Penaltiesforl
2
−l
0
Minimization.SIAMJournalonOptimization,27,2034-2060.
https://doi.org/10.1137/16M1059333
[21]$½7,/l,Üu.|DÕ`z¯K°(ëYCapped-L1tµ[J].êÆÆ,2021.
[22]pñ.š1w`z[M].®:‰ÆÑ‡,2008.
[23]Clarke,F.(1990)OptimizationandNonsmoothAnalysis.Wiley,NewYork.
https://doi.org/10.1137/1.9781611971309
DOI:10.12677/aam.2021.10114093864A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.