设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2021,10(11),3912-3922
PublishedOnlineNovemb er2021inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2021.1011416
giù6/þgýNÚNFÝO
qqq©©©xxx
úô“‰ŒÆ§êƆOŽÅ‰ÆÆ§úô7u
ÂvFϵ2021c1019F¶¹^Fϵ2021c119F¶uÙFϵ2021c1122F
Á‡
XJiù“G(Y²©Ù÷v)Ò)¤^‡§K§´˜aAÏgiù6/"©Ì‡ïÄ
daiù“G(þgýNÚNFÝO9Liouville½n"
'…c
giù6/§gýNÚN§iù“G(§FÝO§Liouville½n
GradientEstimateofSubelliptic
HarmonicMapsonSub-Riemannnian
Manifolds
WentingZou
CollegeofMathematicsandComputerScience,ZhejiangNormalUniversity,
JinhuaZhejiang
Received:Oct.19
th
,2021;accepted:Nov.9
th
,2021;published:Nov.22
nd
,2021
Abstract
TheRiemannianfoliationisaspecialclassofsub-Riemannianmanifolds,ifitshori-
©ÙÚ^:q©x.giù6/þgýNÚNFÝO[J].A^êÆ?Ð,2021,10(11):3912-3922.
DOI:10.12677/aam.2021.1011416
q©x
zontaldistributionsatisfiesthebracketgeneratingcondition.Inthispaper,westudy
thegradientestimationofthesubellipticharmonicmapsandtheLiouville-type
theorems.
Keywords
Sub-RiemannianManifolds,SubellipticHarmonicMaps,RiemannianFoliation,
GradientEstimate,Liouville’sTheorem
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
d²;Liouville.½nŒ•,R
n
þk.NÚ¼ê´~мê.1975c,Yau[1]òÙí
2iùAÛ¥,`²äkšKRicci-Çiù6/þNÚ¼êFÝO.1980c,
S.Y.Cheng[2]í2Yau(JNÚNœ/,y²lRicci-Çke.6/Cartan-
Hadamard6/NÚNFÝO.1982c,H.I.Choi[3]3dÄ:þ?˜Ú&?8I6/•
äkšKþ.¡-Çiù6/K¥œ/,¿ƒ'Liouville½n.
½n1(M
m+d
,H,g
H
;g)´˜‡š;ÿ/iù“G(,3B
2R
(x
0
) ⊂Mþ,
Ric
H
≥−k…|T|,|div
H
T|≤k
1
(1.1)
Ù¥k,k
1
≥0.(N,h)´iù6/,Ù¡-ÇäkšKþ.κ,κ≥0.B
D
(p
0
)´±p
0
•¥%,
D•Œ»K¥.ef:B
2R
(x
0
)⊂M→B
D
(p
0
)⊂N´gýNÚN,K|d
H
f|
2
3B
R
(x
0
)
þ´˜—k..•°(/`,
max
B
R
(x
0
)
|d
H
f|
2
≤C
1

k+
1
R

(1.2)
Ù¥C
1
••6uk,k
1
,κ,D.
íØ1XJMäkšKY²Ricci-Ç…§LÇ9ÙY²ÑÝ´k.,@ ovkš²
…lMK¥gýNÚN.
DOI:10.12677/aam.2021.10114163913A^êÆ?Ð
q©x
2.ý•£
3ù˜!¥§·‚ò{‡0giù6/ÚgýNÚNÄVgÚ5Ÿ.
M´m+ d‘C
∞
6/,H´ƒmTMfm,…dimH=m.fmH¡•Y²©Ù.X
JMþ?¿˜:pƒ˜mT
p
MŒ±H¥ƒ•þ|ëÓd§‚o)Ò)¤ƒ•þ|‚5Ü
¤,K¡H÷v)Ò)¤^‡.e?˜Úg
H
´½Â3HþÝþ,K(H,g
H
)¡•Mþgiù
(.Dƒgiù((H,g
H
)6/M¡•giù6/,P•(M,H,g
H
).XJMþiùÝþg
3Hþ•›дg
H
,@o¡g•g
H
iùòÿ(ë„[4]).P∇
R
´giùéä.d,·‚3
giù6/(M,H,g
H
)þ½˜‡iùòÿg,P•(M,H,g
H
;g).dž,ƒmTMäk©)
TM= H⊕V(2.1)
Ù¥V¡•R†©Ù.
3giù6/þ•3Xe†giù(ƒN;‰éä,¡•2ÂBottéä,P•∇,
∇
X
Y=



























π
H
(∇
R
X
Y),X,Y∈Γ(H)
π
H
([X,Y]),X∈Γ(V),Y∈Γ(H)
π
V
([X,Y]),X∈Γ(H),Y∈Γ(V)
π
V
(∇
R
X
Y]),X,Y∈Γ(V)
(2.2)
•,∇±Y²©ÙÚR†©Ù,∇˜„Ø±iùÝþg.2ÂBottéäLÇTŒd
XeúªLˆ(ë„[5]):
T(X,Y) = −π
V
([π
H
(X),π
H
(Y)])−π
H
([π
V
(X),π
V
(Y)])(2.3)
{e
i
}
m
i=1
Ú{e
α
}
m+d
α=m+1
©O•©ÙHÚVÛÜIe|,·‚½:
1 ≤i,j,k,...,≤m;m+1 ≤α,β,γ,...,≤m+d;1 ≤A,B,C,...,≤m+d(2.4)
LÇTY²Ñݽ•div
H
T(X)=
P
i
(∇
e
i
T)(X,e
i
),Ù¥X∈Γ(TM).-R†©ÙV²
þ-Ç•þ|•:
ζ= π
H
X
α
∇
R
e
α
e
α
!
(2.5)
~1éuiù“G((M,F,g),e§Y²©ÙH÷vr)Ò)¤^‡§K(M,H,g
H
)´
DOI:10.12677/aam.2021.10114163914A^êÆ?Ð
q©x
giù6/,Ù¥g
H
= g|
H
.dž§
T(X,Y) = −π
V
([π
H
(X),π
H
(Y)])(2.6)
?˜Ú,XJF´ÿ/,K•þ|ζ= 0…∇g= 0[6].·‚½©¥iù“G(Y²©
ÙÑ÷vr)Ò)¤^‡.
½p∈M,½Â
η
p
(v) =
X
1≤i<j≤m
hT(e
i
,e
j
),vi
2
=
X
1≤i<j≤m
h[e
i
,e
j
],vi
2
(2.7)
Ù¥v∈V
p
.-
η
min
(p) =min
06=v∈V
p
η
p
(v)
|v|
2
©z[5]¥Ún5.6`²H´r)Ò)¤…=η
min
ð•.
(M,H,g
H
;g)´giù6/,(N,h)´iù6/.P
˜
∇´(N,h)iùéä.lMN1
wNfY²Uþ½Â•:
E
H
(f) =
1
2
Z
M
|d
H
f|
2
dvol
g
(2.8)
Ù¥d
H
f´‡©df3H•›,dvol
g
´giù6/MþdÝþgpNÈ.§Euler-
Lagrange•§´
τ
H
(f) = trace(∇df|
H×H
)−df(ζ) = 0(2.9)
½Â1(ë„[5])1wNf: M→N¡•gýNÚN,XJτ
H
(f) = 0.
Pf
I
i
Úf
I
ik
©O´dfÚ∇df©þ,ζ
k
,A
ÚT
α
ij,k
©O´ζÚLÇTCê.©z[5]í
XeCê†'X9Bochnerúª.
Ún1f: M→N´1wN,KÙCê†'X•:
f
I
ij
−f
I
ji
= f
I
α
T
α
ij
(2.10)
f
I
αβ
−f
I
βα
= f
I
k
T
k
αβ
(2.11)
f
I
iα
−f
I
αi
= 0(2.12)
DOI:10.12677/aam.2021.10114163915A^êÆ?Ð
q©x
…Bochnerúª•:
1
2
∆
H
|d
H
f|
2
=

f
I
ik

2
+f
I
i
τ
I
H,i
+f
I
i
ζ
k
,i
f
I
k
+ζ
k
f
I
i
f
I
α
T
α
ki
+f
I
i
f
I
j
R
j
kik
+2f
I
i
f
I
αk
T
α
ik
−f
I
i
f
K
k
e
R
I
KJL
f
J
i
f
L
k
+f
I
i
f
I
α
T
α
ik,k
(2.13)
1
2
∆
H
|d
V
f|
2
=

f
I
αk

2
+f
I
α
τ
I
H,α
+f
I
α
ζ
k
,α
f
I
k
+f
I
α
f
I
j
R
j
kαk
−f
I
α
f
K
k
e
R
I
KJL
f
J
α
f
L
k
(2.14)
Ún2(M,F,g)´ÿ/iù“G(,3B
2R
(x
0
) ⊂Mþ,
Ric
H
≥−k…|T|,|div
H
T|≤k
1
(2.15)
Ù¥k,k
1
≥0.(N,h)´iù6/…¡-Ç÷v
K
N
≤κ(2.16)
Ù¥κ≥0.ef: M→N´gýNÚN,Kk
∆
H
|d
H
f|
2
≥(2−2ε
1
)|∇
H
d
H
f|
2
−

2k+
C
2

2
+
C
2
2
ε
1
η
min

|d
H
f|
2
+
1
2
ε
1
η
min
|d
V
f|
2
−2C
2
ε
2
|∇
H
d
V
f|
2
−2κ|d
H
f|
4
(2.17)
∆
H
|d
V
f|
2
≥2|∇
H
d
V
f|
2
−2κ|d
H
f|
2
|d
V
f|
2
(2.18)
Ù¥ε
1
,ε
2
´ê,C
2
´=•6uk
1
~ê.AO/,k
1
= 0ž,C
2
= 0.
yyy²²²du(M,F,g)´ÿ/iù“G(,K²þ-Ç•þ|ζ= 0…R
j
kαk
= 0.|^8I
6/N-Ç^‡(2.16),(Ø(2.18)Œd(2.14)†í.|^Cê†'X(2.10)kXeO
޵

f
I
ik

2
≥
X
I
X
i<j


f
I
ij

2
+

f
I
ji

2

=
1
2
X
I
X
i<j


f
I
ij
+f
I
ji

2
+

f
I
ij
−f
I
ji

2

≥
1
2
X
I
X
α
X
i<j

f
I
α

2

T
α
ij

2
=
1
2
X
I
X
α

f
I
α

2
η(e
α
)
≥
1
2
η
min
|d
V
f|
2
(2.19)
DOI:10.12677/aam.2021.10114163916A^êÆ?Ð
q©x
òþª(2.19)“\(2.13),¿éf
I
i
f
I
αk
T
α
ik
Úf
I
i
f
I
α
T
α
ik,k
|^SchwarzØª,KŒ(2.17).
(N,h)´äk¡-ÇK
N
≤κ,(κ≥0)iù6/,ρ´Nþ½˜:y
0
ål¼ê.
-
φ(t) =







1−cos(
√
κt)
κ
,κ>0
t
2
2
,κ= 0
(2.20)
Ú
ψ(q) = φ◦ρ(q)(2.21)
diùAÛ¥Hessian'½nŒ•
Hessψ≥cos(
√
κρ)·h(2.22)
Ún3(ë„[7])e0 <D<
π
2
√
κ
,K•3ν∈[1,2),b>φ(D)Úδ>0=•6uD,¦
ν
cos(
√
κt)
b−φ(t)
−2κ≥δ,∀t∈[0,D](2.23)
AO/,XJf´lÿ/iù“G(M¡-ÇkšKþ.κiù6/NK
¥B
D
(y
0
)þgýNÚN.@o
ν
∆
H
(ψ◦f)
b−ψ◦f
−2κ|d
H
f|
2
≥δ|d
H
f|
2
(2.24)
3.Y²FÝO
3!m©§·‚k‰Ñ˜‡Aϼê½Â:
½Â2XJMþ•3˜‡1w¼êr: M→[0,+∞)´•;,…•3~êC
3
,¦
|∇
H
r|≤C
3
,∆
H
r≥−C
3

1+
1
r

(3.1)
K¡r÷v'½n5Ÿ.
51eM´Ricci-Çke.iù6/,K§ål¼ê÷v(3.1).
(M
m+d
,H,g
H
;g)´˜‡š;giù6/,3B
2R
(x
0
) ⊂Mþ÷v
Ric
H
≥−k…|T|,|div
H
T|≤k
1
(3.2)
DOI:10.12677/aam.2021.10114163917A^êÆ?Ð
q©x
Ù¥k,k
1
≥0.r´Mþ÷v'½n5Ÿ¼ê,…¼êϕ∈C
∞
0
([0,∞)),¦
ϕ|
[0,1]
= 1,ϕ|
[2,∞]
= 0,−C
0
4
|ϕ|
1
2
≤ϕ≤0(3.3)
Ù¥C
0
4
´~ê.-χ(r) = ϕ(
r
R
),K
|∇
H
χ|
2
χ
≤
C
4
R
2
,…∆
H
χ≥−
C
4
R
3B
2R
\Cut(x
0
)þ¤á(3.4)
Ù¥C
4
= C
4
(m,k,k
1
).
•O|d
H
f|
2
,•Ä9ϼê
Φ
µχ
=|d
H
f|
2
+µχ|d
V
f|
2
(3.5)
Ù¥µ•–½ê.
Ún43x∈B
2R
(x
0
)?,eχ(x) 6= 0,Kk
∆
H
Φ
µχ
≥

1
2
−ε
1

|∇
H
Φ
µχ
|
2
Φ
µχ
−2κ|d
H
f|
2
Φ
µχ
+

1
2
ε
1
η
min
+µ∆
H
χ−3ε
−1
1
µχ
−1
|∇
H
χ|
2

|d
V
f|
2
−

2k+
C
2

2
+
C
2
2
ε
1
η
min

|d
H
f|
2
(3.6)
yyy²²²±eOŽÑ3x:??1,-ε
2
=
ε
1
µχ
C
2
,d(2.17)Ú(2.18),
∆
H
Φ
µχ
=∆
H

|d
H
f|
2
+µχ|d
V
f|
2

≥(2−2ε
1
)|∇
H
d
H
f|
2
−

2k+
C
2

2
+
C
2
2
ε
1
η
min

|d
H
f|
2
+
1
2
ε
1
η
min
|d
V
f|
2
−2C
2
ε
2
|∇
H
d
V
f|
2
−2κ|d
H
f|
4
+µ∆
H
χ|d
V
f|
2
+4µh∇
H
χ⊗d
V
f,∇
H
d
V
fi
+2µχ|∇
H
d
V
f|
2
−2κµχ|d
H
f|
2
|d
V
f|
2
=(2−2ε
1
)

|∇
H
d
H
f|
2
+µχ|∇
H
d
V
f|
2

+4µh∇
H
χ⊗d
V
f,∇
H
d
V
fi−2κΦ
µχ
|d
H
f|
2
+

1
2
ε
1
η
min
+µ∆
H
χ

|d
V
f|
2
−

2k+
C
2

2
+
C
2
2
ε
1
η
min

|d
H
f|
2
(3.7)
DOI:10.12677/aam.2021.10114163918A^êÆ?Ð
q©x
dCauchyØª,KkeO:
|∇
H
Φ
µχ
|
2
=



∇
H

|d
H
f|
2
+µχ|d
V
f|
2




2
≤4|d
H
f+
√
µχd
V
f|
2
·




∇
H
d
H
f+
√
µχ∇
H
d
V
f+
√
µ
∇
H
χ
2
√
χ
⊗d
V
f




2
=4Φ
µχ
|∇
H
d
H
f|
2
+µχ|∇
H
d
V
f|
2
+
µ|∇
H
χ|
2
4χ
|d
V
f|
2
+µh∇
H
d
V
f,∇
H
χ⊗d
V
fi
!
l,
(2−2ε
1
)

|∇
H
d
H
f|
2
+µχ|∇
H
d
V
f|
2

+4µh∇
H
χ⊗d
V
f,∇
H
d
V
fi
=(2−4ε
1
)

|∇
H
d
H
f|
2
+µχ|∇
H
d
V
f|
2

+2ε
1
µχ|∇
H
d
V
f|
2
+4µh∇
H
χ⊗d
V
f,∇
H
d
V
fi
≥

1
2
−ε
1

|∇
H
Φ
µχ
|
2
Φ
µχ
−

1
2
−ε
1

µ|∇
H
χ|
2
χ
|d
V
f|
2
+(2+4ε
1
)µh∇
H
d
V
f,∇
H
χ⊗d
V
fi+2ε
1
µχ|∇
H
d
V
f|
2
≥

1
2
−ε
1

|∇
H
Φ
µχ
|
2
Φ
µχ
−

1
2
−ε
1

µ
|∇
H
χ|
2
χ
|d
V
f|
2
−
(2+4ε
1
)
2
2
µ
|∇
H
χ|
2
4χ
|d
V
f|
2
≥

1
2
−ε
1

|∇
H
Φ
µχ
|
2
Φ
µχ
−3ε
−1
1
µ
|∇
H
χ|
2
χ
|d
V
f|
2
(3.8)
ò(3.8)“\(3.7)=Œ¤y².
e5´½n1y²:
y²ŠâÚn3,Œ·ν∈[1,2),b>φ(D)÷v(2.23).-F
µχ
=
Φ
µχ
(b−ψ◦f)
ν
.Ù¥ψ
d(2.21)½Â.x´B
2R
(x
0
)þχF
µχ
˜‡š"4ŒŠ:,K3x:?,k
0 = ∇
H
ln(χF
µχ
) =
∇
H
χ
χ
+
∇
H
Φ
µχ
Φ
µχ
+ν
∇
H
(ψ◦f)
b−ψ◦f
(3.9)
0 ≥∆
H
ln(χF
µχ
) =
∆
H
χ
χ
−
|∇
H
χ|
2
χ
2
+
∆
H
Φ
µχ
Φ
µχ
−
|∇
H
Φ
µχ
|
2
Φ
2
µχ
+ν
∆
H
(ψ◦f)
b−ψ◦f
+ν
|∇
H
(ψ◦f)|
2
(b−ψ◦f)
2
(3.10)
DOI:10.12677/aam.2021.10114163919A^êÆ?Ð
q©x
|^Ún4,(3.10)3x:?Œz•
0 ≥
∆
H
χ
χ
−
|∇
H
χ|
2
χ
2
−

1
2
+ε
1

|∇
H
Φ
µχ
|
2
Φ
2
µχ
−2κ|d
H
f|
2
+ν
∆
H
(ψ◦f)
b−ψ◦f
+ν
|∇
H
(ψ◦f)|
2
(b−ψ◦f)
2
+

1
2
ε
1
η
min
+µ∆
H
χ−3ε
−1
1
µχ
−1
|∇
H
χ|
2

|d
V
f|
2
Φ
µχ
−

2k+
C
2

2
+
C
2
2
ε
1
η
min

|d
H
f|
2
Φ
µχ
ε
1
=
1
2ν
−
1
4
,d(3.9)ª
−

1
2
+ε
1

|∇
H
Φ
µχ
|
2
Φ
2
µχ
= −

1
2
+ε
1

−
∇
H
χ
χ
−ν
∇
H
(ψ◦f)
b−ψ◦f

2
≥−

1
2
+ε
1

(1+ε
−1
3
)
|∇
H
χ|
2
χ
2
−

1
2
+ε
1

(1+ε
3
)v
2
|∇
H
(ψ◦f) |
2
(b−ψ◦f)
2
-ε
3
=
2−ν
2+ν
>0,K

1
2
+ε
1

(1+ε
−1
3
) =
2+ν
ν(2−ν)
,

1
2
+ε
1

(1+ε
3
)ν
2
= ν.u´
0 ≥
∆
H
χ
χ
−(1+
2+ν
ν(2−ν)
)
|∇
H
χ|
2
χ
2
+ν
4
H
(ψ◦f)
b−ψ◦f
−2κ|d
H
f|
2
+(
1
2
ε
1
η
min
+µ∆
H
χ−3ε
−1
1
µχ
−1
|∇
H
χ|
2
)
|d
V
f|
2
Φ
µχ
−

2k+
C
2

2
+
C
2
2
ε
1
η
min

|d
H
f|
2
Φ
µχ
d(3.4)†Ún3,
0 ≥−
C
4
χR
−(1+
2+ν
ν(2−ν)
)
C
4
χR
2
+δ|d
H
f|
2
+(
1
2
ε
1
η
min
+µ∆
H
χ−3ε
−1
1
µ
C
4
R
2
)
|d
V
f|
2
Φ
µχ
−

2k+
C
2

2
+
C
2
2
ε
1
η
min

|d
H
f|
2
Φ
µχ
≥−
C
ν
χR
+δ|d
H
f|
2
+(
1
2
ε
1
η
min
−
µC
ν
R
)
|d
V
f|
2
Φ
µχ
−

2k+
C
2

2
+
C
2
2
ε
1
η
min

|d
H
f|
2
Φ
µχ
(3.11)
Ù¥C
ν
= C
ν
(ν,C
4
),δ>0dÚn3û½…=•6uD.
qdΦ
µχ
=|d
H
f|
2
+µχ|d
V
f|
2
,
|d
V
f|
2
= µ
−1
χ
−1
(Φ
µχ
−|d
H
f|
2
)
DOI:10.12677/aam.2021.10114163920A^êÆ?Ð
q©x
¤±(3.11)Œz•
0 ≥
−C
ν
χR
+δ|d
H
f|
2
+(
1
2
ε
1
η
min
−
µC
ν
R
)µ
−1
χ
−1
+(−
1
2
µ
−1
χ
−1
ε
1
η
min
+
χ
−1
C
ν
R
−2k−
C
2

2
−
C
2
2
ε
1
η
min
)
|d
H
f|
2
Φ
µχ
≥
1
χ
(
1
2
ε
1
µ
−1
η
min
−
2C
ν
R
)
+[δχΦ
µχ
−

1
2
ε
1
µ
−1
η
min
+2k+
C
2
2
ε
1
µ
+
C
2
2
ε
1
η
min

]
|d
H
f|
2
χΦ
µχ
(3.12)
•¦
1
2
ε
1
µ
−1
η
min
−
2C
ν
R
šK§·‚Œ±ε
1
µ
−1
=
4C
ν
η
min
R
,Qµ
−1
=
4C
ν
ε
1
η
min
R
.u´
χΦ
µχ
≤δ
−1

4C
ν
R
+2k+
C
2
2
ε
1
µ
+
C
2
2
ε
1
η
min

(3.13)
=δ
−1
C
5
Ù¥C
5
=
4C
ν
R
+2k+
C
2
2
ε
1
µ
+
C
2
2
ε
1
η
min
.Ïd
max
B
2R
(x
0
)
χF
µχ
≤
χΦ
µχ
(b−ψ◦f)
ν
(x) ≤
C
5
δ(b−φ(D))
ν
(3.14)
dd
max
B
R
(x
0
)
|d
H
f|
2
≤b
ν
max
B
R
(x
0
)
F
µχ
≤
C
5
b
ν
δ(b−φ(D))
ν
(3.15)
K
max
B
R
(x
0
)
|d
H
f|
2
≤
4C
ν
R
+2k+
C
2
2
ε
1
µ
+
C
2
2
ε
1
η
min
= C
1

k+
1
R

(3.16)
Ù¥C
1
••6uk,k
1
,κ,D.l¤½n1y².
ë•©z
[1]Yau,S.(1975)HarmonicFunctionsonCompleteRiemannianManifolds.Communicationson
PureandAppliedMathematics,28,201-228.https://doi.org/10.1002/cpa.3160280203
[2]Cheng,S.Y.(1980)LiouvilleTheoremforHarmonicMaps.ProceedingsofSymposiainPure
Mathematics,36,147-151.https://doi.org/10.1090/pspum/036/573431
[3]Choi,H.I.(1982)OntheLiouvilleTheoremforHarmonicMaps.ProceedingsoftheAmerican
MathematicalSociety,85,91-94.https://doi.org/10.1090/S0002-9939-1982-0647905-3
DOI:10.12677/aam.2021.10114163921A^êÆ?Ð
q©x
[4]Strichartz, R.S.(1986) Sub-Riemannian Geometry.JournalofDifferentialGeometry,24, 221-
263.https://doi.org/10.4310/jdg/1214440436
[5]Dong,Y.(2021)Eells-SampsonTypeTheoremsforSubellipticHarmonicMapsfromSub-
RiemannianManifolds.JournalofGeometricAnalysis,31,3608-3655.
https://doi.org/10.1007/s12220-020-00408-z
[6]Baudoin,F.(2016)Sub-LaplaciansandHypoellipticOperatorsonTotallyGeodesicRieman-
nianFoliations.Geometry,AnalysisandDynamicsonSub-RiemannianManifolds,259-321.
https://doi.org/10.4171/162-1/3
[7]Chong,T.,Dong,Y.X.,Ren,Y.B.,etal.(2020)Pseudo-HarmonicMapsfromCompleteNon-
compactPseudo-HermitianManifoldstoRegularBalls.JournalofGeometricAnalysis,30,
3512-3541.https://doi.org/10.1007/s12220-019-00206-2
DOI:10.12677/aam.2021.10114163922A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.