设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(11),1850-1870
PublishedOnlineNovember2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.1111208
þŠ-•OKe2xV•éÜÂÃ•`Ý
]2xüÑ
šššxxxxxx§§§¦¦¦¦¦¦§§§ÓÓÓ¦¦¦)))
∗
ÀuŒÆnÆ§þ°
ÂvFϵ2021c1015F¶¹^Fϵ2021c1115F¶uÙFϵ2021c1122F
Á‡
3üax’Öƒ'ºx.µe§ïÄxúiÚ2xúiéÜÂÃ•`Ý]2
x¯K"bxúiŒ±•2xúiï'~2xÚÝ]u˜‡dú x]Úºx]
|¤7K½|§2xú iæ^Ï"¤nÂ¤¿Œ±ÏLÝ]úx]5ü$º
x"3þŠ-•OKe§ÏL¦)*ÐHamilton-Jacobi-Bellman•§|§éÜÂÃ
•`Ý]üÑÚ•`2xüÑLˆª±9•`Š¼ê§¿ÏL¢~y(Jk5"
'…c
Ï"¤n§2x§þŠ-•OK§éÜÂçHJB•§
OptimalInvestmentReinsuranceStrategy
fortheJointBenefitsoftheInsurerand
theReinsurerundertheMean-Variance
TingtingSun,HuihuiWang,HuishengShu
∗
CollegeofScienceandTechnology,DonghuaUniversity,Shanghai
Received:Oct.15
th
,2021;accepted:Nov.15
th
,2021;published:Nov.22
nd
,2021
∗ÏÕŠö"
©ÙÚ^:šxx,¦¦,Ó¦).þŠ-•OKe2xV•éÜÂÃ•`Ý]2xüÑ[J].nØêÆ,
2021,11(11):1850-1870.DOI:10.12677/pm.2021.1111208
šxx
Abstract
Underthebackgroundoftheriskmodel relatedtotwotypes ofinsurancebusiness, the
optimalinvestmentreinsuranceofthejointbenefitsoftheinsurerandthereinsurer
isstudied.Assumingthattheinsurercanbuyproportionalreinsurancefromthe
reinsurerandinvestinafinancialmarketconsistingofrisk-freeandriskassets,the
reinsurer can use the expected premium principle to charge premiums and reduce risk
byinvesting inrisk-freeassets.Underthemean-variancecriterion,theexpressionsof
the optimal investment strategy and the optimal reinsurance strategy and the optimal
valuefunctionofthecombinedreturnsareobtained by solvingtheextended Hamilton-
Jacobi-Bellmanequationsystem,andthevalidity oftheresultisverifiedbyexample.
Keywords
ExpectedPremiumPrinciple,Reinsurance,Mean-VarianceCriterion,JointBenifits,
HJBEquation
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.0
y“x½|dxúiÚ2xúi|¤§üöÏL2xƒpéX"éuxúi5`§
ºx+n´˜‡-‡¯K"XÛÀJÝ]õ¦ÚÅ §±9ïõÚŸoa.2x
8(••`Ý]2x¯K§•xúiϦ•`Ý]2xüѤ•˜‡É'59
:"
3• `Ý]2x¯K¥§•~¦^8I¼êk»V Ç•zOK!Ï"^•Œz
OK±9þŠ-•OK"©z[1–4]Ñ´3»VÇ• zOKeïÄxúi•`üѯK"é
uÏ"^•Œz OK§©z[5]éÙ?1ïĶ©z[6]bxúiÄ¢L§„̤£
ÙK$ħ3؉˜åe§ïÄªàãLÏ"•ê^•Œz¯K"©z[7]3CEV.
¥§•ĪàãL¥•ŒzýÏ•ê^§ïÄ2xÝ]¯KÚ=Ý]¯K"éuþŠ-•
O Ke xúi• `Ý]2x ¯K§©z[8]Äg‰ÑïĶ©z[9]3þŠ-•OKe
ïÄÝ]2x¯KÚXÝ]¯K•`üѶ©z[10]ïÄa*Ñ7K½|¥äkÝ]Ú
DOI:10.12677/pm.2021.11112081851nØêÆ
šxx
2xxúiþŠ-••`¯K"
þãÑ´lxúiÝÑuïÄ•`üÑ§´3y¢)¹¥§•3Óž›xú
iÚ2xúi8ì§X¥I2x(8ì)°k•úi§X©z[11]•㘰2xÜ
9V•§=xúiÚ2xúi§32x•`/ªIOe§éÙ¥˜••`2xü
ѧé,˜•5`ŒUØ´•`§¤±§3•`Ý]2xïÄ¥§•Äxúi Ú2x
úiV •´Ün"©z[12,13]•ÄxúiÚ2xúiV•|ç éüöÓ)•ÚJ
|VÇ?1ïÄ"©z[14]ïÄdCEV.ïºx]§±•ŒzxV•ªàã
L•ê^•OK§Ñ•`Ý]2xüѶ3dÄ:þ§ ©z[15,16]ïÄØÓ`z OK
e§xúiÚ2xúi•`üÑ"©z[17]A^Ä5y•{ÚéónاïÄÓž•Ä
xúiÚ2xúi|Ã•`2xÝ]üÑ"éuxúiÚ2xúiV•Ɖ¯K§
©z[18]‰ÑïÄ"©z[19]ïÄxúiÚ2xúiBŸþïÝ]2xüÑڪϕ›
éBŸþïÝ]2xüÑK•"
d§‘X<‚x¿£ØäOr§±9éx˜k•õ‡5z I¦§xúi
x«’Ö5E,§x«a.•5õ§X-wx!Æx!¿x!šx"ùx«
ŒU¬Óž)§'X¿xÚšx"‘Xé2x\ïħ©z[20]•Äü«äkƒ
'5x«’Ö§3•¤ne§|^‘Å››nاÑªàãLÏ"•ê^•Œz
OKeEÜÑtºx.ÚÙK$ĺx.•`'~2xüÑÚŠ¼êµ4Lˆª"©
z[21]„3þŠ-•OKe§ïÄäka*Ѻx]7K½|•`2xÝ]¯K§
Ù¥xºxdEÜÑtL§ï§ü‡aL§d ˜‡ÓÀÂ'é§Äu‘Å‚5g››
nا‰ÑHJB•§Ê5)•`üÑÚŠ¼êwªLˆª"Äu±þë•©zïÄÚ&
?§©òÓž•ÄxúiÚ2xúiV•§3Ï"¤neïÄäküaƒ•x«’Ö
ºx.§8I¼êæ^þŠ-•OK§é•`Ý]2x¯K?1&?"
2..Úb
b(Ω,F,{F
t
}
t≥0
,P)´˜‡‘6{F
t
}
t≥0
Vǘm§Ù¥6{F
t
}
t≥0
÷vÏ~^‡µm
ëY!4O!{F
t
}
t≥0
•¹¤kP-ŒÑ8"3©¥§¤k‘ÅCþѽÂ3Vǘm¥"
2.1.J{L§
-X={X
i
,i=1,2,...}§Y={Y
i
,i=1,2,...}´xúiüaØÓx«§…äkƒ'
5"X={X
i
,i=1,2,...}ÚY={Y
i
,i=1,2,...}´ÕáÓ©Ù‘ÅCþ§©Ù¼ê©O
•F
1
(x)§F
2
(y)§X≤0ž§F
1
(x)=0§X>0ž§0≤F
i
(x)≤1¶Y≤0ž§F
2
(y)=0§
Y>0ž§0≤F
2
(y)≤1"X
i
´1˜ax«1ig¢Œ§ ÙþŠ•E(X
i
)=µ
11
§Ý
•E(X
2
i
) = µ
12
¶Y
i
´1˜ax«1ig¢Œ§ÙþŠ•E(Y
i
) = µ
21
§Ý•E(Y
2
i
) = µ
22
"
üax«ž•to¢L(t)•
L(t) =
e
N
1
(t)
X
i=1
X
i
+
e
N
2
(t)
X
i=1
Y
i
= L
1
(t)+L
2
(t).
DOI:10.12677/pm.2021.11112081852nØêÆ
šxx
Ù¥
e
N
1
(t)Ú
e
N
2
(t)•(0,T]S1˜ax«Ú1ax«¢u)g꧆X§YÕá§…¢gê
ƒ'5Xeµ
e
N
1
(t) = N
1
(t)+N(t),
e
N
2
(t) = N
2
(t)+N(t),
Ù¥§N
1
(t)§N
2
(t)§N(t)ÑlPoisson©Ù…ƒpÕá§rÝ©O•λ
1
>0§λ
2
>0§λ>0§
N
i
(t)§i=1,2L«•¢1iax«¢gê§N(t)L«Ó˜¯¥Óž¢üax«¢
gê§=¢u)gê(
e
N
1
(t),
e
N
2
(t))ÏLÓPoissonCþN(t)ƒ'"u´§dþã½§
xúiJ{L§•
R(t) = x
0
+ct−L(t)
= x
0
+ct−L
1
(t)−L
2
(t)
= x
0
+ct−
N
1
(t)+N(t)
X
i=1
X
i
−
N
2
(t)+N(t)
X
i=1
Y
i
(2.1)
Ù¥x
0
≥0´xúiЩJ{§c´¤Ç(ü žmSxúi¤Â\)"
2.2.2x.
•ü$²Eºx§-½úi²E§#Nxúi3xÜÓÄ:þ§ÏL\¾©Ü
Ó§òÙ¤«úÜ©ºxÚI?•Ù¦xúi?1=£§=ï2x"bxúi•2
xúiï'~2x§éuüaØÓx«’Ö§xúig3'~©O•q
1t
Úq
2t
§ù
pq
it
∈[0,1]§i=1,2§=éuž•tu)¢X
i
ÚY
i
§xúiGq
1t
X
i
Úq
2t
Y
i
§2xú
iG•{n(1−q
1t
)X
i
Ú(1−q
2t
)Y
i
"b2xúi¤Ç•δ(q
1t
,q
2t
)§UìÏ"
¤nÂ¤§K
δ(q
1t
,q
2t
) = (1+η
1
)(1−q
1
)a
1
+(1+η
2
)(1−q
2
)a
2
.(2.2)
Ù¥a
1
= (λ
1
+λ)E(X)§a
2
= (λ
2
+λ)E(Y)§η
i
•2xúiéu1iax«SKÖ(i= 1,2)"
2.3.7K½|
xúiØÏLï2x=£ºx§„Œ±37K½|?1Ý]§5Jp€U
å"b7K½|d˜‡Ãºx](Å )Ú˜‡ºx](¦)|¤"3tž•§Ãºx]d
‚S
0
(t)•
(
dS
0
(t) = rS
0
(t)dt,
S
0
(t) = S
0
.
(2.3)
Ù¥r>0´Ãºx](Å )|Ƕºx]d‚S
1
(t)•
(
dS
1
(t) = S
1
(t)[βdt+σdW(t)],
S
1
(t) = S
1
.
(2.4)
DOI:10.12677/pm.2021.11112081853nØêÆ
šxx
Ù¥β•ºx](¦)£ǧσ•ºx](¦)ÅÄǧW(t)´˜‡IOÙK$ħ
†X
i
§Y
i
§N
1
(t)§N
2
(t)§N(t)Õá"
2.4.ãLL§
©¥§xúiŒ±Ý]uúx]Úºx]§2xúiŒ±Ý]uúx]5
5;ºx"3tž•§π(t)•xúiÝ]uºx]7§xúiãLL§R
1t
•
dR
1t
= [c+r(R
1t
−π)−δ(q
1t
,q
2t
)]dt+π[βdt+σdW(t)]−q
1t
dL
1
(t)−q
2t
dL
2
(t).(2.5)
2xúiãLL§R
2t
•
dR
2t
= [rR
2t
+δ(q
1t
,q
2t
)]dt−(1−q
1t
)dL
1
(t)−(1−q
2t
)dL
2
(t).(2.6)
©•ÓžoxúiÚ2xúi|çòüöãLL§±α∈[0,1]\§P
•R
t
=αR
1t
+ (1 −α)R
2t
"\Xêα=0ž§R
t
•x2xúiãLL§§\X
êα=1ž§R
t
•xxúiãLL§§…αŒ•x•`üÑÏéL§¥xúi
| Ã'-§ŒK•ý-x úi |燃K•ý-2x úi| Ã",˜•¡§·‚Œ
±n)¤˜‡xúiÚ˜‡ 2xúiáuÓ˜‡x8 ì§αÚ(1 −α)©O•üö¤±k
°'~§R
t
•x8ìãLL§"Ïd§džBúª§·‚k
dR
t
= [rR
t
+αc+α(β−r)π+(1−2α)δ(q
1t
,q
2t
)]+ασπdW(t)−
2
X
i=1
[1−α−(1−2α)q
it
]dL
i
(t)
= {rR
t
+αc+α(β−r)π+(1−2α)[(1+η
1
)(1−q
1
)a
1
+(1+η
2
)(1−q
2
)a
2
]}dt
+ασπdW(t)−
2
X
i=1
[1−α−(1−2α)q
it
]dL
i
(t).(2.7)
dþªŒ•§α=
1
2
ž§ãLL§†q
1t
§q
2t
Ã'§Ù•`2xüÑ•?¿Š§©3α6=
1
2
…α∈(0,1)Ä:þϦ•`üÑ"
½Â2.1XJüÑQ= (q
1t
,q
2t
,π(t))´'u6{F
t
}
t≥0
-·A‘ÅL§§…÷v±e^‡µ
1.éu6{F
t
}
t≥0
§(q
1s
,q
2t
,π(t))´ÌSŒÿ¶
2.é∀s∈[t,T]§0 ≤q
is
≤1,i= 1,2§E[
R
T
t
(q
2
1s
+q
2
2s
+π(s)
2
)] <+∞¶
3.(Q,R
Q
t
)´‘Ň©•§(2.7)•˜)"
KüÑQ= (q
1t
,q
2t
,π(t))•ŒNNüѧ¤kŒNNüÑ8ÜP•Q"
3.½ÂÚÚn
Šâ©z[22]§·‚3Ɖصee•x8ìï˜‡Ý]2x¯K§x8ì8I
´•Œzªàž•TãLÏ"§bÙ^¼êæ^þŠ-•OK§=é∀(t,x)∈([0,T]×R)§
DOI:10.12677/pm.2021.11112081854nØêÆ
šxx
8I¼ê•
sup
Q∈Q
J(t,x,Q) =sup
Q∈Q
{E
t,x
[R
Q
T
]−
γ
2
Var
t,x
[R
Q
T
]}.(3.1)
Ù¥E
t,x
[·] = E[·|R
Q
t
= x]§Var
t,x
[·] = Var[·|R
Q
t
= x]§x´Ð©J{§γ>0•ºxXê"
PC
1,2
´˜‡¼ê˜m§÷vé∀ψ(t,x)∈C
1,2
§ψ§ψ
t
§ψ
x
Úψ
xx
´[0,T] ×RþëY¼ê§
Ù¥ψ
t
•ψét˜§ψ
x
Úψ
xx
•ψéx˜Ú§…
A
Q
ψ(t,x) = ψ
t
+{rx+cα+α(β−r)π+(1−2α)[(1+η
1
)(1−q
1
)a
1
+(1+η
2
)(1−q
2
)a
2
]}ψ
x
+
1
2
α
2
σ
2
π
2
V
xx
+λ
1
E[ψ(t,x−(1−α−(1−2α)q
1
)X)−ψ(t,x)]
+λ
2
E[ψ(t,x−(1−α−(1−2α)q
2
)Y)−ψ(t,x)]
+λE[ψ(t,x−(1−α−(1−2α)q
1
)X−(1−α−(1−2α)q
2
)Y)−ψ(t,x)],(3.2)
½Â3.1(þïüÑ)XJQ∈R
+
×R
+
×R§h>0Ú(t,x) ∈[0,T]×R§
liminf
h→0
J(t,x,Q
∗
)−J(t,x,Q
h
)
h
≥0.
Ù¥
Q
h
(s,ex) =



Q,s∈[t,t+h],ex∈R,
Q
∗
(s,ex),s∈[t+h,T],ex∈R,
KQ
∗
(t,x)•þïüѧƒAþê•
V(t,x) = J(t,x,Q
∗
) = E
t,x
[R
Q
∗
T
]−
γ
2
Var
t,x
[R
Q
∗
T
].(3.3)
Ún3.1(y½n)é¯K(3.1)§XJ•3ü‡¢¼êU(t,x),g(t,x)∈C
1,2
([0,T]×R)÷ve
HJB•§|µ
sup
Q∈Q
{A
Q
U(t,x)−A
Q
γ
2
g(t,x)
2
+γg(t,x)A
Q
g(t,x)}= 0,(3.4)
U(T,x) = x,(3.5)
A
Q
∗
g(t,x) = 0,(3.6)
g(T,x) = x.(3.7)
Ù¥
Q
∗
= argsup
Q∈Q
{A
Q
U(t,x)−A
Q
γ
2
g(t,x)
2
+γg(t,x)A
Q
g(t,x)},(3.8)
DOI:10.12677/pm.2021.11112081855nØêÆ
šxx
KV(t,x) = U(t,x)§E
t,x
[R
Q
∗
T
] = g(t,x)§•`üÑ´Q
∗
"
þã½ny²§„©z[22]¥½n4.1"
4..¦)
!§·‚3þŠ-•OKe¦)x8ì•`Ý]Ú2xüÑ"bU(t,x)Úg(t,x)´
ü‡÷v½n3.1¥^‡¼ê§u´(3.4)Ú(3.6)Œ±¤Xe/ªµ
sup
Q∈Q
{U
t
+{rx+cα+α(β−r)π+(1−2α)[(1+η
1
)(1−q
1
)a
1
+(1+η
2
)(1−q
2
)a
2
]}U
x
+
1
2
(U
xx
−γg
x
(t,x)
2
)α
2
σ
2
π
2
−(λ
1
+λ
2
+λ)[U(t,x)+
γ
2
g(t,x)
2
]
+λ
1
E[U(t,x−θ
1
X)−
γ
2
g(t,x−θ
1
X)(g(t,x−θ
1
X)−2g(t,x))]
+λ
2
E[U(t,x−θ
2
Y)−
γ
2
g(t,x−θ
2
Y)(g(t,x−θ
2
Y)−2g(t,x))]
+λE[U(t,x−θ
1
q
1
X−θ
2
Y)−
γ
2
g(t,x−θ
1
X−θ
2
Y)(g(t,x−θ
1
X−θ
2
Y)−2g(t,x))] = 0,(4.1)
g
t
+{rx+cα+α(β−r)π+(1−2α)[(1+η
1
)(1−q
1
)a
1
+(1+η
2
)(1−q
2
)a
2
]}g
x
+
1
2
α
2
σ
2
π
2
g
xx
+λ
1
E[g(t,x−θ
1
X)−g(t,x)]
+λ
2
E[g(t,x−θ
2
Y)−g(t,x)]
+λE[g(t,x−θ
1
X−θ
2
Y)−g(t,x)] = 0,(4.2)
Ù¥θ
i
= 1−α−(1−2α)q
i
,i= 1,2"ŠâBjorkÚMurgoci(2010)±9½n3.1¥^‡§·‚ßÿ)
Xeµ
U(T,x) = A(t)x+B(t),A(T) = 1,B(T) = 0,
g(T,x) = a(t)x+b(t),a(T) = 1,b(T) = 0,
éÙ¦‡©Œµ
U
t
(T,x) =
˙
A(t)x+
˙
B(t),U
x
(T,x) = A(t),U
xx
(T,x) = 0,(4.3)
g
t
(T,x) =˙a(t)x+
˙
b(t),g
x
(T,x) = a(t),g
xx
(T,x) = 0,(4.4)
DOI:10.12677/pm.2021.11112081856nØêÆ
šxx
Ù¥§
˙
A(t) = dA(t)/dt§
˙
B(t) = dB(t)/dt§˙a(t) = da(t)/dt§
˙
b(t) = db(t)/dt§“\(4.1)
A(t)[rx+cα+α(β−r)π+(1−2α)((1+η
1
)(1−q
1
)a
1
+(1+η
2
)(1−q
2
)a
2
)]+
˙
B(t)
˙
A(t)x−A(t)θ
1
a
1
−A(t)θ
2
a
2
−
γ
2
a(t)
2
(θ
2
1
b
2
1
+θ
2
2
b
2
2
+2θ
1
θ
2
λµ
11
µ
21
+α
2
σ
2
π
2
) = 0.(4.5)
Ù¥b
2
1
= (λ
1
+λ)E(X
2
)§b
2
2
= (λ
2
+λ)E(Y
2
)"-
f(q
1
,q
2
) = −
γ
2
a(t)
2
θ
2
1
b
2
1
−
γ
2
a(t)
2
θ
2
2
b
2
2
−A(t)θ
1
a
1
−A(t)θ
2
a
2
−γa(t)
2
θ
1
θ
2
λµ
11
µ
21
+A(t)(1−2α)(1+η
1
)(1−q
1
)a
1
+A(t)(1−2α)(1+η
2
)(1−q
2
)a
2
.(4.6)
K































∂f(q
1
,q
2
)
∂q
1
= (2α−1)(−γa(t)
2
θ
1
b
2
1
+A(t)η
1
a
1
−γa(t)
2
θ
2
λµ
11
µ
21
),
∂f(q
1
,q
2
)
∂q
2
= (2α−1)(−γa(t)
2
θ
2
b
2
2
+A(t)η
2
a
2
−γa(t)
2
θ
1
λµ
11
µ
21
),
∂
2
f(q
1
,q
2
)
∂q
2
1
= −γa(t)
2
(2α−1)
2
b
2
1
,
∂
2
f(q
1
,q
2
)
∂q
2
2
= −γa(t)
2
(2α−1)
2
b
2
2
,
∂
2
f(q
1
,q
2
)
∂q
1
q
2
= −γa(t)
2
(2α−1)
2
λµ
11
µ
21
.
(4.7)
f(q
1
,q
2
)HessianÝŒ±L«•µ



∂
2
f(q
1
,q
2
)
∂q
2
1
∂
2
f(q
1
,q
2
)
∂q
1
∂q
2
∂
2
f(q
1
,q
2
)
∂q
1
∂q
2
∂
2
f(q
1
,q
2
)
∂q
2
1



=



−γa(t)
2
(2α−1)
2
b
2
1
−γa(t)
2
(2α−1)
2
λµ
11
µ
21
−γa(t)
2
(2α−1)
2
λµ
11
µ
21
−γa(t)
2
(2α−1)
2
b
2
2



Šâ…Ü-–]Øª§·‚•b
2
1
b
2
2
= (λ
1
+λ)E(X
2
)(λ
2
+λ)E(Y
2
) >λ
2
µ
2
11
µ
2
21
§γ
2
a(t)
4
(2α−
1)
2
(b
2
1
b
2
2
−λ
2
µ
2
11
µ
2
21
) >0§¤±f(q
1
,q
2
)Hessian Ý½§=f(q
1
,q
2
)´'uq
1
§q
2
à¼ê"u
´





−γa(t)
2
θ
1
b
2
1
+A(t)θ
1
a
1
−γa(t)
2
θ
2
λµ
11
µ
21
= 0,
−γa(t)
2
θ
2
b
2
2
+A(t)θ
2
a
2
−γa(t)
2
θ
1
λµ
11
µ
21
= 0.
(4.8)
K





θ
1
=
A(t)(−a
2
η
2
λµ
11
µ
21
+a
1
b
2
2
η
1
)
γa(t)
2
(b
2
1
b
2
2
−λ
2
µ
2
11
µ
2
21
)
,
θ
2
=
A(t)(−a
1
η
1
λµ
11
µ
21
+a
2
b
2
1
η
2
)
γa(t)
2
(b
2
1
b
2
2
−λ
2
µ
2
11
µ
2
21
)
.
(4.9)
dθ
i
= 1−α−(1−2α)q
i
,i= 1,2§·‚kq
i
=
θ
i
−(1−α)
2α−1
,i= 1,2"Šâ(4.5)§
eπ=
A(t)(β−r)
αγa(t)
2
σ
2
,(4.10)
DOI:10.12677/pm.2021.11112081857nØêÆ
šxx
òq
1
,q
2
,eπ“\(4.5)Ú(4.2)§k
(
˙
A(t)+rA(t))x+
˙
B(t)+A(t)(αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)+
A(t)
2
2γa(t)
2
ξ= 0,(4.11)
(˙a(t)+ra(t))x+
˙
b(t)+a(t)(αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)+
A(t)
2
γa(t)
2
ξ= 0,(4.12)
Ù¥
ξ= a
2
1
η
2
1
b
2
2
+a
2
2
η
2
2
b
1
2
−2a
1
a
2
η
1
η
2
λµ
11
µ
21
+
(β−r)
2
σ
2
,(4.13)
‡Ž(4.11)Ú(4.12)¤á§K
˙
A(t)+rA(t) = 0,A(T) = 1,
˙
B(t)+A(t)(αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)+
A(t)
2
2γa(t)
2
ξ(t) = 0,
˙a(t)+ra(t) = 0,a(T) = 1,
˙
b(t)+a(t)(αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)+
A(t)
2
γa(t)
2
ξ(t) = 0.
)þ㇩•§§k
A(t) = e
r(T−t)
,(4.14)
B(t) = (αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)
1
r
(e
r(T−t)
−1)+
1
2γ
ξ(T−t),(4.15)
a(t) = e
r(T−t)
,(4.16)
b(t) = (αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)
1
r
(e
r(T−t)
−1)+
1
γ
ξ(T−t).(4.17)
ò(4.14)Ú(4.16)“\(4.9)§Œ
q
1
=
1
2α−1
[
−a
2
η
2
λµ
11
µ
21
+a
1
b
2
2
η
1
γe
r(T−t)
(b
2
1
b
2
2
−λ
2
µ
2
11
µ
2
21
)
−(1−α)],(4.18)
q
2
=
1
2α−1
[
−a
1
η
1
λµ
11
µ
21
+a
2
b
2
1
η
2
γe
r(T−t)
(b
2
1
b
2
2
−λ
2
µ
2
11
µ
2
21
)
−(1−α)].(4.19)
Pm
1
=−a
2
η
2
λµ
11
µ
21
+a
1
b
2
2
η
1
,m
2
=−a
1
η
1
λµ
11
µ
21
+a
2
b
2
1
η
2
§q{üyŒ•
a
2
λµ
11
µ21
a
1
b
2
2
<
a
2
b
2
1
a
1
λµ
11
µ
21
"-t
i0
(
b
t
i0
,
e
t
i0
)´¦q
i
=0(bq
i
=0,eq
i
=0)¤ážm:§t
i1
(
b
t
i1
,
e
t
i1
)´¦q
i
=1(bq
i
=
1,eq
i
= 1)¤ážm:§t
0i
´¦q
i
(T−t)=0¤ážm:§i=1,2§t
e
0i
´¦eq
i
(T−t)=0
DOI:10.12677/pm.2021.11112081858nØêÆ
šxx
¤ážm:i= 1,2§u´·‚Œ±Xeü‡½nµ
½n4.1e
1
2
<α<1§K•`2xüÑ(q
∗
1
,q
∗
2
)•
£1¤η
1
>
a
2
b
2
1
a
1
λµ
11
µ21
η
2
>
a
2
λµ
11
µ
21
a
1
b
2
2
η
2
ž§=£m
1
>0,m
2
<0¤
(q
∗
1
,q
∗
2
) =













(0,0),t≤
b
t
10
(bq
1
,0),
b
t
10
<t<
b
t
11
(1,0),t≥
b
t
11
(4.20)
Ù¥bq
1
=
1
2α−1
[
−γe
r(T−t)
(1−α)λµ
11
µ
21
+η
1
a
1
γe
r(T−t)
b
2
1
−(1−α)]
£2¤
a
2
b
2
1
a
1
λµ
11
µ21
η
2
>η
1
>
a
2
λµ
11
µ
21
a
1
b
2
2
η
2
ž§=£m
1
>0,m
2
>0¤
em
1
≥m
2
§k
(q
∗
1
,q
∗
2
) =































(0,0),t≤
b
t
10
(0,bq
2
),
b
t
10
<t≤t
20
(q
1
,q
2
),t
20
<t<t
11
(1,eq
2
),t
11
≤t<
e
t
21
(1,1),t≥
e
t
21
(4.21)
Ù¥bq
2
=
1
2α−1
[
−γe
r(T−t)
(1−α)λµ
11
µ
21
+η
1
a
1
γe
r(T−t)
b
2
2
−(1−α)]§eq
2
=
1
2α−1
[
−γe
r(T−t)
αλµ
11
µ
21
+η
2
a
2
γe
r(T−t)
b
2
2
−(1−α)]¶
em
1
<m
2
§k
(q
∗
1
,q
∗
2
) =































(0,0),t≤
b
t
20
(0,bq
2
),
b
t
20
<t≤t
10
(q
1
,q
2
),t
10
<t<t
21
(eq
1
,1),t
21
≤t<
e
t
11
(1,1),t≥
e
t
11
(4.22)
Ù¥bq
2
=
1
2α−1
[
−γe
r(T−t)
(1−α)λµ
11
µ
21
+η
2
a
2
γe
r(T−t)
b
2
2
−(1−α)]§eq
1
=
1
2α−1
[
−γe
r(T−t)
αλµ
11
µ
21
+η
1
a
1
γe
r(T−t)
b
2
1
−(1−α)]¶
£3¤
a
2
b
2
1
a
1
λµ
11
µ21
η
2
>
a
2
λµ
11
µ
21
a
1
b
2
2
η
2
>η
1
ž§=(m
1
<0,m
2
>0)
(q
∗
1
,q
∗
2
) =













(0,0),t≤
b
t
20
(0,bq
2
),
b
t
20
<t<
b
t
21
(0,1),t≥
b
t
21
(4.23)
DOI:10.12677/pm.2021.11112081859nØêÆ
šxx
½n4.2e0 <α<
1
2
§K•`2xüÑ(q
∗
1
,q
∗
2
)•
£1¤η
1
>
a
2
b
2
1
a
1
λµ
11
µ21
η
2
>
a
2
λµ
11
µ
21
a
1
b
2
2
η
2
ž§=£m
1
>0,m
2
<0¤
(q
∗
1
,q
∗
2
) =













(1,1),t≤
e
t
11
(eq
1
,1),
e
t
11
<t<
e
t
10
(0,1),t≥
e
t
10
(4.24)
Ù¥eq
1
=
1
2α−1
[
−γe
r(T−t)
αλµ
11
µ
21
+η
1
a
1
γe
r(T−t)
b
2
1
−(1−α)]
£ii¤
a
2
b
2
1
a
1
λµ
11
µ21
η
2
>η
1
>
a
2
λµ
11
µ
21
a
1
b
2
2
η
2
ž§=£m
1
>0,m
2
>0¤
em
1
≥m
2
§k
(q
∗
1
,q
∗
2
) =































(1,1),t≤
e
t
11
(1,eq
2
),
e
t
11
<t≤t
21
(q
1
,q
2
),t
21
<t<t
10
(0,bq
2
),t
10
≤t<
b
t
20
(0,0),t≥
b
t
20
(4.25)
Ù¥eq
2
=
1
2α−1
[
−γe
r(T−t)
αλµ
11
µ
21
+η
1
a
1
γe
r(T−t)
b
2
2
−(1−α)]§bq
2
=
1
2α−1
[
−γe
r(T−t)
(1−α)λµ
11
µ
21
+η
2
a
2
γe
r(T−t)
b
2
2
−(1−α)]
em
1
<m
2
§k
(q
∗
1
,q
∗
2
) =































(1,1),t≤
e
t
21
(1,eq
2
),
e
t
21
<t≤t
11
(q
1
,q
2
),t
11
<t<t
20
(bq
1
,0),t
20
≤t<
b
t
10
(0,0),t≥
b
t
10
(4.26)
Ù¥eq
2
=
1
2α−1
[
−γe
r(T−t)
αλµ
11
µ
21
+η
2
a
2
γe
r(T−t)
b
2
2
−(1−α)]§bq
1
=
1
2α−1
[
−γe
r(T−t)
(1−α)λµ
11
µ
21
+η
1
a
1
γa(t)
2
b
2
1
−(1−α)]
£iii¤
a
2
b
2
1
a
1
λµ
11
µ21
η
2
>
a
2
λµ
11
µ
21
a
1
b
2
2
η
2
>η
1
ž§=£m
1
<0,m
2
>0¤
(q
∗
1
,q
∗
2
) =













(1,1),t≤
e
t
21
(1,eq
2
),
e
t
21
<t<
e
t
20
(1,1),t≥
e
t
20
(4.27)
DOI:10.12677/pm.2021.11112081860nØêÆ
šxx
54.1XJEÜPossionL§L
1
(t)ÚL
2
(t)©ÙƒÓ§=λ
1
= λ
2
§µ
11
= µ
21
§µ
12
= µ
22
§u´a
1
=
a
2
§b
2
1
= b
2
2
§K(4.9)¥2xúiéu11ax«SKÖη
1
Úéu12ax«SKÖη
2
ƒ
ž§kθ
1
=θ
2
§?˜Úq
∗
1
=q
∗
2
¶2xúiéu11ax«SKÖη
1
Úéu12ax«
SKÖη
2
؃ž§kη
1
θ
1
= η
2
θ
2
½n4.3é¯K(3.1)§·‚d(4.10)ªŒ••`Ý]üÑ•π
∗
=
(β−r)
αγe
r(T−t)
σ
2
§•`2xüÑ
d½n4.1Ú½n4.2‰Ñ§…•`мêV(t,x)•
£1¤•`2xüÑ(q
∗
1
,q
∗
2
) = (q
1
,q
2
)ž§
V(t,x) = e
r(T−t)
x+(αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)
1
r
(e
r(T−t)
−1)+
1
2γ
ξ(T−t)(4.28)
Ù¥ξ= a
2
1
η
2
1
b
2
2
+a
2
2
η
2
2
b
1
2
−2a
1
a
2
η
1
η
2
λµ
11
µ
21
+
(β−r)
2
σ
2
£2¤•`2xüÑ(q
∗
1
,q
∗
2
) = (0,0)ž§
V(t,x) = ((1−2α)(1+η
1
)a
1
+(1−2α)(1+η
2
)a
2
−(1−α)a
1
−(1−α)a
2
)
1
r
(e
r(T−t)
−1)
αc
1
r
(e
r(T−t)
−1)+e
r(T−t)
x−
γ
4r
(e
2r(T−t)
−1)(1−α)
2
(b
2
1
+b
2
2
+2λµ
11
µ
21
)
+
1
2γ
(β−r)
2
σ
2
(T−t)(4.29)
£3¤•`2xüÑ(q
∗
1
,q
∗
2
) = (0,bq
2
)ž§
V(t,x) = (αc−(1+η
2
)αa
2
+(1−2α)(1+η
1
)a
1
−
(1−α)λµ
11
µ
21
η
2
a
2
b
2
2
)
1
r
(e
r(T−t)
−1)
−(1−α)a
1
1
r
(e
r(T−t)
−1)+e
r(T−t)
x−
γ
4r
(e
2r(T−t)
−1))(1−α)
2
[b
2
1
−
λ
2
µ
2
11
µ
2
21
b
2
2
]
+
1
2γ
[
(β−r)
2
σ
2
+
η
2
2
a
2
2
b
2
2
](T−t)(4.30)
£4¤•`2xüÑ(q
∗
1
,q
∗
2
) = (bq
1
,0)ž§
V(t,x) = (αc−(1+η
1
)αa
1
+(1−2α)(1+η
2
)a
2
−
(1−α)λµ
11
µ
21
η
1
a
1
b
2
1
)
1
r
(e
r(T−t)
−1)
−(1−α)a
2
1
r
(e
r(T−t)
−1)+e
r(T−t)
x−
γ
4r
(e
2r(T−t)
−1))(1−α)
2
[b
2
2
−
λ
2
µ
2
11
µ
2
21
b
2
1
]
+
1
2γ
[
(β−r)
2
σ
2
+
η
2
1
a
2
1
b
2
1
](T−t)(4.31)
DOI:10.12677/pm.2021.11112081861nØêÆ
šxx
£5¤•`2xüÑ(q
∗
1
,q
∗
2
) = (eq
1
,1)ž§
V(t,x) = e
r(T−t)
x+(αc−(1+η
1
)αa
1
−αa
2
−
αλµ
11
µ
21
η
1
a
1
b
2
1
)
1
r
(e
r(T−t)
−1)
−
γ
4r
(e
2r(T−t)
−1))α
2
[b
2
2
−
λ
2
µ
2
11
µ
2
21
b
2
1
]+
1
2γ
[
(β−r)
2
σ
2
+
η
2
1
a
2
1
b
2
1
](T−t)(4.32)
£6¤•`2xüÑ(q
∗
1
,q
∗
2
) = (1,eq
2
)ž§
V(t,x) = e
r(T−t)
x+(αc−(1+η
2
)αa
2
−αa
1
−
αλµ
11
µ
21
η
2
a
2
b
2
2
)
1
r
(e
r(T−t)
−1)
−
γ
4r
(e
2r(T−t)
−1))α
2
[b
2
1
−
λ
2
µ
2
11
µ
2
21
b
2
2
]+
1
2γ
[
(β−r)
2
σ
2
+
η
2
2
a
2
2
b
2
2
](T−t)(4.33)
£7¤•`2xüÑ(q
∗
1
,q
∗
2
) = (1,1)ž§
V(t,x) = e
r(T−t)
x+(αc−αa
1
−αa
2
)
1
r
(e
r(T−t)
−1)+
1
2γ
(β−r)
2
σ
2
(T−t)
−
γ
4r
(e
2r(T−t)
−1)α
2
(b
2
1
+b
2
2
+2λµ
11
µ
21
)(4.34)
5.ꊩÛ
ù˜Ü©¥§·‚òÏLêŠ~f`²ëêé•`üÑK•"bλ=1,λ
1
=2,λ
2
=
3,T=10,r=0.03,α=0.6,µ
11
=0.045,µ
11
=0.053,µ
21
=0.045,µ
22
=0.055,η
1
=0.35,η
2
=
0.35,γ= 0.5,σ= 0.25"ëêXkCz§,Š`²"
ã1`²•`2xüÑ(q
∗
1
,q
∗
2
)‘XžmtOŒOŒ§3vkÄœ¹e§xúi¬
éüax«2xÝ\O\"ã2¥n^-‚©O•σ=0.25§0.35§0.45ž•`Ý]üÑ-‚§
•`Ý]üÑπ
∗
‘XÅÄÇσOŒ~§σŒž§ºx]ÂÃÅÄÒ¬Œ§¤±§
ºxƒÓž§xúi3ºx]þÝ]7¬~§…•`2xüцÅÄÇσÃ'§
•`2xüцºx]ëêÃ'"
e¡·‚•©Ûëêé•`2xüÑq
∗
1
K•§éq
∗
2
©ÛŒ±aqÑ"ã3n^-‚
L«ºxXêγ=0.5§0.51§0.52ž•` 2xüÑq
∗
1
-‚§γŒž§• `2xü
Ñ§g3'~§=xúiºxž§•Žï2x§42xúi«ú •õº
x"ã4n^-‚L«ºxXêγ=0.5§0.51§0.52ž•`Ý]üÑ-‚§γŒ§=
ºx§Ý•pž§•`Ý]üÑπ
∗
§xúi¬~3ºx]þÝ]"
ã5L«•`2xüÑq
∗
1
†ëêλ'X§n^-‚©O•λ= 1§1.5§2§λŒž§•`
2xüÑq
∗
1
"du©•ÄxúiÚ2xúiéÜÂçxúi¢gêO
õž§2xúiÒ¬áýÉxúiï•õ2x§…•`Ý]üцëêλÃ'•`Ý
]üцx’ÖëêÃ'"ã6¥n^-‚L«ëêα=0.6§0.7§0.8ž•`2xüÑq
∗
1

-‚§αŒž§xúi¤ÓãL'-p§é2xúiÝ\'-~"
DOI:10.12677/pm.2021.11112081862nØêÆ
šxx
Figure1.Theeffectoftonoptimalreinsurancestrategy
ã1.té•`2xüÑK•
Figure2.Theeffectofγonoptimalreinsurancestrategy
ã2.γé•`2xüÑK•
Figure3.Theeffectofγonoptimalinvestmentstrategy
ã3.γé•`Ý]üÑK•.
Figure4.Theeffectofσonoptimalinvestmentstrategy
ã4.σé•`Ý]üÑK•
Figure5.Theeffectofλonoptimalreinsurancestrategy
ã5.λé•`2xüÑK•
Figure6.Theeffectofαonoptimalinvestmentstrategy
ã6.αé•`Ý]üÑK•
DOI:10.12677/pm.2021.11112081863nØêÆ
šxx
6.o(
·‚3þŠ-•OKeïÄxúiÚ2xúiéÜÂÃ•`Ý]2x¯K§Ù¥
üaºx’Öƒmäkƒ•5§2xúiæ^Ï"¤nÂ¤§xúiÚ2xúi
ÑŒ±Ý]úx]§Óžxúi„Œ±Ý]ºx]§ÏL¦)*ÐHJB•§|§
•`üÑLˆª±9•`мêLˆª§¿‰ÑêŠ~f©Ûëêé•`üÑK•"
Ä7‘8
I[g,䮀7(62073071)"
ë•©z
[1]Hipp,C.andPlum,M.(2000)OptimalInvestmentforInsurers.InsuranceMathematicsand
Economics,27,215-228.https://doi.org/10.1016/S0167-6687(00)00049-4
[2]Schmidli,H.(2002)OnMinimizingtheRuinProbabilitybyInvestmentandReinsurance.
AnnalsofAppliedProbability,12,890-907.https://doi.org/10.1214/aoap/1031863173
[3]Promislow,S.D.andYoung,V.R.(2005)MinimizingtheProbabilityofRuinWhenClaims
FollowBrownianMotionwithDrift.NorthAmericanActuarialJournal,9,110-128.
https://doi.org/10.1080/10920277.2005.10596214
[4]Chen,S.,Li,Z.andLi,K.(2010)OptimalInvestment-ReinsurancePolicyforanInsurance
CompanywithVaRConstraint.InsuranceMathematicsandEconomics,47,144-153.
https://doi.org/10.1016/j.insmatheco.2010.06.002
[5]Browne, S. (1995)Optimal Investment Policies for a Firm witha RandomRisk Process:Expo-
nentialUtilityandMinimizingtheProbabilityofRuin.MathematicsofOperationsResearch,
20,937-958.https://doi.org/10.1287/moor.20.4.937
[6]Bai,L.andGuo,J.(2008)OptimalProportionalReinsuranceandInvestmentwithMultiple
RiskyAssetsandNo-ShortingConstraint.InsuranceMathematicsEconomics,42,968-975.
https://doi.org/10.1016/j.insmatheco.2007.11.002
[7]Gu,A.,Guo,X.,Li,Z.,etal.(2012)OptimalControlofExcess-of-LossReinsuranceand
InvestmentforInsurersunderaCEVModel.Insurance:MathematicsandEconomics,51,
674-684.https://doi.org/10.1016/j.insmatheco.2012.09.003
[8]Markowitz,H.M.(1952)PortfolioSelection.TheJournalofFinance,7,77-91.
https://doi.org/10.2307/2975974
[9]Zeng,Y.andLi,Z.(2011)OptimalTime-ConsistentInvestmentandReinsurancePoliciesfor
Mean-VarianceInsurers.InsuranceMathematicsEconomics,49,145-154.
https://doi.org/10.1016/j.insmatheco.2011.01.001
DOI:10.12677/pm.2021.11112081864nØêÆ
šxx
[10]Bi,J.andGuo,J.(2013)OptimalMean-VarianceProblemwithConstrainedControlsina
Jump-Diffusion Financial Market foran Insurer. JournalofOptimizationTheoryApplications,
157,252-275.https://doi.org/10.1007/s10957-012-0138-y
[11]Borch,K.(1969)TheOptimalReinsuranceTreaty.ASTINBulletin,5,293-297.
https://doi.org/10.1017/S051503610000814X
[12]Cai,J., Fang, Y.,Li, Z.,etal.(2013) Optimal Reciprocal Reinsurance Treaties under the Joint
SurvivalProbabilityandtheJointProfitableProbability.JournalofRiskandInsurance,80,
145-168.https://doi.org/10.1111/j.1539-6975.2012.01462.x
[13]Fang,Y.andQu,Z.(2014)OptimalCombination ofQuota-ShareandStop-LossReinsurance
TreatiesundertheJointSurvivalProbability.IMAJournalofManagementMathematics,25,
89-103.https://doi.org/10.1093/imaman/dps029
[14]Li, D.,Rong, X.andZhao, H.(2014)OptimalReinsurance-InvestmentProblemforMaximizing
theProductoftheInsurer’sandtheReinsurer’sUtilitiesunderaCEVModel.Journalof
ComputationalandAppliedMathematics,255,671-683.
https://doi.org/10.1016/j.cam.2013.06.033
[15]Li,D.,Rong,X.andZhao,H.(2015)Time-ConsistentReinsurance-InvestmentStrategyfor
anInsurerandaReinsurerwithMean-VarianceCriterionundertheCEVModel.Journalof
ComputationalAppliedMathematics, 283,142-162.https://doi.org/10.1016/j.cam.2015.01.038
[16]Li,D.,Rong,X.andZhao,H.(2016)OptimalReinsuranceandInvestmentProblemforan
InsurerandaReinsurerwithJump-DiffusionRiskProcessundertheHestonModel.Compu-
tationalandAppliedMathematics,35,533-557.https://doi.org/10.1007/s40314-014-0204-1
[17]Hu,H.,Yin,Z.andGao,X.(2018)OptimalReinsurance-InvestmentProblemforanInsurer
andaReinsurer withJump-Diffusion Process. DiscreteDynamicsinNatureandSociety, 2018,
ArticleID:9424908.https://doi.org/10.1155/2018/9424908
[18]Chen,L.andShen,Y.(2019)StochasticStackelbergDifferentialReinsuranceGamesunder
Time-InconsistentMean-VarianceFramework.Insurance:MathematicsandEconomics,88,
120-137.https://doi.org/10.1016/j.insmatheco.2019.06.006
[19]Bai,Y.,Zhou,Z.,Gao,R.,etal.(2020)NashEquilibriumInvestment-ReinsuranceStrate-
giesforanInsurerandaReinsurerwithIntertemporalRestrictionsandCommonInterests.
Mathematics,8,139.https://doi.org/10.3390/math8010139
[20]Liang,Z.andYuen,K.C.(2016)OptimalDynamicReinsurancewithDependentRisks:Vari-
ancePremiumPrinciple.ScandinavianActuarialJournal,2016,18-36.
https://doi.org/10.1080/03461238.2014.892899
[21]Liang, Z., Bi, J. and Yuen, K.C., etal.(2016) OptimalMean-VarianceReinsurance andInvest-
mentinaJump-DiffusionFinancialMarketwithCommonShockDependence.Mathematical
MethodsofOperationsResearch,84,155-181.https://doi.org/10.1007/s00186-016-0538-0
DOI:10.12677/pm.2021.11112081865nØêÆ
šxx
[22]Bjork, T.andMurgoci, A.(2010)AGeneralTheoryofMarkovianTimeInconsistentStochastic
ControlProblems.SSRNElectronicJournal.
DOI:10.12677/pm.2021.11112081866nØêÆ
šxx
N¹
y²½n£4.3¤µ
£1¤òq
∗
1
= q
1
,q
∗
2
= q
2
,π
∗
“\(4.5)Ú(4.2)§k
(
˙
A(t)+rA(t))x+
˙
B(t)+A(t)(αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)+
A(t)
2
2γa(t)
2
ξ= 0,(6.1)
(˙a(t)+ra(t))x+
˙
b(t)+a(t)(αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)+
A(t)
2
γa(t)
2
ξ= 0,(6.2)
Ù¥
ξ= a
2
1
η
2
1
b
2
2
+a
2
2
η
2
2
b
1
2
−2a
1
a
2
η
1
η
2
λµ
11
µ
21
+
(β−r)
2
σ
2
,(6.3)
‡Ž(4.11)Ú(4.12)¤á§K
˙
A(t)+rA(t) = 0,A(T) = 1,
˙
B(t)+A(t)(αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)+
A(t)
2
2γa(t)
2
ξ(t) = 0,
˙a(t)+ra(t) = 0,a(T) = 1,
˙
b(t)+a(t)(αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)+
A(t)
2
γa(t)
2
ξ(t) = 0.
)þ㇩•§§k
A(t) = e
r(T−t)
(6.4)
B(t) = (αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)
1
r
(e
r(T−t)
−1)+
1
2γ
ξ(T−t)(6.5)
a(t) = e
r(T−t)
(6.6)
b(t) = (αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)
1
r
(e
r(T−t)
−1)+
1
γ
ξ(T−t)(6.7)
u´§•`мê•
V(t,x) = U(t,x) = e
r(T−t)
x+(αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)
1
r
(e
r(T−t)
−1)+
1
2γ
ξ(T−t)(6.8)
d§
E
t,x
[R
Q
∗
T
] = g(t,x) = e
r(T−t)
x+(αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)
1
r
(e
r(T−t)
−1)+
1
γ
ξ(T−t)(6.9)
DOI:10.12677/pm.2021.11112081867nØêÆ
šxx
Var
t,x
[R
Q
∗
T
] =
2
γ
{E
t,x
[R
Q
∗
T
]−V(t,x)}=
1
γ
2
ξ(T−t)(6.10)
Ïd
1
γ
=
q
Var
t,x
[R
Q
∗
T
]/ξ(T−t)§“\£6.9¤µ
E
t,x
[R
Q
∗
T
] = e
r(T−t)
x+(αc−(1+η
1
)αa
1
−(1+η
2
)αa
2
)
1
r
(e
r(T−t)
−1)+
q
Var
t,x
[R
Q
∗
T
]ξ(T−t)(6.11)
þª¥'X•¡•y“Ý]|ÜnØ¥¯K£3.1¤3ЩG(t,x)k>."
£2¤òq
∗
1
= 0,q
∗
2
= 0,π
∗
“\(4.5)Ú(4.2)§k
˙
B(t)+A(t)(αc+(1−2α)(1+η
1
)a
1
+(1−2α)(1+η
2
)a
2
−(1−α)a
1
−(1−α)a
2
)
+(
˙
A(t)+rA(t))x−
γ
2
a(t)
2
(1−α)
2
(b
2
1
+b
2
2
+2λµ
11
µ
21
)+
A(t)
2
2γa(t)
2
(β−r)
2
σ
2
= 0,(6.12)
˙
b(t)+a(t)(αc+(1−2α)(1+η
1
)a
1
+(1−2α)(1+η
2
)a
2
−(1−α)a
1
−(1−α)a
2
)
+(˙a(t)+ra(t))x+
A(t)
γa(t)
(β−r)
2
σ
2
= 0,(6.13)
aq£1¤¥){§·‚Œ±•`мê
V(t,x) = (αc+(1−2α)(1+η
1
)a
1
+(1−2α)(1+η
2
)a
2
−(1−α)a
2
)
1
r
(e
r(T−t)
−1)
−(1−α)a
1
1
r
(e
r(T−t)
−1)+e
r(T−t)
x−
γ
4r
(e
2r(T−t)
−1)(1−α)
2
(b
2
1
+b
2
2
+2λµ
11
µ
21
)
+
1
2γ
(β−r)
2
σ
2
(T−t)(6.14)
£3¤òq
∗
1
= 0,q
∗
2
=bq
2
,π
∗
“\(4.5)Ú(4.2)§k
(
˙
A(t)+rA(t))x+
˙
B(t)+A(t)(αc−(1+η
2
)αa
2
+(1−2α)(1+η
1
)a
1
−
(1−α)λµ
11
µ
21
η
2
a
2
b
2
2
)
−A(t)(1−α)a
1
−
γ
2
a(t)
2
(1−α)
2
[b
2
1
−
λ
2
µ
2
11
µ
2
21
b
2
2
]+
A(t)
2
2γa(t)
2
[
(β−r)
2
σ
2
+
η
2
2
a
2
2
b
2
2
] = 0,
(˙a(t)+ra(t))x+
˙
b(t)+a(t)(αc−(1+η
2
)αa
2
+(1−2α)(1+η
1
)a
1
−
(1−α)λµ
11
µ
21
η
2
a
2
b
2
2
)
−a(t)(1−α)a
1
+
A(t)
γa(t)
[
(β−r)
2
σ
2
+
η
2
2
a
2
2
b
2
2
] = 0,(6.15)
DOI:10.12677/pm.2021.11112081868nØêÆ
šxx
aq£1¤¥){§·‚Œ±•`мê
V(t,x) = (αc−(1+η
2
)αa
2
+(1−2α)(1+η
1
)a
1
−
(1−α)λµ
11
µ
21
η
2
a
2
b
2
2
)
1
r
(e
r(T−t)
−1)
−(1−α)a
1
1
r
(e
r(T−t)
−1)+e
r(T−t)
x−
γ
4r
(e
2r(T−t)
−1))(1−α)
2
[b
2
1
−
λ
2
µ
2
11
µ
2
21
b
2
2
]
+
1
2γ
[
(β−r)
2
σ
2
+
η
2
2
a
2
2
b
2
2
](T−t)(6.16)
£4¤òq
∗
1
=bq
1
,q
∗
2
= 0,π
∗
“\(4.5)Ú(4.2)§k
(
˙
B(t)+A(t)(αc−(1+η
1
)αa
1
+(1−2α)(1+η
2
)a
2
−(1−α)a
2
−
(1−α)λµ
11
µ
21
η
1
a
1
b
2
1
)
+
˙
A(t)+rA(t))x−
γ
2
a(t)
2
(1−α)
2
[b
2
2
−
λ
2
µ
2
11
µ
2
21
b
2
1
]+
A(t)
2
2γa(t)
2
[
(β−r)
2
σ
2
+
η
2
1
a
2
1
b
2
1
] = 0,(6.17)
˙
b(t)+a(t)(αc−(1+η
1
)αa
1
+(1−2α)(1+η
2
)a
2
−(1−α)a
2
−
(1−α)λµ
11
µ
21
η
2
a
2
b
2
1
)
+(˙a(t)+ra(t))x+
A(t)
γa(t)
[
(β−r)
2
σ
2
+
η
2
1
a
2
1
b
2
1
] = 0,(6.18)
aq£1¤¥){§·‚Œ±•`мê
V(t,x) = (αc−(1+η
1
)αa
1
+(1−2α)(1+η
2
)a
2
−
(1−α)λµ
11
µ
21
η
1
a
1
b
2
1
)
1
r
(e
r(T−t)
−1)
−(1−α)a
2
1
r
(e
r(T−t)
−1)+e
r(T−t)
x−
γ
4r
(e
2r(T−t)
−1))(1−α)
2
[b
2
2
−
λ
2
µ
2
11
µ
2
21
b
2
1
]
+
1
2γ
[
(β−r)
2
σ
2
+
η
2
1
a
2
1
b
2
1
](T−t)(6.19)
£5¤òq
∗
1
=eq
1
,q
∗
2
= 1,π
∗
“\(4.5)Ú(4.2)§k
(
˙
A(t)+rA(t))x+
˙
B(t)+A(t)(αc−(1+η
1
)αa
1
−αa
2
−
αλµ
11
µ
21
η
1
a
1
b
2
1
)
−
γ
2
a(t)
2
α
2
[b
2
2
−
λ
2
µ
2
11
µ
2
21
b
2
1
]+
A(t)
2
2γa(t)
2
[
(β−r)
2
σ
2
+
η
2
1
a
2
1
b
2
1
] = 0,(6.20)
(˙a(t)+ra(t))x+
˙
b(t)+a(t)(αc−(1+η
1
)αa
1
−αa
2
−
αλµ
11
µ
21
η
1
a
1
b
2
1
)
+
A(t)
γa(t)
[
(β−r)
2
σ
2
+
η
2
1
a
2
1
b
2
1
] = 0,(6.21)
DOI:10.12677/pm.2021.11112081869nØêÆ
šxx
aq£1¤¥){§·‚Œ±•`мê
V(t,x) = e
r(T−t)
x+(αc−(1+η
1
)αa
1
−αa
2
−
αλµ
11
µ
21
η
1
a
1
b
2
1
)
1
r
(e
r(T−t)
−1)
−
γ
4r
(e
2r(T−t)
−1))α
2
[b
2
2
−
λ
2
µ
2
11
µ
2
21
b
2
1
]+
1
2γ
[
(β−r)
2
σ
2
+
η
2
1
a
2
1
b
2
1
](T−t)(6.22)
£6¤òq
∗
1
= 1,q
∗
2
=eq
2
,π
∗
“\(4.5)Ú(4.2)§k
(
˙
A(t)+rA(t))x+
˙
B(t)+A(t)(αc−(1+η
2
)αa
2
−αa
1
−
αλµ
11
µ
21
η
2
a
2
b
2
2
)
−
γ
2
a(t)
2
α
2
[b
2
1
−
λ
2
µ
2
11
µ
2
21
b
2
2
]+
A(t)
2
2γa(t)
2
[
(β−r)
2
σ
2
+
η
2
2
a
2
2
b
2
2
] = 0,(6.23)
(˙a(t)+ra(t))x+
˙
b(t)+a(t)(αc−(1+η
2
)αa
2
−αa
1
−
αλµ
11
µ
21
η
2
a
2
b
2
2
)
+
A(t)
γa(t)
[
(β−r)
2
σ
2
+
η
2
2
a
2
2
b
2
2
] = 0,(6.24)
aq£1¤¥){§·‚Œ±•`мê
V(t,x) = e
r(T−t)
x+(αc−(1+η
2
)αa
2
−αa
1
−
αλµ
11
µ
21
η
2
a
2
b
2
2
)
1
r
(e
r(T−t)
−1)
−
γ
4r
(e
2r(T−t)
−1))α
2
[b
2
1
−
λ
2
µ
2
11
µ
2
21
b
2
2
]+
1
2γ
[
(β−r)
2
σ
2
+
η
2
2
a
2
2
b
2
2
](T−t)(6.25)
£7¤òq
∗
1
= 1,q
∗
2
= 1,π
∗
“\(4.5)Ú(4.2)§k
(
˙
A(t)+rA(t))x+
˙
B(t)+A(t)(αc−(1+η
2
)αa
2
−αa
1
−
αλµ
11
µ
21
η
2
a
2
b
2
2
)
−
γ
2
a(t)
2
α
2
(b
2
1
+b
2
2
+2λµ
11
µ
21
)+
A(t)
2
2γa(t)
2
(β−r)
2
σ
2
= 0,(6.26)
(˙a(t)+ra(t))x+
˙
b(t)+a(t)(αc−(1+η
2
)αa
2
−αa
1
−
αλµ
11
µ
21
η
2
a
2
b
2
2
)
+
A(t)
γa(t)
(β−r)
2
σ
2
= 0,(6.27)
aq£1¤¥){§·‚Œ±•`мê
V(t,x) = e
r(T−t)
x+(αc−αa
1
−αa
2
)
1
r
(e
r(T−t)
−1)+
1
2γ
(β−r)
2
σ
2
(T−t)
−
γ
4r
(e
2r(T−t)
−1)α
2
(b
2
1
+b
2
2
+2λµ
11
µ
21
)(6.28)
T½ny²."
DOI:10.12677/pm.2021.11112081870nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.