设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(11),1933-1948
PublishedOnlineNovemb er2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.1111216
†»üã[ÈÚ•I4ŠïÄ
xxx===fff
“°¬xŒÆêƆÚOÆ§“°Üw
ÂvFϵ2021c1019F¶¹^Fϵ2021c1123F¶uÙFϵ2021c1130F
Á‡
-GL«˜‡n‡º:ã"ã[ÈÚ´•ãÈÚõ‘ªX êý銃Ú"ã[ÈÚ
OŽy²´]p-"©¥§• x†»•3Ú4üã[È Ú.§¿‰ÑˆT
.4ã"
'…c
ÈÚõ‘ª§[ÈÚ§Hosoya•I§üã
ExtremalUnicyclicGraphsofthe
SmallDiameterwithRespectto
PermanentalSum
YinggangBai
SchoolofMathematicsandStatistics,QinghaiNationalitiesUniversity,XiningQinghai
Received:Oct.19
th
,2021;accepted:Nov.23
rd
,2021;published:Nov.30
th
,2021
Abstract
Let Gbeagraphwith nvertex,thepermanentalsumof Gisthesumoftheabsolute
©ÙÚ^:x=f.†»üã[ÈÚ•I4ŠïÄ[J].nØêÆ,2021,11(11):1933-1948.
DOI:10.12677/pm.2021.1111216
x=f
valutesofthecofficients.Computingthepermanentalpolynomialsofgraphsis]p.
Inthispaper,wewilldeterminethegraphminimizingthepermanentalsumamong
allunicyclicgraphswithdiameter 3and4,andthecorrespondingextremalbicyclic
graphsarealsodetermined.
Keywords
PermanentalPolynomial,PermanentalSum,HosoyaIndex,
UnicyclicGraph
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.0
n•M= (m
ij
)ÈÚª½ÂXe:
per(M) =
X
σ
n
Y
i=1
m
iσ( i)
ùpÚªH{1,2,...,n}¥¤k˜†σ"-A(G)•ãGÝ,õ‘ªπ(G,x)=
per(xI−A(G))=
P
n
k=0
b
k
(G)x
n−k
•ãGÈÚõ‘ª, Ù¥I•ü Ý"b
k
(G) L«ãG
ÈÚõ‘ªXê"Merris[1]‰Ñe¡OŽÈÚõ‘ªXêSachsúª,
b
k
(G) = (−1)
k
X
H∈S
k
(G)
2
C(H)
(0 ≤k≤n)
ùpÚHãGk‡º:Sachsfã,S
k
(G)´ãG¥k‡º:Sachsfã"~X
b
1
(G)=0 , ϕS
1
(G) ´˜8; b
2
(G)=n, ϕS
2
(G)=|E(G)|"PS(G) ½Â•ãG[ÈÚ,
=Π(G,x) z˜‘Xêý銃Ú,K
PS(G) =
n
X
k=0
|b
k
(G)|=
n
X
k=0
X
H∈S
k
(G)
2
C(H)
·‚½µ˜ã[ÈÚ•1"
DOI:10.12677/pm.2021.11112161934nØêÆ
x=f
dKasum [2] <ïÄzÆ©z¥ã/ÈÚõ‘ª, ¦‚©OOŽ´»ÚÈÚõ‘
ª±9ùõ‘ª":"Cash [3]ïÄzÆã(•),`,)L,C
20
LVL)ÈÚõ‘
ª"¦•ÑïÄÈÚõ‘ª´k¿Â "´, ãÈÚõ‘ªXêOŽ´]p"†
y3•kê'uzÆãÈÚõ‘ªXê±9§d3A^ч[4]-[14]"@oXÛïÄz
ÆãÈÚõ‘ªXê=XÛ•xzÆã[ÈÚ"[ÈÚ† zÆy–ƒmkX;—éX"é
g,.ïÄL², C
50
¥•3271‡šÓLV L"8c•Ž, 3C
50
¥•kêLVLé
"2004cXie[15]<˜‡Ø-½LVLC
50
(C
5h
)"Tong<[16] OŽC
50
¥271
‡LVL[ÈÚ, ¦‚uyC
50
[ÈÚ33271‡LVL¥ˆ•Š"¦‚„•Ñ[ÈÚ†
©fã-½5—ƒƒ'"[ÈÚOŽ´]p[17]"¦+Xd,Cc5é[ÈÚïÄÚå
ïÄö2•'5"Chou <[18]ïÄC
70
5Ÿ"o<[19]•x8•ó[ÈÚ"Li
ÚWei[20] <•xAló[ÈÚ"Wu ÚLai[21] ïÄ˜„ã[ÈÚÄ5Ÿ,
¦‚•Ñ[ ÈÚ†ÜÅ@êêk'X,'uÈÚªµ±9k'(Øž[22]-[25]"d
, [ÈÚ†Hosoya•êk'X"ãGHosoya•ê^Z(G) L«, ½Â•ãGÕá>8
oê[26]"Hosoya•ê†zÆã£:—ƒƒ'"WuÚLai[21]ïÄL²PS(G) ≥Z(G),3ã
G´äœ¹eÒ¤á"ùL²[ÈÚéŒU)ºzÆ©f,A"
©z[27] •xn†»Ø‡L4 üãHarary•ê•Š"3dÄ:þ, ©•x
n†»•3 üã[27] Ú†»•4[27]üã[ÈÚ.,9ˆU.4ã"
2.ÄVg
-G=(V(G),E(G)) L«˜‡ã, ãGº:8P•V(G) , >8P•E(G) , º:8Œ¡
•ãG, Ù¥•0 ã¡•˜ã"N
G
(v) L«†º:vƒº:¤8Ü, n‡º:
(,´,©OL«•S
n
,P
n
,C
n
"eW⊆V(G),·‚^G−WL«lãG¥íK8ÜW¥
ܺ:±9†ù:ƒ'é>Gfã"aq, eE
0
⊆E(G) ,^G−E
0
L«lãG¥í
K8ÜE
0
¥>Gfã"Sachsfã•dØ½á>|¤ã"v∈V(G) , G¥†
:v'é>^ê¡•vÝ, P•d
G
(v) ½öd(v)"·‚rÝ•1 :¡•]!:, Ý•0
:¡•á:"D´Ã•ã, x,y∈V(D)"lXyål´•D¥•á(x,y) ´•, P•
d
D
(x,y)"eãD ¥Ø•3(x,y) ´,K½d
D
(x,y)= +∞"˜„/, d
D
(x,y)6= +∞"ãD†
»P•d(D),½Â•: d(D) = max{d
D
(x,y) : ∀x,y∈V∈(D)}"
3.Ún
½Â3.1[28]u´ãG
0
˜‡º:,ãG
1
(„ã1)L«rãG
0
˜‡º:uÚäT
n
˜
‡º:v^˜^>ƒëã, ãG
2
(„ã1) L«rº:uÚ(S
n
¥%v^˜^>ƒë
ã,,rlãG
1
C†ãG
2
¡•C†˜"
Ún3.2[28] ãG
1
ÚãG
2
X½Â2.1¤½Â,KPS(G
1
)≥PS(G
2
),Ò¤á…=
T´˜‡(¿…u´T¥%"
½Â3.3[28]ãG
2
(„ã1)X½Â2.1¤½Â, ^G
3
(„ã1)L«r(S
n+1
¥%v Ú
º:uÅ3˜åã, rãG
2
C†ãG
3
¡•C†"
DOI:10.12677/pm.2021.11112161935nØêÆ
x=f
Figure1.G
1
,G
2
,G
3
ã1.G
1
,G
2
,G
3
Ún3.4[28]ãG
2
X½Â2.1 ¤½Â,ãG
3
X½Â2.3 ¤½Â,KPS(G
2
) ≥PS(G
3
),Ò
¤á…=T= K
1
½öu´G
0
á:"
½Â3.5[28]G
0
´˜‡üã…C
r
= u
1
u
2
u
3
···u
r
´•˜,u
i
Úu
j
´ü‡Ý•
2 º:,1≤i≤j≤r"^G
1
(„ã2)L«©Ors≥1 Út≥1 ‡]!:ëãü‡º
:u
i
Úu
j
ã;^G
2
(„ã2)L«rs+t‡]!:ëG
0
º:u
j
ã;G
3
(„ã2)L«r
s+ t‡]!:ëG
0
º:u
i
ã, rlãG
1
C†ãG
2
, ½lãG
1
C†ãG
3
¡•C
†n"
Figure2.G
2
,G
1
,G
3
ã2.G
2
,G
1
,G
3
Ún3.6[28]ãG
1
,G
2
,G
3
X½Â2.5¤½Â,KPS(G
1
)>PS(G
2
)½öPS(G
1
)>
PS(G
3
)"
Ún3.7[28]n≥5, 4 ≤r≤n−1 ,G(r,n−r) („ã3)L«C
r
,˜‡º:†S
n−r+1
¥
%ƒÊnüã, PS(G(r,n−r)) >PS(G(r−1,n−r+1))"
Figure3.G(r,n−r),G(r−1,n−r+1)
ã3.G(r,n−r),G(r−1,n−r+1)
Ún3.8[28]ã[ÈÚ÷vXe5Ÿ:
DOI:10.12677/pm.2021.11112161936nØêÆ
x=f
(1)ãG ÚãH •ëÏã, V(G) †V(H) ©OL«ãGÚãHº:8, V(G)
T
V(H)= φ,
KPS(G
S
H) = PS(G)PS(H)"
(2)e= uv∈E(G) ,K
PS(G) = PS(G−e)+PS(G−u−v)+2
X
C∈C
G
(e)
PS(G−V(C))
(3)v∈V(G) ,K
PS(G) = PS(G−v)+
X
u∈N
G
(v)
PS(G−u−v)+2
X
C∈C
G
(v)
PS(G−V(C))
N
G
(v) L«G¥v:8Ü, C
G
(e)L«G¥•¹>e8Ü, C
G
(v) L«G¥•¹º
:v8Ü"
4.†»•3üã(„ã4)[ÈÚ4ŠïÄ
Figure4.SinglecirclediagramG
1
3
(a,b),G
2
3
(a,b,c),G
3
3
(a,b),G
4
3
(a,b)withdiameter3
ã4.†»•3üãG
1
3
(a,b),G
2
3
(a,b,c),G
3
3
(a,b),G
4
3
(a,b)
ãG
1
3
(a,b),G
2
3
(a,b,c),G
3
3
(a,b),G
4
3
(a,b) ¥a,b,cI‡÷v±e^‡:
G
1
3
(a,b) ¥,a, bþŒuu0,a+b+5 = n"
G
2
3
(a,b,c)¥a,b,c–ü‡êŒuu1 ,a+b+c+3 = n""
G
3
3
(a,b) ¥a, b–˜‡êŒuu1,a+b+4 = n"
G
4
3
(a,b) ¥a, b–˜‡êŒuu1,a+b+5 = n"
±þa,b, cþ•g,ê, n≥7"
½n4.1-G
3
(n) = {G
1
3
(a,b),G
2
3
(a,b,c),G
3
3
(a,b),G
4
3
(a,b)}L«†»•3nüã8
Ü,G∈G
3
(n),KPS(G) ≥3n−4, …=G
∼
=
G
1
3
(a+b+c−1,0,1)(„ã5)žÒ¤á"
y²
(I)éG
2
3
(a,b,c) A^C†n, C•G
1
3
(a+b,0,c) , =r†º:v
3
ƒë¤k]!:íØÚ
DOI:10.12677/pm.2021.11112161937nØêÆ
x=f
º:v
2
ƒë,dÚn3.6 
PS(G
1
3
(a,b,c) ≥PS(G
1
3
(a+b,0,c))(1)
Figure5.G
2
3
(a+b+c−1,0,1),G
4
4
(1,m+t−1))
ã5.G
2
3
(a+b+c−1,0,1),G
4
4
(1,m+t−1))
-a+b=s,c=t,s+t+ 3=n,PS(G
1
3
(a+b,0,c))=PS(G
1
3
(s,0,t)) (s≥1,t≥1), dÚn
3.8
PS(G
1
3
(s,0,t)) = 2s+2t+st+6,PS(G
1
3
(s+1,0,t−1)) = 2(s+1)+2(t−1)+(s+1)(t−1)+6"
KPS(G
1
3
(s,0,t))−PS(G
1
3
(s+1,0,t−1)) = PS(G
1
3
(a+b,0,c))−PS(G
1
3
(a+b+1,0,c−1)) =
s−t+1,©ü«œ¹"
œ¹˜s−t+1 ≥0ž, PS(G
1
3
(s,0,t)) ≥PS(G
1
3
(s+1,0,t−1))"
PS(G
1
3
(s+t−1,0,1)) ≤PS(G
1
3
(s+t−2,0,2)) ≤···≤PS(G
1
3
(s,0,t))"
¤±PS(G
1
3
(a+b,0,c)) = PS(C
3
(s,0,t)) ≥PS(C
3
(s+t−1,0,1)) = 3n−4"
œ¹s−t+1 <0ž, PS(G
1
3
(s,0,t)) <PS(G
1
3
(s+1,0,t−1))"
PS(G
1
3
(1,0,s+t−1)) <PS(G
1
3
(2,0,s+t−2)) <···<PS(G
1
3
(s,0,t))"
PS(G
1
3
(a+b,0,c)) = PS(G
1
3
(s,0,t)) ≥PS(G
1
3
(1,0,s+t−1)) = 3n−4"
:
PS(G
1
3
(a+b,0,c)) ≥3n−4(2)
d(1)(2) G
∼
=
G
1
3
(a,b,c),PS(G) ≥3n−4,G
∼
=
G
1
3
(a+b+c−1,0,1)Ò¤á"
(II)éG
3
3
(a,b) A^C†nC¤G
3
3
(a+b,0), =r†º:v
1
ƒë]!:ÜíØÚº:v
4
ë,dÚn3.6 PS(G
3
3
(a,b)) ≥PS(G
3
3
(a+b,0))"
dÚn3.8PS(G
2
3
(a+b,0)) = 3n−3"
¤±
PS(G
2
3
(a,b)) ≥3n−3(3)
(III)éG
4
3
(a,b) A^C†n, C¤G
4
3
(a+ b,0) =r†º:v
3
ƒë]!:íØÚº:v
4
ë
,dÚn3.6 PS(G
4
3
(a,b)) ≥G
4
3
(a+b,0)
DOI:10.12677/pm.2021.11112161938nØêÆ
x=f
dÚn3.8PS(G
4
3
(a+b,0)) = 5n−12"
¤±
PS(G
4
3
(a,b)) ≥5n−12(4)
(IV)dÚn3.8PS(G
1
3
(a,b)) = 2(a+3)(b+2)+2"
PS(G
1
3
(a+1,b−1)) = 2(a+4)(b+1)+2,PS(G
1
3
(a,b))−PS(G
1
3
(a+1,b−1)) = a−b+2"
©ü«œ¹"
œ¹˜a−b+2 ≥0ž, PS(G
1
3
(a,b)) ≥G
1
3
(a+1,b−1)), :
PS(G
1
3
(a+b,0)) ≤PS(G
1
3
(a+b−1,1) ≤···≤PS(G
1
3
(a,b))"
¤±PS(G
1
3
(a,b)) ≥PS(G
1
3
(a+b,0)) = 4n−6"
œ¹a−b+2 <0ž, PS(G
1
3
(a,b)) <G
1
3
(a+1,b−1)),, :
PS(G
1
3
(0,a+b)) ≤PS(G
1
3
(1,a+b−1)) ≤···≤PS(G
1
3
(a,b))"
¤±PS(G
1
3
(a,b)) ≥PS(G
1
3
(0,a+b)) = 6n−18"
du6n−18 >4n−6, ¤±
G
1
3
(a,b)) ≥4n−6(5)
G
∼
=
G
2
3
(a+b+c−1,0,1)ž,d(.) PS(G) = 3n−4"
G6= G
2
3
(a+b+c−1,0,1)ž,©o«œ¹"
œ¹˜G
∼
=
G
2
3
(a,b,c)ž,d(2)PS(G) >3n−4"
œ¹G
∼
=
G
3
3
(a,b) ž,d(3) PS(G) ≥3n−3 >3n−4"
œ¹nG
∼
=
G
4
3
(a,b) ž,d(4) PS(G) ≥5n−12 >3n−4"
œ¹oG
∼
=
G
1
3
(a,b) ž,d(5) PS(G) ≥4n−6 >3n−4"
¤±G∈G
3
(n)(n≥7),KPS(G) ≥3n−4,…=G
∼
=
G
2
3
(a+b+c−1,0,1) žÒ
¤á"
5.†»•4üã(„ã6)[ÈÚ4ŠïÄ
ãG
1
4
,G
2
4
,G
3
4
,G
4
4
G
5
4
,G
6
4
,G
7
4
,G
8
4
,G
9
4
¥ëêI‡÷v±e^‡:
G
1
4
¥,a
i
þŒuu1,i∈{1,2,...,k}"
G
2
4
¥©ü«œ¹:(1)p
1
,p
2
–˜‡êŒuu1, a
i
þŒu1"i∈{1,2,...,k}"
(2)p
1
= p
2
= 0,a
i
–kü‡êŒuu1, i∈{1,2,...,k}"
(3)G
3
4
¥p
1
= p
2
= 0,a
i
–k˜‡êŒuu1,i∈{1,2,...,k}"
DOI:10.12677/pm.2021.11112161939nØêÆ
x=f
Figure6.Diagramofasinglecirclewithadiameterof4
ã6.†»•4üã
(4)G
4
4
¥÷vp
1
p
3
6= 0½öp
2
p
4
6= 0"
(5)G
5
4
¥,p
1
= p
2
= 0,a
i
–k˜‡êŒuu1,i∈{1,2,...,k}"
(6)G
6
4
¥,p
1
p
3
6= 0,p
1
p
4
6= 0,p
2
p
4
6= 0,p
2
p
5
6= 0Úp
3
p
5
6= 0±þœ¹–˜«œ¹¤á"
(7)G
7
4
,G
8
4
,G
9
4
–k˜‡p
i
Œuu1, i∈{1,2,3}"
±þs, r, a
i
,p
i
,i∈{1,2,...,k}þ•g,ê, n≥8"
Ún5.1PS(G
1
4
(s,r,a
1
,a
2
,...,a
k
)) ≥6n−14"
y²
(I)k≥2 ž"
éãG
1
4
(s,r,a
1
,a
2
,...,a
k
), A^C†òÚº:u
2
,u
3
,...,u
k
ƒë]!:íØÚº:v
4
ë
"-m= r+(1+a
2
)+(1+a
3
)+...+(1+a
k
)(m≥2 ,m+s≥2),t= a
1
(t≥1), d½n3.4

PS(G
1
4
(s,r,a
1
,a
2
,...,a
k
)) ≥PS(G
1
4
(s,m,t))(6)
dÚn3.8
DOI:10.12677/pm.2021.11112161940nØêÆ
x=f
PS(G
1
4
(s,m,t)) = (6m+8t+4s)+(6tm+2ts+2ms)+2tms+14
PS(G
1
4
(s,m,t))−PS(G
1
4
(s+1,m−1,t)) = 2(t+1)(3+s−m)−2, ©ü«œ¹"
œ¹˜3+s>m,PS(G
1
4
(s,m,t)) >PS(G
1
4
(s+1,m−1,t)), 
PS(G
1
4
(s+m,0,t)) <PS(G
1
4
(s+m−1,1,t)) <···<PS(G
1
4
(s,m,t))
¤±PS(G
1
4
(s,m,t)) ≥PS(G
1
4
(s+m,0,t))"
œ¹3+s≤m,PS(G
1
4
(s,m,t)) <PS(G
1
4
(s+1,m−1,t)), 
PS(G
1
4
(0,s+m,t)) <PS(G
1
4
(1,s+m−1,t)) <···<PS(G
1
4
(s,m,t))
¤±PS(G
1
4
(s,m,t)) ≥PS(G
1
4
(0,s+m,t)))"
PS(G
1
4
(0,s+m,t)))−PS(G
1
4
(s+m,0,t)) = 2(m+s)(2t+1) >0"
¤±
PS(G
1
4
(s,m,t)) ≥PS(G
1
4
(s+m,0,t))(7)
(II)k= 1ž"
-m= r,m≥0"
d(7)ªPS(G
1
4
(s,m,t)) ≥PS(G
1
4
(s+m,0,t))"
PS(G
1
4
(s+m,0,t))−PS(G
1
4
(s+m+1,0,t−1)) = 2(m+s+3−t), ©ü«œ¹"
œ¹˜t≥m+s+3,PS(G
1
4
(s+m,0,t)) ≤PS(G
1
4
(s+m+1,0,t−1)), 
PS(G
1
4
(2,0,s+m−2)) ≤PS(G
1
4
(3,0,s+m−3)) ≤···≤PS(G
1
4
(s+m,0,t))"
¤±PS(G
1
4
(s+m,0,t)) ≥PS(G
1
4
(2,0,s+m−2)) = 12n−62"
œ¹t<m+s+3,PS(G
1
4
(s+m,0,t)) >PS(G
1
4
(s+m+1,0,t−1)), 
PS(G
1
4
(s+m−1,0,1)) ≤PS(G
1
4
(s+m−2,0,2)) ≤···≤PS(G
1
4
(s+m,0,t))
¤±PS(G
1
4
(s+m,0,t)) ≥PS(G
1
4
(s+m−1,0,1)) = 6n−14"
du12n−62 >6n−14, 
PS(G
1
4
(s+m,0,t) ≥6n−14(8)
(Ü(6)(7) Ú(8) PS(G
1
4
(s,r,a
1
,a
2
,...,a
k
)) ≥6n−14"
Ún5.2PS(G
2
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
)) ≥5n−11"
y²(I)p
1
,p
2
–˜‡Ø•0"
(i)k≥2 ž, éG
2
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
), A^C†òÚòÚº:v
1
ë]!:íØ
Úº:v
2
ë"2|^C†nòÚº:u
2
,u
3
,...,u
k
ƒë]!:íØÚº:v
3
ë,éA
DOI:10.12677/pm.2021.11112161941nØêÆ
x=f
ãP•G
2
4
(s,t,m)"-p
1
+p
2
= s,t= r+(a
2
+1)+(a
3
+1)+...(a
k
+1)(t≥2),a
1
= m(m≥1) ,
dÚn3.4ÚÚn3.7 
PS(G
2
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
)) ≥PS(G
2
4
(s,t,m))(9)
dÚn3.8PS(G
2
4
(s,t,m)) = (m+1)(st+2s+2t+4)+s+2"
PS(G
2
4
(s,t,m))−PS(G
2
4
(s,t+1,m−1)) = (s+2)(t+2−m),©ü«œ¹"
œ¹˜m≤t+2,PS(G
2
4
(s,t,m)) ≥PS(G
2
4
(s,t+1,m−1)), 
PS(G
2
4
(s,t+m−1,1)) ≤PS(G
2
4
(s,t+m−2,2)) ≤···≤PS(G
2
4
(s,t,m))"
¤±PS(G
2
4
(s,t,m)) ≥PS(G
2
4
(s,t+m−1,1))"
œ¹m>t+2,PS(G
2
4
(s,t,m)) <PS(G
2
4
(s,t+1,m−1)), 
PS(G
2
4
(s,0,t+m)) <PS(G
2
4
(s,1,t+m−1)) ≤···≤PS(G
2
4
(s,t,m))"
¤±
PS(G
2
4
(s,t,m)) ≥PS(G
2
4
(s,t+m−1,1))(10)
(ii)k= 1,t≥0 ž"
dÚn3.8PS(G
2
4
(s,t,m)) = (m+1)(st+2s+2t+4)+s+2"d(10) 
PS(G
2
4
(s,t,m)) ≥PS(G
2
4
(s,t+m−1,1))"
PS(G
2
4
(s,t+m−1,1))−PS(G
2
4
(s−1,t+m,1)) = 2(m+t−s+1)−1, ©ü«œ¹"
œ¹˜s<m+t+1,PS(G
2
4
(s,t+m−1,1)) >PS(G
2
4
(s−1,t+m,1)), 
PS(G
2
4
(1,s+t+m−2,1)) <PS(G
2
4
(2,s+t+m−3,1)) <···<PS(G
2
4
(s,t+m−1,1))
¤±PS(G
2
4
(s,t+m−1,1)) ≥PS(G
2
4
(1,s+t+m−2,1)) = 6n−21"
œ¹s≥m+t+1,PS(G
2
4
(s,t+m−1,1)) <PS(G
2
4
(s−1,t+m,1)), 
PS(G
2
4
(s+t+m−1,0,1)) <PS(G
2
4
(s+t+m−2,1,1))) <···<PS(G
2
4
(s,t+m−1,1))
¤±PS(G
2
4
(s,t+m−1,1)) ≥PS(G
2
4
(s+t+m−1,0,1))) = 5n−11"
du6n−21 >5n−11, (Ü(8) Ú(9)(10)
PS(G
2
4
(s,t+m−1,1)) ≥5n−11(11)
(II)p
1
= p
2
= 0ž,
(i)k≥3 A^C†ò†º:u
3
,u
4
,...,u
k
ë]!:íØÚº:v
3
ƒë, ãP•
G
2∗
4
(m,s,t),-r+(a
3
+1)+(a
4
+1)+...+(a
k
+1) = m,a
1
= s,a
2
= t(s≥1,t≥1,m≥2), d
DOI:10.12677/pm.2021.11112161942nØêÆ
x=f
Ún3.4
PS(G
2
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
)) ≥PS(G
2∗
4
(m,s,t))(12)
dÚn3.8PS(G
2∗
4
(m,s,t) = 2(m+3)(t+1)(s+1)+2(s+1)+2(t+1)"
PS(G
2∗
4
(m,s,t)−PS(G
2∗
4
(m+1,s−1,t) = 2[(t+1)(m+3−s)+1], ©ü«œ¹"
œ¹˜s≤m+3,PS(G
2∗
4
(m,s,t) >PS(G
2∗
4
(m+1,s−1,t), 
PS(G
2∗
4
(m+s−1,1,t) <PS(G
2∗
4
(m+s−2,2,t) <···<PS(G
2∗
4
(m,s,t)
¤±PS(G
2∗
4
(m,s,t) ≥PS(G
2∗
4
(m+s−1,1,t)"
œ¹s>m+3,PS(G
2∗
4
(m,s,t) <PS(G
2∗
4
(m+1,s−1,t), 
PS(G
2∗
4
(2,m+s−2,t) <PS(G
2∗
4
(3,m+s−3,t) <···<PS(G
2∗
4
(m,s,t)
¤±PS(G
2∗
4
(m,s,t) ≥PS(G
2∗
4
(2,m+s−2,t)"
PS(G
2∗
4
(2,m+s−2,t)−PS(G
2∗
4
(m+s−1,1,t) = 2(3t+4)(m+s−3) ≥0"
¤±PS(G
2∗
4
(m,s,t) ≥PS(G
2∗
4
(m+s−1,1,t)"
(ii)k= 2 ž,r= m≥0,a
1
= s,a
2
= t
dÚn3.8PS(G
2∗
4
(m,s,t) = 2(m+3)(t+1)(s+1)+2(s+1)+2(t+1)"
PS(G
2∗
4
(m,s,t)−PS(G
2∗
4
(m+1,s−1,t) = 2[(t+1)(m+3−s)+1], ©ü«œ¹"
œ¹˜s≤m+3,PS(G
2∗
4
(m,s,t) >PS(G
2∗
4
(m+1,s−1,t), 
PS(G
2∗
4
(m+s−1,1,t) <PS(G
2∗
4
(m+s−2,2,t) <···<PS(G
2∗
4
(m,s,t)
¤±PS(G
2∗
4
(m,s,t) ≥PS(G
2∗
4
(m+s−1,1,t)"
œ¹s>m+3,PS(G
2∗
4
(m,s,t) <PS(G
2∗
4
(m+1,s−1,t), 
PS(G
2∗
4
(0,m+s,t) <PS(G
2∗
4
(1,m+s−1,t) <···<PS(G
2∗
4
(m,s,t)
¤±PS(G
2∗
4
(m,s,t) ≥PS(G
2∗
4
(0,m+s,t)"
PS(G
2∗
4
(0,m+s,t)−PS(G
2∗
4
(m+s−1,1,t) = 2(t+2)(m+s−1) ≥0"
¤±PS(G
2∗
4
(m,s,t) ≥PS(G
2∗
4
(m+s−1,1,t)"
¤±nÜ(i)Ú(ii)
PS(G
2∗
4
(m,s,t) ≥PS(G
2∗
4
(m+s−1,1,t)(13)
PS(G
2∗
4
(m+s−1,1,t)−PS(G
2∗
4
(m+s,1,t−1) = 4(m+s−t)+10,©ü«œ¹"
œ¹˜m+s≥t−2,PS(G
2∗
4
(m+s−1,1,t) >PS(G
2∗
4
(m+s,1,t−1), 
PS(G
2∗
4
(m+s−2,1,1) <PS(G
2∗
4
(m+s−3,1,2) <···<PS(G
2∗
4
(m+s−1,1,t)
DOI:10.12677/pm.2021.11112161943nØêÆ
x=f
¤±
PS(G
2∗
4
(m+s−1,1,t) ≥PS(G
2∗
4
(m+s−2,1,1) = 8n−24(14)
œ¹m+s<t−2,PS(G
2∗
4
(m+s−1,1,t) <PS(G
2∗
4
(m+s,1,t−1), 
PS(G
2∗
4
(0,1,m+s−1) <PS(G
2∗
4
(1,1,m+s−2) <···<PS(G
2∗
4
(m+s−1,1,t)
¤±PS(G
2∗
4
(m+s−1,1,t) ≥PS(G
2∗
4
(0,1,m+s−1) = 14n−66"
Ï•14n−66 >8n−24, Šâ(11) (12)(13)(14)
PS(G
2∗
4
(m+s−1,1,t) ≥8n−24
du8n−24 >5n−11, (Ü(I) (II) (ØÑPS(G
2
4
) ≥5n−11"
Ún5.3PS(G
3
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
)) ≥6n−15"
y ²(I)p
1
,p
2
–˜‡Ø•0 , ÏLCzn, ò†v
2
ƒ ë]!:íØÚº:v
3
ƒ ë"
2ÏLCzòu
2
,...,u
k
ƒë]!:íØÚº:v
4
ë"-p
1
+p
2
=t,r+(a
2
+1)+(a
3
+
1)+...+(a
k−1
+1) = m,a
1
= s£t≥1,s≥1,m≥1,m+t+s+5 = n)"
dÚn3.4Ú3.6 PS(G
3
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
)) ≥PS(G
1
4
(s,m,t))"
dÚn3.8
PS(G
3
4
(s,m,t)) = (3m+3t+2mt+9)(s+1)+2t+3"
éG
3
4
(s,m,t)A^C†n,ò†º:v
3
ë]!:íKÚº:v
4
ëéAãP•
G
3
4
(s,m+t,0)"
dÚn3.6PS(G
3
4
(s,m,t)) ≥G
3
4
(s,m+t,0)"
éG
3
4
(s,m,t)A^C†n,ò†º:v
4
ë]!:íKÚº:v
3
ëéAãP•
G
3
4
(s,0,m+t)"
dÚn3.6PS(G
3
4
(s,m,t)) ≥G
3
4
(s,0,m+t)"
dÚn3.8G
3
4
(s,0,m+t)−G
3
4
(s,m+t,0) = 2(m+t) >0"
¤±PS(G
3
4
(s,m,t)) ≥G
3
4
(s,m+t,0)"
(II)p
1
= p
2
= 0ž,ÏLCzòu
2
,...,u
k
ƒë]!:íØÚº:v
4
ë"-p
1
+p
2
=
t= 0,r+(a
2
+1)+(a
3
+1)+...+(a
k−1
+1) = m,a
1
= s£s≥1,m≥1,m+t+s+5 = n)"
dÚn3.6PS(G
3
4
(s,m,t)) ≥G
3
4
(s,m,0) = G
3
4
(s,m+t,0)"
dÚn3.8
PS(G
3
4
(s,m+t,0)) = (9+3m+3t)(s+1)+3,PS(G
3
4
(s,m+t,0))−PS(G
3
4
(s−1,m+t+1,0)) =
3(m+t+3−s), ©ü«œ¹"
œ¹˜s≤m+t+3,PS(G
3
4
(s,m+t,0)) ≥PS(G
3
4
(s−1,m+t+1,0)),
PS(G
3
4
(1,m+t+s−1,0)) ≤PS(G
3
4
(2,m+t+s−2,0)) ≤···≤PS(G
3
4
(s,m+t,0))
DOI:10.12677/pm.2021.11112161944nØêÆ
x=f
¤±PS(G
3
4
(s,m+t,0)) ≥PS(G
3
4
(1,m+t+s−1,0)) = 6n−15"
œ¹s>m+t+3,PS(G
3
4
(s,m+t,0)) <PS(G
3
4
(s−1,m+t+1,0)),
PS(G
3
4
(s+m+t,0,0)) <PS(G
3
4
(s+m+t−1,1,0)) ≤···≤PS(G
3
4
(s,m+t,0))
¤±PS(G
3
4
(s,m+t,0)) ≥PS(G
3
4
(s+m+t,0,0)) = 9n−33"
du9n−33 >6n−15, ¤±PS(G
3
4
(s,m+t,0)) ≥PS(G
3
4
(1,m+t+s−1,0)) = 6n−15"
Ún5.4G
∼
=
G
4
4
(p
1
,p
2
,p
3
,p
4
),PS(G) ≥4n−8, Ò¤á…=G
∼
=
G
4
4
(1,m+t−1)"
y²éãG
4
4
(p
1
,p
2
,p
3
,p
4
)$^C†n,ò†v
1
ë]!:íØÚº:v
2
ë,-p
1
+
p
2
=m≥1,ò†v
3
ë]!:íØÚº:v
4
ë,-p
3
+p
4
=t≥1,éAãP•
G
4
4
(m,t),m+t+4 = n"
dÚn3.6PS(G
4
4
(p
1
,p
2
,p
3
,p
4
)) ≥PS(G
2
4
(m,t))"
dÚn3.8
PS(G
2
4
(m,t)) = 3m+3t+mt+9,PS(G
2
4
(m,t))−PS(U
2
4
(m+1,t−1)) = m−t+1, ©ü«
œ¹
œ¹˜t≤m+1ž, PS(G
4
4
(m,t)) ≥PS(G
4
4
(m+1,t−1)) ,
PS(G
4
4
(m+t−1,1)) <PS(G
4
4
(m+t−2,2)) <···<PS(G
4
4
(m,t))
¤±PS(G
4
4
(m,t)) ≥PS(G
4
4
(m+t−1,1)) = 4n−8"
œ¹t>m+1 ž,PS(G
4
4
(m,t)) <PS(G
4
4
(m+1,t−1)) ,
PS(G
4
4
(1,m+t−1)) <PS(G
4
4
(2,m+t−2)) <···<PS(G
4
4
(m,t))
¤±PS(G
4
4
(m,t)) ≥PS(G
4
4
(1,m+t−1)) = 4n−8"
Šâ(i)Ú(ii)PS(G
4
4
(m,t)) ≥4n−8"
PS(G
4
4
(p
1
,p
2
,p
3
,p
4
)) ≥4n−8"
Ún5.5PS(G
5
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
)) >5n−12"
y²éãG
5
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
)A^C†ÚC†nãG(5,n−5)"
dÚn3.4Ú3.6 PS(G
5
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
)) >PS(G(5,n−5))"
Ún5.6PS(G
6
4
(p
1
,p
2
,p
3
,p
4
)) >5n−12"
y²éãG
5
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
)A^C†nãG(5,n−5)"
dÚn3.6PS(G
5
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
)) >PS(G(5,n−5))"
Ún5.7PS(G
7
4
(p
1
,p
2
,p
3
)) >5n−12"
y²éãG
7
4
(p
1
,p
2
,p
3
)A^C†nãG(6,n−6)"
dÚn3.6PS(G
7
4
(p
1
,p
2
,p
3
)) >PS(G(6,n−6))"
dÚn3.7PS(G(6,n−6)) >PS(G(5,n−5)) = 5n−12"
DOI:10.12677/pm.2021.11112161945nØêÆ
x=f
¤±PS(G
7
4
(p
1
,p
2
,p
3
)) >5n−12"
Ún5.8PS(G
8
4
(p
1
,p
2
,p
3
)) >5n−12"
y²éãG
8
4
(p
1
,p
2
,p
3
)A^C†nãG(6,n−6)"
dÚn3.6PS(G
8
4
(p
1
,p
2
,p
3
)) >PS(G(6,n−6))"
dÚn3.7PS(G(6,n−6)) >PS(G(5,n−5)) = 5n−12"
¤±PS(G
8
4
(p
1
,p
2
,p
3
)) >5n−12"
Ún5.9PS(G
9
4
(p
1
,p
2
,p
3
)) >5n−12"
y²éãG
9
4
(p
1
,p
2
,p
3
)A^C†nãG(7,n−7)"
dÚn3.6PS(G
8
4
(p
1
,p
2
,p
3
)) >PS(G(7,n−7))"
dÚn3.7PS(G(7,n−7)) >PS(G(6,n−6)) >PS(G(5,n−5)) = 5n−12"
¤±PS(G
9
4
(p
1
,p
2
,p
3
)) >5n−12"
½n5.10 -G
4
(n)L«n‡º:†»•4 ¤küã8Ü,G∈G
4
(n),KPS(G)≥
4n−8, Ò¤á…=G
∼
=
G
4
4
(1,m+t−1))(„ã5)"
y²G∈G
4
(n),G
∼
=
G
4
4
(1,m+t−1)ž,dÚn4.1PS(G)=4n−8"G∈
G
4
(n)−{G
4
4
(1,m+t−1)}, éãG ©Ê«œ¹"
œ¹˜G
∼
=
G
1
4
(s,r,a
1
,a
2
,...,a
k
),dÚn5.1PS(G
1
4
(s,r,a
1
,a
2
,...,a
k
))≥6n−14>
4n−8"
œ¹G
∼
=
G
2
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
),dÚn5.2PS(G
2
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
))≥
5n−11 >4n−8"
œ¹nG
∼
=
G
3
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
),dÚn5.3PS(G
3
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
))≥
6n−15 >4n−8"
œ¹oG
∼
=
G
4
4
(p
1
,p
2
,p
3
,p
4
),dÚn5.4 PS(G) >4n−8"
œ¹ÊG
∼
=
G
5
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
),dÚn5.5PS(G
5
4
(p
1
,p
2
,r,a
1
,a
2
,···,a
k
))>
5n−12 >4n−8"
œ¹8G
∼
=
G
6
4
(p
1
,p
2
,p
3
,p
4
),dÚn5.6 PS(G
6
4
(p
1
,p
2
,p
3
,p
4
)) >5n−12 >4n−8"
œ¹ÔG
∼
=
G
7
4
(p
1
,p
2
,p
3
),dÚn5.7 PS(G
7
4
(p
1
,p
2
,p
3
)) >5n−12 >4n−8"
œ¹lG
∼
=
G
8
4
(p
1
,p
2
,p
3
),dÚn5.8 PS(G
8
4
(p
1
,p
2
,p
3
)) >5n−12 >4n−8"
œ¹ÊG
∼
=
G
9
4
(p
1
,p
2
,p
3
),dÚn5.9 PS(G
9
4
(p
1
,p
2
,p
3
)) >5n−12 >4n−8"
¤±G∈G
4
(n),KPS(G) ≥4n−8, Ò¤á…=G
∼
=
G
4
4
(1,m+t−1))"
Ä7‘8
“°¬xŒÆïÄ)M#‘8,‘8?Ò:07M2021006"
DOI:10.12677/pm.2021.11112161946nØêÆ
x=f
ë•©z
[1]Merris, R., Rebman,K.R.andWatkins, W.(1981) Permanental Polynomialsof Graphs.Linear
AlgebraandItsApplications,38,273-288.https://doi.org/10.1016/0024-3795(81)90026-4
[2]Kasum, D., Trinajsti´c, N.andGutman, I.(1981) ChemicalGraph Theory.III.OnPermanental
Polynomial.CroaticaChemicaActa,54,321-328.
[3]Cash,G.G.(2000)ThePermanentalPolynomial.JournalofChemicalInformationandMod-
elingSciences,40,1203-1206.https://doi.org/10.1021/ci000031d
[4]Cash,G.G.(2000)PermanentalPolynomials of SmallerFullerenes. JournalofChemicalInfor-
mationandModelingSciences,40,1207-1209.https://doi.org/10.1021/ci0000326
[5]Chen, R. (2004)A Note on the Relations between the Permanental and Characteristic Polyno-
mials of CoronoidHydrocarbons. MATCHCommunicationsinMathematicalandinComputer
Chemistry,51,137-148.
[6]Chou,Q.,Liang,H.andBai,F.(2011)RemarksontheRelationsbetweenthePermanental
andCharacteristicPolynomialsofFullerenes.MATCHCommunicationsinMathematicaland
inComputerChemistry,66,743-750.
[7]Dehmer,M.,etal.(2017)HighlyUniqueNetworkDescriptorsBasedontheRootsofthe
PermanentalPolynomial.InformationSciences,408,176-181.
https://doi.org/10.1016/j.ins.2017.04.041
[8]Gutman,I.andCash,G.G.(2002)RelationsbetweenthePermanentalandCharacteristic
Polynomials ofFullerenes andBenzenoid Hydro-Carbons.MATCHCommunicationsinMath-
ematicalandinComputerChemistry,45,55-70.
[9]Liang,H.,Tong,H.andBai,F.(2008)ComputingthePermanentalPolynomialofC
60
in
Parallel.MATCHCommunicationsinMathematicalandinComputerChemistry,60,349-
358.
[10]Shi,Y.,Dehmer,M.,Li,X.andGutman,I.(2016)GraphPolynomials.CRCPress,Boca
Raton.https://doi.org/10.1201/9781315367996
[11]Wu,T.andLai,H.(2018)OnthePermanentalNullityandMatchingNumberofGraphs.
LinearandMultilinearAlgebra,66,516-524.https://doi.org/10.1080/03081087.2017.1302403
[12]Yan,W.andZhang,F.(2004)OnthePermanentalPolynomialofSomeGraphs.Journalof
MathematicalChemistry,35,175-188.https://doi.org/10.1023/B:JOMC.0000033254.54822.f8
[13]Yu, G.andQu,H.(2018)TheCoefficientsoftheImmanantalPolynomial.AppliedMathematics
andComputation,339,38-44.https://doi.org/10.1016/j.amc.2018.06.057
[14]Zhang,H.and Li,W.(2012)Computingthe PermanentalPolynomials ofBipartiteGraphsby
PfaffianOrientation.DiscreteAppliedMathematics,160,2069-2074.
https://doi.org/10.1016/j.dam.2012.04.007
DOI:10.12677/pm.2021.11112161947nØêÆ
x=f
[15]Xie,S.,etal.(2004)CapturingtheLabileFullerene[50]asC
50
CI
10
.Science,304,699.
https://doi.org/10.1126/science.1095567
[16]Tong,H.,Liang,H.andBai,F.(2006)PermanentalPolynomialsoftheLargerFullerenes.
MATCHCommunicationsinMathematicalandinComputerChemistry,56,141-152.
[17]Wu,T.andSo,W.(2019)UnicyclicGraphswithSecondLargestandSecondSmallestPer-
mantalSums.AppliedMathematicsandComputation,351,168-175.
https://doi.org/10.1016/j.amc.2019.01.056
[18]Chou,Q.,Liang,H.andBai,F.(2015)ComputingthePermanentalPolynomialoftheHigh
LevelFullereneC
70
withHighPrecision.MATCHCommunicationsinMathematicalandin
ComputerChemistry,73,327-336.
[19]Li,W.,Qin,Z.andZhang,H.(2016)ExtremalHexagonalChainswithRespecttotheCo-
efficientsSumofthePermanentalPolynomial.AppliedMathematicsandComputation,291,
30-38.https://doi.org/10.1016/j.amc.2016.06.025
[20]Li,S.andWei,W.(2018)ExtremalOctagonalChainswithRespecttotheCoefficientsSum
ofthePermanentalPolynomial.AppliedMathematicsandComputation,328,45-57.
https://doi.org/10.1016/j.amc.2018.01.033
[21]Wu,T.andLai,H.(2018)OnthePermanentalSumofGraphs.AppliedMathematicsand
Computation,331,334-340.https://doi.org/10.1016/j.amc.2018.03.026
[22]Li,W.,Qin,Z.andWang,Y.(2020)EnumerationofPermanentalSumsofLattice.Applied
MathematicsandComputation,370,ArticleID:124914.
https://doi.org/10.1016/j.amc.2019.124914
[23]Wu, T.and Lj,H. (2019)TheExtremalPermanentalSumforaQuasi-TreeGraph.Complexity,
2019,ArticleID:4387650.https://doi.org/10.1155/2019/4387650
[24]Wu, T., Ren, S. and Das, K.(2019) SomeExtremal Graphs withRespect to PermanentalSum.
BulletinoftheMalaysianMathematicalSciencesSociety,42,2947-2961.
https://doi.org/10.1007/s40840-018-0642-9
[25]Wu,T.andDas,K.(2020)OnthePermanentalSumofBicyclicGraphs.Computationaland
AppliedMathematics,39,ArticleNo.72.https://doi.org/10.1007/s40314-020-1108-x
[26]Hosoya,H. (1971)TopologicalIndex,a Newly ProposedQuantityCharacterizing the Topolog-
ical NatureofStructuralIsomersofSaturatedHydrocarbons.BulletinoftheChemicalSociety
ofJapan,44,2332-2339.https://doi.org/10.1246/bcsj.44.2332
[27]Feng,L.,Li,Z.,Liu,W.,Lu,L.andStevanovi´c,D.(2020)MinimalHarary IndexofUnicyclic
GraphswithDiameteratMost4.AppliedMathematicsandComputation,381,ArticleID:
125315.https://doi.org/10.1016/j.amc.2020.125315
[28]Wu,T.Z.andSo,W.(2019)UnicyclicGraphswithSecondLargestandSecondSmallest
PermanentalSums.AppliedMathematicsandComputation,351,168-175.
https://doi.org/10.1016/j.amc.2019.01.056
DOI:10.12677/pm.2021.11112161948nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.