设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2021,10(12),4218-4226
PublishedOnlineDecember2021inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2021.1012448
EÜPoisson.‘»v7•`©ùüÑ
ooo···•••
U9>f&E…’EâÆ²L†+nX§U9
ÂvFϵ2021c1113F¶¹^Fϵ2021c129F¶uÙFϵ2021c1116F
Á‡
© ïÄEÜPoisson.‘»v7•`©ù¯K"8I´•Œz»ž•ƒc\Èò
y ©ùÚòyv7ƒ"Äk§©‰Ñмê÷vÄ5Ÿ",§©íмê÷
vHJB•§"•§yмê´HJB•§)"
'…c
EÜPoisson.§•`©ù¯K§v7¼ê§HJB•§
OptimalDividend-PenaltyStrategyinthe
CompoundPoissonModel
JingweiLi
DepartementofEconomicsandManagement,TianjinElectronicInformationCollege,Tianjin
Received:Nov.13
th
,2021;accepted:Dec.9
th
,2021;published:Dec.16
th
,2021
Abstract
Thispaperconcersanoptimaldividend-penaltyproblemforthecompoundPoisson
model.Theobjectiveistomaximizethedifferenceoftheexpectedcumulativedis-
©ÙÚ^:o·•.EÜPoisson.‘»v7•`©ùüÑ[J].A^êÆ?Ð,2021,10(12):4218-4226.
DOI:10.12677/aam.2021.1012448
o·•
countedpenaltypaymenttakenatthemomentofruinandadiscountedpenaltypay-
menttakenatthemomentofruin.Firstly,thispapergivesthebasicpropertiesof
thevaluefunction.Then,wederivetheHJBequationofthevaluefunction.Finally,
itisverifiedthatthevaluefunctionisthesolutionoftheHJBequation.
Keywords
CompoundPoissonMode,OptimalDividendProblem,Gerber-ShiuFunction,
HJBEquation
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.0
d u©ùŒ±wŠïþ˜‡úidŠóä§•Œz\ÈÏ"òy©ù¤•˜‡ú i•`z
-‡K"xºx¥•`©ù¯KŒ±Jb[1]"¦•Äxú iJ{L§´˜‡{ü
lÑžm‘Åir.§¿…•` ©ùüÑ•>.©ùüÑ"©z[2]3dÄ: þïÄ
EÜPoissson ºx•`©ù¯K§y²•`©ùüÑ•Åã©ùüÑ"l@žå§EÜPoission
ºx.•`©ù¯K¯„uЧX©z[3–7]"
dux’AÏ5§xúiØÓu˜„è’§xúiØUl¿J¦À|ÕŒ z"
•oxö|çi +Ü€Œ±•ć¦xúi3»u)ž|G˜½v7"Ïd
˜Æöò»žv7Ú\©ù¯K¥"ThonhauserÚAlbrecher[8]©O•ÄEÜPoisson
.Ú*Ñ.•` ©ù-v7¯K"¦ ‚b»ž•v7´~ê§¿…y² »ž•
v7Œ±²ï»ºxÚúiÂÃgñ"Avram[9]ïÄÌKL´evyL§ƒÓ`z¯K§
¦‚ b»ž•v7¼ê••6u»i§…'u»i´4O¼ê"†²;©ù¯Kƒ'§
O\v7¼êþ[z››¯K`zIO"8c§'u©ù-v7¯Kïħéõ©z
bv7¼ê••6 u»ž»i(ë„©zMarciniakÚPalmowski[10]§Zajic[11]§Dickson
[12]§Gerber [13])"˜„ó§Gerber-Shiuv7¼ê•6u»ž•!»cJ{!»
ž»i"•¦ïÄ¯K•\˜„z§·‚•Ä˜„Gerber-Shiuv7¼ê"
©3v7²LσeïÄEÜPoisson.•`©ù¯K"©?Øv7¼ê••6
ucJ{"©î‚íмê÷vÄ5yn§мê÷vHJB•§§¿
…yмê´HJB•§)"
DOI:10.12677/aam.2021.10124484219A^êÆ?Ð
o·•
©(Xeµ12!ïá‘»v7xºx.§¿…‰ÑƒA•`©ù¯
K"13!‰Ñмê÷vÄ5Ÿ"14!íмê÷vÄ5ynÚHJB•§§
¿…yмê´HJB•§)"
2..£ã
•¦¯Kkî‚êÆ£ã§Äk‰Ñ˜‡ Vǘm(Ω,F,{F
t
}
t≥0
,P),Ω´¤k†m
4•;8Ü"bxúiJ{ÑlEÜPoissionL§§KxúiJ{L§•
X
t
= x+ct−
N
t
X
i=1
Y
i
,
Ù¥x´Ð©O7§c´¤Â\ǧ{N
t
}´rÝ•λ>0PoisionL§§¢ŒY
1
,
Y
2
,...,†{N
t
}´ƒpÕá§…´i.i.d.‘ÅCþ§Ñl©Ù¼ê•Q"τ
i
(i= 1,2,...)´
1ig¢ž•"
••x»î-§Ý§©•ÄGerber-ShiuÏ"òyv7¼ê§
Φ(x) = E
x
(e
−δτ
ω(X
τ
)I
{τ<∞}
).(2.1)
Ù¥ω(x)´š§“L»ž•v7§…÷vÈ©^‡
K= sup
x≥0
E[ω(x−Y
1
)|Y
1
>x] <∞.(2.2)
©ùüÑL= {L
t
,t≥0}´˜‡L§§Ù¥L
t
´†žmt\O©ù"‰½©ùüÑLƒ
AÉ››J{L§•
X
L
t
= x+ct−
N
t
X
i=1
Y
i
−L
t
.(2.3)
ƒA»žm•τ
L
= inf{t≥0 : X
L
t
<0}"Øš7L$^τ
L
§•{zÎÒÙ^τO“τ
L
"
¡©ùüÑL´Œ1XJ÷vµ
•L
t
´c`agl`ad(†ëm4),šü,'ug,6(F
t
)
t≥0
´·A…L
0
= 0;
•éu?¿0 ≤t<τ,L§L
t
÷v
L
t
≤x+ct−
N
t−
X
i=1
Y
i
Ú ∆L= L
t+
−L
t
≤X
L
t
.
Π
x
•ЩJ{x≥0Œ1©ùüÑ8Ü"
½Â¼êV
L
(x)´†»ž•Ï"òy\Èòy©ùÚòyv7ƒ§=
DOI:10.12677/aam.2021.10124484220A^êÆ?Ð
o·•
V
L
(x) =
(
E
x
(
R
τ
0
e
−δs
dL
s
−e
−δτ
$(X
L
τ
)),x≥0;
0,x<0,
(2.4)
Ù¥δ≥0´byÇ"мê½Â•
V(x) = sup{V
L
(x),L∈Π
x
},x≥0(2.5)
3.мê5Ÿ
Ún3.1мêV(x)´ûнÂ…÷v
x+
g(0)−λK
λ+δ
≤V(x) ≤x+
c
δ
(3.1)
Ù¥x≥0"
ky²m>Øª"éu?¿Œ1üÑL=(L
t
)
t≥0
∈Π
x
§÷vL
t
≤x+ct−
P
N
t
i=1
Y
i
§K
L
t
≤φ(t) := x+ct"due
−δt
´…šü¼ê§k
V
L
(x) ≤E
x
(
Z
∞
0
e
−δt
dφ(t))
= x+c
Z
∞
0
e
−δt
dt
= x+
c
δ
KV(x) = sup
L∈Π
x
´ûнÂ…÷vm>Øª"
e¡y²†>Øª"‰½Ð©J{x≥0§•ÄŒ1©ùüÑL
0
∈Π
x
:rxŠ•©ù,
r¤k¤Â\Š•©ù†1˜gnˆ§¿›X»u)§K
L
0
t
= x+
Z
t
0
cdt= x+ct
d(2.2)ªŒ
V
L
0
(x) =E
x
(
Z
τ
1
0
e
−δs
dL
0
s
−e
−δτ
ω(X
L
0
τ
1
))
=x+
c
λ+δ
−
c
λ+δ
Z
∞
0
ω(−y)dQ(y)
≥x+
c
λ+δ
−
λK
λ+δ
Ún3.2мêV(x)´O§ÛÜLipschitzëY…÷v
y−x≤V(y)−V(x) ≤
V(b)(λ+δ)+λK
c
(y−x)(3.2)
DOI:10.12677/aam.2021.10124484221A^êÆ?Ð
o·•
Ù¥b≥y>x≥0"
?¿>0§•ÄŒ1©ùüÑ
¯
L∈Π
x
¦V
¯
L
(x) ≥V(x)−"éy>x≥0§½Â#©ùüÑ
¯
L
1
:ry−xŠ•©ù,æüÑ
¯
L§´Œ1…÷v
V(y) ≥V
¯
L
1
(y) = y−x+V
¯
L
(x) ≥y−x+V(x)−(3.3)
éuЩJ{y>x≥0…>0,æŒ1©ùüÑ
¯
L∈Π
y
¦V
¯
L
(y) >V(y)−"•Ä©ùü
ÑL
0
∈Π
x
:ЩJ{•x§J{L§X
L
0
t
<yžÜ©Ú¶J{X
L
0
t
ˆyžæ©ùüÑ
¯
L"3vk nˆž§J{L§lxˆyžm•t
0
§•Ò´y=c+ct
0
,Kt
0
=
y−x
c
"½Â
©ùüÑ
˜
L∈Π
y
•
˜
L
t
=
(
L
0
,XJ t<τ
1
∧t
0
;
¯
L
t−t
0
,XJ τ
1
>t
0
andt≥t
0
.
Ï•31˜gnˆƒcJ{lxˆyVÇ•e
−λt
0
§K
V(x) ≥V
˜
L
(x)
≥e
−(λ+δ)t
0
V
¯
L
(y)−
Z
t
0
λe
−(λ+δ)t
Z
∞
x+ct
ω(x+ct−y)dQ(y)dt
≥e
−(λ+δ)t
0
V
¯
L
(y)−λKt
0
≥(V(y)−)e
−(λ+δ)t
0
−λKt
0
Ïd§k
V(y)−V(x) ≤V(y)−V(y)e
−(λ+δ)t
0
+λKt
0
≤[V(y)(λ+δ)+λK]t
0
≤
[V(b)(λ+δ)+λK]
c
(y−x)
4.Ä5ynÚHJB•§
Ún4.1(Ä5yn)éu?¿x≥0Ú?¿ÊžT§K
V(x) =sup
¯
L∈Π
x
E
x
[
Z
T∧τ
1
e
−δs
dL
s
+e
−δ(T∧τ
1
)
V(X
L
T∧τ
1
)−e
−δτ
ω(X
L
τ
)I
{τ≤T∧τ
1
}
](4.1)
d{F
t
}´a6§X
0
=x,éu½t≥0A??kT∧τ
1
=t∧τ
1
,Ke¡ùy²ŒrtwŠT§
-
v(x,t) =sup
¯
L∈Π
x
E
x
[
Z
t∧τ
1
e
−δs
dL
s
+e
−δ(t∧τ
1
)
V(X
L
t∧τ
1
)−e
−δτ
ω(X
L
τ
)I
{τ≤t∧τ
1
}
]
DOI:10.12677/aam.2021.10124484222A^êÆ?Ð
o·•
Äky²V(x) ≥v(x,t)"?¿©ùüÑL∈Π
x
§·‚k
V
L
(x) = E
x
[
Z
t∧τ
1
e
−δs
dL
s
+
Z
τ
t∧τ
1
e
−δs
dL
s
−e
−δτ
ω(X
L
τ
)](4.2)
e¡OŽþ¡(4.2)¥mÜ©µ
E
x
[
Z
τ
t∧τ
1
e
−δs
dL
s
] = E
x
[
Z
τ−t∧τ
1
0
e
−δ(s+t∧τ
1
)
dL
s+t∧τ
1
]
= E
x
[e
−δ(t∧τ
1
)
E[θ
t∧τ
1
◦
Z
τ
0
e
−δs
|X
L
t∧τ
1
]]
= E
x
[e
−δ(t∧τ
1
)
V
L
(X
L
t∧τ
1
)]
≤E
x
[e
−δ(t∧τ
1
)V(X
L
t∧τ
1
)
]
“\(4.2)ªŒ
V
L
(x) = E
x
[
Z
t∧τ
1
e
−δs
dL
s
+e
−δ(t∧τ
1
)V(X
L
t∧τ
1
)
−e
−δτ
ω(X
L
τ
)]
Ïd§Œ±yV(x) ≤v(x,t)"
e¡y²V(x) ≥v(x,t)"?‰>0§Œ1üÑL= (L
t
) ∈Π
x
¦
E
x
[
Z
t∧τ
1
0
e
−δs
dL
s
+e
−δ(t∧τ
1
)
V(X
L
t∧τ
1
)−e
−δτ
ω(X
L
τ
)I
{τ≤t∧τ
1
}
] ≥v(x,t)−

2
Ù¥X
¯
L
t
´ƒAÉ›J{L§"Ï•V´šK§·‚Œ±é˜XOS(x
i
)
i∈N
,x
0
…
lim
i→∞
= ∞¦XJy∈[x
i
,x
i+1
)§K
V(y)−V(x
i
) ≤

4
æŒ1üÑ
¯
L
i
= (L
i
t
)
t≥0
∈Π
x
i
¦V(x
i
)−V
¯
L
i
(x
i
) ≤

4
"½Â#Œ1üÑL
∗
= (L
∗
t
)
t≥0
÷ve^‡µ
•XJτ
1
≤t,æL
∗
t
= L
t
é?¿t≥0;
•XJτ
1
>t,æL
∗
t
= L
t
é?¿t∈[0,τ
1
];
•XJτ
1
>t…X
¯
L
t
∈[x
i
,x
i+1
),á=3žmt|GX
¯
L
t
−x
i
Š•©ù,•Ò´L
t+
−L
t
= X
¯
L
t
−x
i
,,
æüÑ
¯
L
i
"
dþãEŒ
¯
L
∗
1
´Œ1üѧXJX
¯
L
t
∈[x
i
,x
i+1
)§Kk
V
¯
L
∗
(X
¯
L
t
) = X
¯
L
t
−x
i
+V
¯
L
i
(x
i
) ≥V(x
i
)−

4
DOI:10.12677/aam.2021.10124484223A^êÆ?Ð
o·•
Ïd§Œ
v(x,t)−V
¯
L
∗
(x) ≤E
x
[
Z
t∧τ
1
0
e
−δs
dL
s
+e
−δ(t∧τ
1
)
V(X
¯
L
t∧τ
1
)−e
−δτ
ω(X
L
τ
)I
τ<t∧τ
1
]
−V
¯
L
∗
(x)+

2
<
(Øy"
$^†AzcueÚMuler[5]ƒÓ©Û•{§dÚn4.1Œмê÷vHJB•§•
max{LV(x),1−V
0
(x)}= 0(4.3)
Ù¥LV(x) = cV
0
(x)−(λ+δ)V(x)+
R
x
0
V(x−y)dQ(y)−λ
R
∞
0
ω(x−y)dQ(y)"
½n4.2мêV(x)´HJB•§)"
dÚn3.2мêV(x)´ÛÜLipschitzëY5Ÿ§ŒV
0
(x)≥1,=1 −V
0
(x)≤0"Ï•
E
x
R
τ
0
e
−δs
dL
s
≥0Ú(4.1)§éu?¿h≥0Œ
V(x) ≥E
x
[e
−δ(h∧τ
1
)
V(X
L
h∧τ
1
)−e
−δτ
ω(X
L
{τ<h∧τ
1
}
)](4.4)
=
0 ≥E
x
[e
−δ(h∧τ
1
)
V(X
L
h∧τ
1
)−e
−δτ
ω(X
L
{τ<h∧τ
1
}
)]−V(x)
≥
V(x+ch)−V(x)
h
−
1−e
−(λ+δ)h
h
V(x+ch)
+
1
h
Z
h
0
λe
−(λ+δ)s
Z
x+ch
0
V(x+ch−y)dQ(y)ds
+
1
h
Z
h
0
λe
−(λ+δ)s
Z
∞
x+ch
ω(x+ch−y)dQ(y)ds
þªü>-h→0§Œ
0 ≥cV
0
(x)−(λ+δ)V(x)+λ
Z
x
0
V(x−y)dQ(y)−λ
Z
∞
x
ω(x−y)dQ(y)(4.5)
-A={x:1 −V
0
(x)=0,LV(x)=0}§dV(x)ÚLV(x)ëY5§Œ•A´4"-
B={x: 1−V
0
(x) = 0,LV(x) <0}dAzcueÚMuler[5]·K5.4ŒB´†m…Be4•
áuA"KC= R
+
\(A∪B),éu?¿h>0§XJ1˜gn§Ø©ù´•`§K
V(x) = E
x
[e
−δ(h∧τ
1
)
V(X
h∧τ
1
)−e
−δτ
ω(X
τ
)I
τ≤h∧τ
1
](4.6)
$^u(4.7)ƒÓí•{Œ
0 = cV
0
(x)−(λ+δ)V(x)+λ
Z
x
0
V(x−y)dQ(y)−λ
Z
∞
x
ω(x−y)dQ(y)(4.7)
DOI:10.12677/aam.2021.10124484224A^êÆ?Ð
o·•
dR
+
= A∪B∪C,Ké?¿x∈R
+
Œ
max{1−V
0
(x),LV(x)}= 0,a.e.(4.8)
Ïd§Š¼êV(x)A??´HJB•§)"
e¡$^ꊩÛ•{©Û»ž•v7 é•`©ùüÑK•"©bnÑl³
ê©Ù§=Q(x)=1 −(1 + x)e
−x
§…v7¼êω(x)=ke
−
1
2
x
§ëêc=21.4,λ=10,δ=0.1,
a
∗
1
,a
∗
2
••`©ù>.§K
Table1.Theoptimaldividendbandlevels
L1.•`©ù>.
k00.010.020.030.040.050.060.070.080.09
a
∗
1
0000000010.2110.24
a
∗
2
10.0610.0910.1010.1210.1310.1510.1610.19+∞+∞
dL1êâ©ÛŒ±§‘ƒ»v74O§•`©ù>.•´4O"
5.(Ø
©3v7²LσeïÄEÜPoisson.•`©ù¯K"©î‚íмê÷v
Ä5yn§мê÷vHJB•§§yмê´HJB•§)§ ¿…ꊩ
Û»ž•v7é•`©ùüÑK•"dꊩی±»ž•v7Œ±³›LÝ
©ùÀħlü$xúi»ŒU½ò•úiÆ·"
ë•©z
[1]DeFinetti,B.(1957)Suun’impostazionealternativadellateoriacollettivadelrischio.Trans-
actionsoftheXVthInternationalCongressofActuaries,2,433-443.
[2]Gerber, H.U. (1969) Entscheidungskriterien f¨ur denzusammengesetzten Poisson-Prozess. Doc-
toralThesis,ETHZ¨urich.
[3]Albrecher,H.andThonhauser,S.(2009)OptimalityResultsforDividendProblemsinInsur-
ance. RACSAM—RevistadelaRealAcademiadeCienciasExactas,FisicasyNaturales.Serie
A.Matematicas,103,295-320.https://doi.org/10.1007/BF03191909
[4]Azcue,P.andMuler,N.(2005)OptimalReinsuranceandDividendDistributionPoliciesin
theCram´er-LundbergModel.MathematicalFinance,15,261-308.
https://doi.org/10.1111/j.0960-1627.2005.00220.x
[5]Azcue,P.andMuler,N.(2014)StochasticOptimizationinInsurance:ADynamicProgram-
mingApproach.Springer,London.https://doi.org/10.1007/978-1-4939-0995-7
DOI:10.12677/aam.2021.10124484225A^êÆ?Ð
o·•
[6]Avanzi,B.(2009)StrategiesforDividendDistribution:AReview.NorthAmericanActuarial
Journal,13,217-251.https://doi.org/10.1080/10920277.2009.10597549
[7]Schmidli,H.(2008)StochasticControlinInsurance.Springer,London.
https://doi.org/10.1002/9780470061596.risk0374
[8]Thonhauser,S.andAlbrecher,H.(2007)DividendMaximizationunderConsiderationofthe
TimeValueofRuin.Insurance:MathematicsandEconomics,41,163-184.
https://doi.org/10.1016/j.insmatheco.2006.10.013
[9]Avram,F.,Palmowski,Z.and Pistorius,M.R. (2015)OnGerber-ShiuFunctions andOptimal
DividendDistributionforaL´evyRiskProcessinthePresenceofaPenaltyFunction.Annals
ofAppliedProbability,25,1868-1935.https://doi.org/10.1214/14-AAP1038
[10]Marciniak, E. andPalmowski,Z. (2016)On the OptimalDividend Problemfor Insurance Risk
Models with Surplus-Dependent Premiums. JournalofOptimizationTheoryandApplications,
168,723-742.https://doi.org/10.1007/s10957-015-0755-3
[11]Zajic,T.(2000)OptimalDividendPayoutunderCompoundPoissonIncome.JournalofOp-
timizationTheoryandApplications,104,195-213.https://doi.org/10.1023/A:1004689008633
[12]Dickson,D.C.M.and Waters,H.R. (2004)SomeOptimal DividendsProblems. AstinBulletin,
34,49-74.https://doi.org/10.1017/S0515036100013878
[13]Gerber,H.U.,Lin,X.S.andYang,H.(2006)ANoteontheDividends-PenaltyIdentityand
theOptimalDividendBarrier.AstinBulletin,36,489-503.
https://doi.org/10.1017/S0515036100014604
DOI:10.12677/aam.2021.10124484226A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.