设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2021,10(12),4489-4497
PublishedOnlineDecember2021inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2021.1012478
H-ToeplitzŽf“ê5Ÿ
ùùù777777
úô“‰ŒÆ,êÆ†OŽÅ‰ÆÆ,úô7u
ÂvFϵ2021c1127F¶¹^Fϵ2021c1223F¶uÙFϵ2021c1230F
Á‡
©Ì‡ïÄBergman˜mþH-ToeplitzŽf“ê5Ÿ"1˜Ù0ƒ'ïÄµ!
ÄVg9˜̇(J"1Ù‰Ñ©Ì‡(Jy²§y²[àgÎÒH-Toeplitz
ŽfEé¡5"
'…c
Bergman˜m§H-ToeplitzŽf§Eé¡5
AlgebraicPropertiesofH-Toeplitz
Operator
JinjinLiang
CollegeofMathematicsandComputerScience,ZhejiangNormalUniversity,JinhuaZhejiang
Received:Nov.27
th
,2021;accepted:Dec.23
rd
,2021;published:Dec.30
th
,2021
Abstract
Inthispaper,wemainlystudythealgebraicpropertiesofH-toeplitzoperatorson
BergmanSpaces.InChapter1,weintroducetherelatedresearchbackground,basic
©ÙÚ^:ù77.H-ToeplitzŽf“ê5Ÿ[J].A^êÆ?Ð,2021,10(12):4489-4497.
DOI:10.12677/aam.2021.1012478
ù77
conceptsandsomemainresults.InChapter2,theproofofthemainresultsofthis
paperisgiven,andthecomplexsymmetryofquasihomogeneoussignedH-toeplitz
operatorsisproved.
Keywords
BergmanSpace,H-ToeplitzOperator,ComplexSymmetry
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.0
PD•E²¡CSü mdA(z) =
1
π
rdrdθ•Dþ5‰z Lebesgue¡ÈÿÝ.P
H(D)•Dþ¤k)Û¼ê,PBergman˜mL
2
a
(D)•Dþ¤kV‚²•ŒÈ)ۼꤤ
Hilbert˜m,ÙSȽ•
hf,gi=
Z
D
f(z)g(z)dA(z),f,g∈L
2
(D).
˜mL
2
a
(D)´Hilbert˜mL
2
(D,dA)4f˜m.éušKên,e
n
(z)=
√
n+1z
n
.é¤
kz∈D.8Ü{e
n
}
n≥0
¤L
2
(D)˜|IOÄ[1].éuz,w∈D,Bergman˜m¥2
)Ø¡•BergmanØ,½Â•
K
z
(w) = K(z,w) =
1
(1−zw)
2
.
PP
L
2
a
:L
2
(D,dA)−→L
2
a
(D),L«˜mL
2
(D,dA)˜mL
2
a
(D)ÝK,¡•BergmanÝ
K.é¤kf∈L
2
(D,dA),d2)Ø5Ÿµ
P
L
2
a
(f)(z) = hP
L
2
a
f,K
z
i= hf,K
z
i=
Z
D
f(w)
(1−zw)
2
dA(w).
„[2].éφ∈L
∞
(D),¦{ ŽfM
φ
½Â•M
φ
(f)=φf.ÎÒ•φ∈L
∞
(D)ToeplitzŽ
fT
φ
: L
2
a
(D) −→L
2
a
(D)deª½Â
T
φ
(f) = P
L
2
a
(φf) =
Z
D
φ(z)f(w)
(1−¯zw)
2
dA(w),f∈L
2
(D).
DOI:10.12677/aam.2021.10124784490A^êÆ?Ð
ù77
éφ∈L
∞
(D),HankelŽfH
φ
: L
2
a
(D) −→L
2
a
(D)½Â•
H
φ
(f) = P
L
2
a
M
φ
J(f),∀f∈L
2
a
(D),
Ù¥ŽfJ:L
2
a
(D)−→L
2
a
(D)dJ(e
n
(z))=e
n+1
(z)‰Ñ,Ù¥n•šKê.T
φ
ÚH
φ
´
L
2
a
(D)þk.‚5Žf.
Ún1.13Bergman˜mL
2
a
(D)¥éušKêsÚt,±e¤á,„[3]:
hz
s
,z
t
i=









1
s+1
,s=t;
0,s6= t.
P
L
2
a
(z
t
z
s
) =









s−t+1
s+1
z
s−t
,s≥t;
0,s<t.
•½ÂL
2
a
(D)þH-ToeplitzŽfVg,Äk½Â‚5ŽfK:L
2
a
(D) −→L
2
harm
(D),
K(e
2n
) = e
n
,K(e
2n+1
) = e
n+1
,n= 0,1,2,···.
´„ŽfK3L
2
a
(D)þk..d,kKk= 1.ŽfKŠ‘deª‰Ñ:é∀n≥0,
K
∗
(e
n
) = e
2n
,K
∗
(e
n+1
) = e
2n+1
.
éφ∈L
∞
(D),H-ToeplitzŽf½Â•B
φ
: L
2
a
(D) −→L
2
a
(D),
B
φ
(f) = P
L
2
a
M
φ
K(f),f∈L
2
a
(D),
éuz‡šKên,·‚k
B
φ
(e
2n
) = P
L
2
a
M
φ
K(e
2n
) = P
L
2
a
M
φ
(e
n
) = T
φ
(e
n
)
Ú
B
φ
(e
2n+1
) = P
L
2
a
M
φ
K(e
2n+1
) = P
L
2
a
M
φ
(e
n+1
) = P
L
2
a
M
φ
J(e
n
) = H
φ
(e
n
).
H-ToeplitzŽf†ToeplitzŽf†HankelŽf—ƒƒ'.„[4][5].
2.̇(J9y²
'uL
2
a
(D)IOÄ{e
n
}
n≥0
,T
φ
Ý(m,n)
th
,deª‰Ñ:
DOI:10.12677/aam.2021.10124784491A^êÆ?Ð
ù77
hT
φ
(e
n
),e
m
i= hP
L
2
a
(φe
n
,e
m
i
=
√
n+1
√
m+1h(
∞
X
i=0
a
i
z
i
+
∞
X
j=1
b
j
z
j
)z
n
,z
m
i
=
√
n+1
√
m+1(
∞
X
i=0
a
i
hz
i+n
,z
m
i+
∞
X
j=1
hb
j
z
n
,z
m+j
i).
©±eü«œ/:
œ/(1):XJm≥n,·‚k:
hT
φ
(e
n
),e
m
i=
√
n+1
√
m+1
∞
X
i=0
a
i
hz
i+n
,z
m
i
=
√
n+1
√
m+1
1
m+1
a
m−n
=
r
n+1
m+1
a
m−n
.
œ/(2):XJm<n,·‚k:
hT
φ
(e
n
),e
m
i=
√
n+1
√
m+1
∞
X
j=1
hb
j
z
n
,z
m+j
i
=
√
n+1
√
m+1
1
n+1
b
n−m
=
r
m+1
n+1
b
n−m
.
Ïd§·‚Œ±:
hT
φ
(e
n
),e
m
i=





q
n+1
m+1
a
m−n
,m≥n;
q
m+1
n+1
b
n−m
,m≤n.
Ù¥mÚn´šKê,H
φ
Ý(m,n)
th
ĎuL
2
a
(D)IOÄ{e
n
}
n≥0
deª‰Ñ:
hH
φ
(e
n
),e
m
i= hP
L
2
a
M
φ
J(e
n
),e
m
i
=
√
n+2
√
m+1h(
∞
X
i=0
a
i
z
i
+
∞
X
j=1
b
j
z
j
)z
n+1
,z
m
i
=
√
n+2
√
m+1(
∞
X
i=0
a
i
hz
i
,z
m+n+1
i+
∞
X
j=1
b
j
hz
j
,z
m+n+1
i)
=
√
m+1
√
n+2
m+n+2
a
m+n+1
.
DOI:10.12677/aam.2021.10124784492A^êÆ?Ð
ù77
Ón,éušKêmÚn,k
hB
φ
(e
2n
),e
m
i= hT
φ
(e
n
),e
m
i









q
n+1
m+1
a
m−n
,m≥n;
q
m+1
n+1
b
n−m
,m≤n.
Ú
hB
φ
(e
2n+1
),e
m
i= hH
φ
(e
n
),e
m
i=
√
m+1
√
n+2
m+n+2
a
m+n+1
,
Ù¥mÚn´šKê,Ïd,B
φ
'uL
2
a
(D)IOÄ{e
n
}
n≥0
ÝL«deª‰Ñ:
B
φ
=















a
0
1
√
2
a
1
1
√
2
b
1
1
√
3
a
2
1
√
3
b
2
1
2
a
3
1
2
b
3
···
1
√
2
a
1
1
√
3
a
2
a
0
√
6
4
a
3
q
2
3
b
1
2
√
2
5
a
4
1
√
2
b
2
···
1
√
3
a
2
√
6
4
a
3
q
2
3
a
1
3
5
a
4
a
0
1
√
3
a
5
√
3
2
b
1
···
1
2
a
3
2
√
2
5
a
4
1
√
2
a
2
1
√
3
a
5
3
√
3
2
a
1
4
7
a
6
a
0
···
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.















.
§Š‘ÝXe:
B
∗
φ
=























a
0
1
√
2
a
1
1
√
3
a
2
1
2
a
3
···
1
√
2
a
1
2
3
a
2
√
6
4
a
3
2
√
2
√
5
a
4
···
1
√
2
b
1
a
0
√
3
2
a
1
1
√
2
a
2
···
]
1
√
3
a
2
√
6
4
a
3
3
5
a
4
1
√
3
a
5
···
1
√
3
b
2
√
3
2
b
1
a
0
√
3
2
a
1
···
1
2
a
3
2
√
2
√
5
a
4
1
√
3
a
5
4
7
a
6
···
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.























.
˜mL
2
(D,dA)þEÝŽfC:L
2
(D)−→L
2
(D),éuf,g∈L
2
(D,dA),÷vC
2
=I
ÚhCf,Cgi=hg,fiѤá.[6]y²L
2
(D,dA)•3˜‡Ä{e
n
}
∞
n=0
,¦Ce
i
=e
i
,
i= 0,1,···.eL
2
(D,dA)þ˜‡k.‚5ŽfT,XJ•3EÝC,¦CT= T
∗
C,K¡T
´Eé¡.„[7].
½n2.1-φ∈L
∞
(D)•NÚÎÒ.@ oH-ToeplitzŽfB
φ
3L
2
(D,dA)þ'uC•E
顎f…=φ= 0.
y².φ(z) =
P
∞
i=0
a
i
z
i
+
P
∞
j=0
b
j
z
j
∈L
∞
(D)•DþNÚ¼ê,¿B
φ
´E顎f.ù
DOI:10.12677/aam.2021.10124784493A^êÆ?Ð
ù77
¿›XCB
φ
C= B
∗
φ
.éuz‡šKên,ÏLÚn1.1·‚Œ±OŽÑ:
hCB
φ
Ce
2n
,e
m
i= hCe
m
,B
φ
Ce
2n
i
= he
m
,B
φ
e
2n
i= he
m
,P
L
2
a
M
φ
K(e
2n
)i
= he
m
,P
L
2
a
M
φ
(e
n
)i= he
m
,M
φ
(e
n
)i
= h
√
m+1z
m
,(
∞
X
i=0
a
i
z
i
+
∞
X
j=0
b
j
z
j
)
√
n+1z
n
i
=
√
m+1
√
n+1hz
m
,
∞
X
i=0
a
i
z
i
z
n
i+
√
m+1
√
n+1hz
m
,
∞
X
j=0
b
j
z
j
z
n
i.
Ïd,Ñy±eü«œ/:
œ/(1):XJm≥n,@o
hCB
φ
Ce
2n
,e
m
i= h
√
m+1
√
n+1z
m
,
∞
X
i=0
a
i
z
i
z
n
i
=
√
m+1
√
n+1
∞
X
i=0
a
i
hz
m
,z
i+n
i
=
√
m+1
√
n+1
1
m+1
a
m−n
=
r
n+1
m+1
a
m−n
.
œ/(2):XJm<n,@o
hCB
φ
Ce
2n
,e
m
i=
√
m+1
√
n+1hz
m
,
∞
X
j=0
b
j
z
j
z
n
i
=
√
m+1
√
n+1
∞
X
j=0
b
j
hz
m+j
,z
n
i
=
√
m+1
√
n+1
1
n+1
b
n−m
=
r
m+1
n+1
b
n−m
.
DOI:10.12677/aam.2021.10124784494A^êÆ?Ð
ù77
hCB
φ
Ce
2n+1
,e
m
i= hCe
m
,B
φ
Ce
2n+1
i
= he
m
,B
φ
e
2n+1
i= he
m
,P
L
2
a
M
φ
K(e
2n+1
)i
= he
m
,P
L
2
a
M
φ
e
n+1
i= he
m
,M
φ
e
n+1
i= he
m
,φe
n+1
i
= h
√
m+1z
m
,(
∞
X
i=0
a
i
z
i
+
∞
X
j=0
b
j
z
j
)
√
n+2z
n+1
i
=
√
m+1
√
n+1hz
m
,
∞
X
i=0
a
i
z
i
z
n+1
i+hz
m
,
∞
X
j=0
b
j
z
j
¯z
n+1
i
=
√
m+1
√
n+1
∞
X
i=0
a
i
hz
m
,z
i
z
n+1
i
=
√
m+1
√
n+2
n+m+2
a
m+n+1
.
Ù¥mÚn´šKê.Ïd,ŒCB
φ
CÝ/ªXe:
CB
φ
C=












a
0
1
√
2
a
1
1
√
2
b
1
1
√
3
a
2
1
√
3
b
2
1
2
a
3
1
2
b
3
···
1
√
2
a
1
2
3
a
2
a
0
√
6
4
a
3
1
√
2
b
1
2
√
2
√
5
a
4
1
√
2
b
2
···
1
√
3
a
2
√
6
4
a
3
q
2
3
a
1
3
5
a
4
a
0
1
√
3
a
5
√
3
2
b
1
···
1
2
a
3
2
√
2
√
5
a
4
1
√
2
a
2
1
√
3
a
5
√
3
2
a
1
4
7
a
6
a
0
···
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.












.
B
∗
φ
=














a
0
1
√
2
a
1
1
√
3
a
2
1
2
a
3
···
1
√
2
a
1
2
3
a
2
√
6
4
a
3
2
√
2
√
5
a
4
···
1
√
2
b
1
a
0
√
3
2
a
1
1
√
2
a
2
···
1
√
3
a
2
√
6
4
a
3
3
5
a
0
√
3
2
a
1
···
1
2
a
3
2
√
2
√
5
a
4
1
√
3
a
5
4
7
a
6
···
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.














.
¤±,XJCB
φ
C= B
∗
φ
,@o













a
0
1
√
2
a
1
1
√
2
b
1
1
√
3
a
2
···
1
√
2
a
1
2
3
a
2
a
0
√
6
4
a
3
···
1
√
3
a
2
√
6
4
a
3
q
2
3
a
1
3
5
a
4
···
1
2
¯a
3
2
√
2
√
5
a
4
1
√
2
a
2
1
√
3
a
5
···
.
.
.
.
.
.
.
.
.
.
.
.













=













a
0
1
√
2
a
1
1
√
3
a
2
1
2
a
3
···
1
√
2
a
1
2
3
a
2
√
6
4
a
3
2
√
2
√
5
a
4
···
1
√
2
b
1
a
0
√
3
2
a
1
1
√
2
a
2
···
1
√
3
a
2
√
6
4
a
3
3
5
a
4
1
√
3
a
5
···
.
.
.
.
.
.
.
.
.
.
.
.













.
DOI:10.12677/aam.2021.10124784495A^êÆ?Ð
ù77
n>mž,
r
m+1
n+1
a
n−m
=
r
m+1
n+1
b
n−m
;
r
m+1
n+1
a
n−m
=
√
m+1
√
m+2
m+n+2
a
m+n+1
;
r
m+1
n+1
b
n−m
=
√
m+1
√
n+2
m+n+2
a
m+n+1
.
n≤mž,
r
n+1
m+1
a
m−n
=
r
n+1
m+1
b
m−n
;
r
n+1
m+1
a
m−n
=
√
m+1
√
n+2
n+m+2
a
m+n+1
;
r
n+1
m+1
b
m−n
=
√
m+1
√
n+2
n+m+2
a
m+n+1
.
é¤kšKêmÚn,÷va
1
=a
2
=a
3
=···=a
n−m
=a
m+n+1
→∞.a
1
=b
1
=
a
2
=b
2
=a
3
=b
3
=···=a
n−m
=b
n−m
=a
m+n+1
→∞,m,n→∞.Ý¥z‡ƒÑ•
¹,qÏ•3L
2
(D)¥Ý÷vsup
P
∞
i=0
|a
i
|
2
<∞,sup
P
∞
j=0
|b
j
|
2
<∞,¤±m,n→∞,
lim
i→∞
P
∞
i=0
|a
i
|
2
=0,lim
j→∞
P
∞
j=0
|b
j
|
2
=0,ù¿›Xéu¤kiÚj,a
i
=0…b
j
=0.Ïd·‚
Ï"(Jφ=0.
ë•©z
[1]Ahern,P.and
ˇ
Cuˇckovi´e,
ˇ
Z.(2001)ATheoremofBrown-HalmosTypeforBergmanSpace
ToeplitzOperators.JournalofFunctionalAnalysis,187,200-210.
https://doi.org/10.1006/jfan.2001.3811
[2]Brown,A.andHalmos,P.R.(1964)AlgebraicPropertiesofToeplitzOperators.Journalf¨ur
dieReineundAngewandteMathematik,213,89-102. https://doi.org/10.1515/crll.1964.213.89
[3]Louhichi, I. and Zakariasy, L.(2005) On Toeplitz Operatorswith Quasihomogeneous Symbols.
ArchivderMathematik(Basel),85,248-257.https://doi.org/10.1007/s00013-005-1198-0
[4]Gupta,A.andSingh,S.K.(2021)H-ToeplitzOperatorsonBergmanSpace.Bulletinofthe
KoreanMathematicalSociety,58,327-347.
[5]Lu,Y.andZhang,B.(2011)CommutingHankelOperatorandToeplitzOperatoronthe
BergmanSpace.ChineseAnnalsofMathematics,SeriesA,32,519-530.
[6]Chen,Y.,Lee,Y.J.andZhao,Y.(2021)ComplexSymmetryofToeplitzOperators.Preprint.
DOI:10.12677/aam.2021.10124784496A^êÆ?Ð
ù77
[7]Garcia,S.R.andPutinar,M.(2006)ComplexSymmetricOperatorsandApplications.Trans-
actionsoftheAmericanMathematicalSociety,358,1285-1315.
https://doi.org/10.1090/S0002-9947-05-03742-6
DOI:10.12677/aam.2021.10124784497A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.