设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(1),14-19
PublishedOnlineJanuary2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.121002
ÄuÿÀÝ“êÄ½ny²
ÆÆÆZZZ
ìÀà’ŒÆ§&E‰Æ†ó§Æ§ìÀS
ÂvFϵ2021c1128F¶¹^Fϵ2022c13F¶uÙFϵ2022c110F
Á‡
©^ÿÀÝn؉Ñ“êÄ½ny²"ÄkEÓÔ•§§rE,¯Kz¤˜‡{ü
¯ K¶ÏLéÓÔ•§ ¤k )k.O§EÑk.m8¶•|^ÿÀÝÓÔØC5Ú
•35½n§‰Ñ½ny²"
'…c
“êÄ½n§ÿÀݧk.
ProofoftheFundamentalTheoremof
AlgebraBasedonTopologicalDegree
XueleiWang
CollegeofInformationScienceandEngineering,ShandongAgriculturalUniversity,Tai’an
Shandong
Received:Nov.28
th
,2021;accepted:Jan.3
rd
,2022;published:Jan.10
th
,2022
Abstract
Inthepaper,proofoffundamentaltheoremofalgebraisobtainedbytopological
©ÙÚ^:ÆZ.ÄuÿÀÝ“êÄ½ny²[J].nØêÆ,2022,12(1):14-19.
DOI:10.12677/pm.2022.121002
ÆZ
degreetheory.Fristweconstructahomotopyequation,whichcanreduceacomplex
problemintoasimplerone.Throughaprioriestimateforthepossiblesolutionsof
homotopyequation,wegainaboundedopenset;thenweprovethetheorembythe
homotopyinvarianceandexistencetheoremoftopologicaldegree.
Keywords
FundamentalTheoremofAlgebra,TopologicalDegree,PrioriBound
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
“êÄ½n´p“꥚~-‡˜‡½n.§ ²;y²9ÙuÐ{¤§Œ±ë•©
z[1].3˜„p“êá,X[2]¥Ñ´•k½nSN§vky².“êÄ½n • •{üy
²´|^EC¼ê¥Liouville½n[3]½öRouche½n[3].©[4]§o(EC¼ê¥ÚÄ
–“ê¥|^³Ûu+nØy²¶©[5][6]|^)Û¼ê5Ÿ§©O^•Œ!•n!
…ÜÈ©½n!3ê½n‰Ñ“êÄ½ny²¶©[7]^“êÿÀ¥ÓÔ+ÚÄ+Ó
½n(ا¿r½n(Øí2•˜„¼êa¶©[8]¦^ÓN+ÚNÝó䧉Ñ
“êÄ½nü«“êÿÀy².°%3©[9]¥§|^àg‚5•§|)n؉Ñ“ê
Ä½n˜‡{'“êy².
©ØÓuþãEC¼êÚ“êÿÀ•{,·‚ ^š‚5•¼¥ÿÀÝ[10][11]ÓÔ
ØC5ÚŒ)5§‰Ñ½ny².|^ÓÔØC5Œ±r˜‡E,¯Kz•˜‡ƒé{ü
¯K.A^ÿÀÝ'…´k.m8E§•Ò´ÓÔ•§˜ƒŒU)k.O.2|^{
ü•§ÝØu"§•§)•35§=ngõ‘ª3EꉌS–k˜‡Š.3©Ù
•§‰ÑA^¢~.
“êÄ½n[1]3E²¡þ§ngõ‘ª
f(z) = z
n
+a
1
z
n−1
+···+a
n−1
z+a
n
(1)
–k˜‡Š.
e¡·‚‰ÑÿÀÝ˜ý•£.
DOI:10.12677/pm.2022.12100215nØêÆ
ÆZ
ÿÀÝ½Â[11]Ω´R
m
¥k.m8§f∈C
2
(
¯
Ω,R
m
),p∈R
m
,p/∈f(∂Ω).p´f
KŠž,½ÂNf3Ω ¥'up:ÿÀÝ•
deg(f,Ω,p) =
k
X
j=1
sgnJ
f
(x
j
)
Ù¥J
f
(x)L«NfJacobi1ª,x
j
(j= 1,2,···,k)L«•§f(x) = p3Ω S).
Kronecker•3½n[11]Ω´R
m
¥k.m8,f :
¯
Ω→R
m
ëY,p /∈f(∂Ω).e
deg(f,Ω,p) 6= 0,Kf(x) = p3ΩS7k).
ÿÀÝÓÔØC5[11]H:
¯
Ω×[0,1] →R
m
ëY§-h
λ
(x) = H(x,λ).ep/∈h
λ
(∂Ω).
∀0 ≤λ≤1,Kdeg(h
λ
,Ω,p)ðu~ê(éu∀0 ≤λ≤1).
ÿÀÝ½Â!5Ÿ95Ÿy²§Œ±ë•©z[11].
l1912cBrouwer MáÿÀÝnا Ùm²Leray!Schauder êÆ[Øäí2õ§†–
y3§ÿÀÝ•{®¤•ïÄš‚5¯KÄ•{ƒ˜.
|^ÿÀÝnØ)û¯K§'…3uk.m8Ω E§•Ò´•§¤kŒU)k.
O.e©¥§·‚rdeg(f,Ω,p){P•D(f,Ω,p).
2.“êÄ½ny²
y²Nf: R
2
'C→R
2
§…f´C
∞
a¼ê.-
g:R
2
'C→R
2
,g(z) = z
n
−1.
•ÄÓÔ•§
h
λ
(z) = H(z,λ) = λf(z)+(1−λ)g(z) = z
n
+λ(a
1
z
n−1
+···+a
n
)+(1−λ),λ∈[0,1](2)
KH: R
2
×[0,1] →R
2
´C
∞
a¼ê§…H(·,1) = f,H(·,0) = g.
e¡Ek.m8Ω,=y²H(z,λ) = 0 ¤kŒU)´k..5¿λ∈[0,1],
z
n
+λ(a
1
z
n−1
+···+a
n
)+(1−λ) = 0,
þªü>§
|z|
n
≤|a
1
|·|z|
n−1
+···+|a
n
|+1(3)
eÓÔ•§)Ã.§é?¿êm§Ñ•3λ
m
∈[0,1]§z
m
∈C§¦
H(z
m
,λ
m
) = 0…|z
m
|≥m,
DOI:10.12677/pm.2022.12100216nØêÆ
ÆZ
òz
m
“\(3)ª§…ü>ÓØ±|z
m
|§
1 ≤|a
1
|·|z
m
|
−1
+···+|a
n
|·|z
m
|
−n
+|z
m
|
−n
≤|a
1
|·m
−1
+···+|a
n
|·m
−n
+m
−n
→0(m→∞)
gñ.ÏdÓÔ•§H(z,λ)=0¤kŒU)´k.,=•3M >0,¦|z|<M,
-r= max{M,2},B(r)L«±‹I:•%,Œ»•rm,K•§¤k)z∈B(r).B(r)Œ
ŠΩ.Ïdp= 0/∈h
λ
(∂Ω).
e¡OŽ{ü•§g(z) = z
n
−1 = 03z∈B(r)¥ÿÀݧ=D(g,B(r),0).
g(z) = 0kn‡Š§=1ng•ЧP•
z
k
= e
i2kπ
n
,(k= 0,1,2,···,n−1)
|^Eê†kS¢êééA§rE²¡þ¼êw‰R
2
→R
2
N,=z=(x,y)→g(z)=
(u(x,y),v(x,y)),OŽJacobi1ªÎÒ.
J
g
(z) =
∂(u,v)
∂(x,y)
=





u
x
u
y
v
x
v
y





= u
x
v
y
−u
y
v
x
Ï•g(z)=(u(x,y),v(x,y))´)ۼꧤ±u(x,y),v(x,y) ÷v…Ü-iù•§§=u
x
=v
y
,
u
y
= −v
x
,ÏJ
g
(z) = u
2
x
+v
2
x
= |g
0
(z)|
2
= |nz
n−1
|
2
= n
2
§
D(g,B(r),0) =
n
X
k=1
sgnJ
g
(z
k
) =
n
X
k=1
sgnn
2
= n
ŠâÿÀÝÓÔØC5§Œ
D(f,B(r),0) = D(H(·,1),B(r),0) = D(H(·,0),B(r),0) = D(g,B(r),0) = n6= 0
dÿÀÝKronecker•3½n§f(z) = 0 –k˜‡Š.
5µÓÔ•§eŠz
n
= 0§K0´•§n-Š§Ï•30 ?ꊴ"§Ïd0 ´.
ЧØU†OŽÿÀݧI‡^KŠ%C§ØX†ü ŠOŽÝ•{ü.
3.~f
e¡Þ~`²(Ø(5.
f(z)=z
5
+z
3
+6z3B(1) ={z:|z|<1}|Sw,kŠz=0.e¡^ÿÀÝ•{5y²ù˜
(Ø.EÓÔ•§
h
λ
(z) = H(z,λ) = λf(z)+(1−λ)g(z) = λ(z
5
+z
3
+6z)+(1−λ)·6z,λ∈[0,1]
DOI:10.12677/pm.2022.12100217nØêÆ
ÆZ
z∈B(1) ,=|z|= 1ž,
|H(z,λ)|= |λ(z
5
+z
3
)+6z|≥|6z|−|λ(z
5
+z
3
)|
≥|6z|−|z
5
+z
3
|≥|6z|−(|z|
5
+|z|
3
|) ≥6−2 = 4 >0.
Ïdp= 0/∈h
λ
(∂Ω),g(z) = 6z3m8B(1)S•k˜‡Šz
1
= 0,u(x,y) = 6x,v(x,y) = 6y,O
Žz
1
= 0?Jacobi1ª.
J
g
(z) =
∂(u,v)
∂(x,y)
=





u
x
u
y
v
x
v
y





=





60
06





= 36
¤±D(g,B(1),0) =sgnJ
g
(z
1
) = 1.A^ÓÔØC5,•
D(f,B(1),0) = D(H(·,1),B(1),0) = D(H(·,0),B(1),0) = D(g,B(1),0) = 1 6= 0.
dÿÀÝKronecker•3½n§f(z) = 0 3m8B(1) S–k˜‡Š.y(Ø(5.
—
©I[g,‰ÆÄ7(No.61573228)!ô€Žg,‰ÆÄ7(No.BK20181058)|±.
ë•©z
[1]XZ.“êÄ½nïÄ{¤[D]:[a¬Æ Ø©].ÜS:ÜŒÆ,2021:53-61.
[2]®ŒÆêÆXAÛ†“êï¿c“ê|.p“ê[M].®:p˜Ñ‡ ,2003:
27-28.
[3]¨Œ.EC¼êØ[M].®:p˜Ñ‡,2013:124-125,258-261.
[4]Âï.“êÆÄ½nA«y²•{[J].êÆÆS†ïÄ,2019(10):84-85.
[5]•Un.E¼ê3“êÄ½ny²¥A^[J].ɲ“‰ÆÆ(g,‰Æ‡),2004,3(3):
277-278.
[6]‰ø.“êÄ½nE©Ûy{[J].ŒÆêÆ,2005,21(4):111-114.
[7]šýù,p¬V.“êÄ½nÿÀy²9í2[J].³eìŒÆÆ(g,‰Æ‡),2018,
39(4):17-20.
[8]Üœ.“êÄ½nÿÀy²[J].®Ê˜ÊUŒÆÆ,1994,20(1):111-114.
[9]°%.õ‘ª-ŠOªÚ“êÄ½n{y[J].êÆ¢‚†@£,2009,39(11):
128-132.
DOI:10.12677/pm.2022.12100218nØêÆ
ÆZ
[10]Mawhin,J.(1979)TopologicalDegreeMethodsinNonlinearBoundaryValueProblems.
ACBMSRegionalConferenceSeriesinMathematics,40,42-50.
https://doi.org/10.1090/cbms/040
[11]HŒ.š‚5•¼©Û[M].LH:ìÀ‰ÆEâч,2001:87-135.
DOI:10.12677/pm.2022.12100219nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.