设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2022,12(1),109-116
PublishedOnlineJanuary2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.121015
/
ª
n
Ý
‚
þ
Gorenstein
AC
-
Ý
‘
ê
ooo
•••
ˆˆˆ
§§§
¡¡¡
ÿÿÿ
Ü
“
‰
Œ
Æ
§
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2021
c
12
8
F
¶
¹
^
F
Ï
µ
2022
c
1
14
F
¶
u
Ù
F
Ï
µ
2022
c
1
21
F
Á
‡
©
ï
Ä
/
ª
n
Ý
‚
þ
Gorenstein
AC
-
Ý
‘
ê
¯
K
"
-
T
=
A
0
UB
•
˜
‡
/
ª
n
Ý
‚
§
Ù
¥
A
Ú
B
•
‚
,
U
•
˜
‡
(
B,A
)
-
V
§
M
=
M
1
M
2
ϕ
M
•
†
T
-
"
·
‚
|
^
†
A
-
M
1
Ú
†
B
-
M
2
Gorenstein
AC
-
Ý
‘
ê
§
Ï
L
E
†
T
-
Ü
S
•{
‰
Ñ
T
M
Gorenstein
AC
-
Ý
‘
ê
•
x
§
?
ï
á
‚
A
§
‚
B
Ú
‚
T
†
N
Gorenstein
AC
-
Ý
‘
ê
ƒ
m
'
X
"
Š
•
ù
(
Ø
A^
§
·
‚
•
x
‚
T
(
R
)=
R
0
RR
†
N
Gorenstein
AC
-
Ý
‘
ê
9
T
‚
þ
†
Gorenstein
AC
-
Ý
‘
ê
"
'
…
c
/
ª
n
Ý
‚
§
Gorenstein
AC
-
Ý
§
Level
§
Gorenstein
AC
-
Ý
‘
ê
§
†
N
Gorenstein
AC
-
Ý
‘
ê
Gorenstein
AC
-ProjectiveDimensionsover
FormalTriangularMatrixRings
BangyuLi,XiaoyanYang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
©
Ù
Ú
^
:
o
•
ˆ
,
¡
ÿ
.
/
ª
n
Ý
‚
þ
Gorenstein
AC
-
Ý
‘
ê
[J].
n
Ø
ê
Æ
,2022,12(1):109-116.
DOI:10.12677/pm.2022.121015
o
•
ˆ
§
¡
ÿ
Received:Dec.8
th
,2021;accepted:Jan.14
th
,2022;published:Jan.21
st
,2022
Abstract
ThispaperconsidersGorenstein
AC
-projectivedimensionsoverformaltriangularma-
trixrings.Let
T
=
A
0
UB
beaformaltriangularmatrixring,where
A
and
B
are
ringsand
U
isa
(
B,A
)
-bimodule,andlet
M
=
M
1
M
2
ϕ
M
bealeft
T
-module.Bycon-
structingexactsequences,wecharacterizeGorenstein
AC
-projectivedimensionsofa
left
T
-module
T
M
withGorenstein
AC
-projectivedimensionsofleft
A
-module
M
1
and
left
B
-module
M
2
.Moreover,weestablisharelationshipofleftglobalGorenstein
AC
-
projectivedimensionsofring
T
and
A
,
B
.Asanapplicationofaboveconclusions,left
globalGorenstein
AC
-projectivedimensionofthering
T
(
R
) =
R
0
RR
andGorenstein
AC
-projectivedimensionoftheleft
T
(
R
)
-modulearedescribed.
Keywords
FormalTriangularMatrixRing,Gorenstein
AC
ProjectiveModule,LevelModule,
Gorenstein
AC
-ProjectiveDimension,LeftGlobalGorenstein
AC
-Projective
Dimension
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
Gorenstein
Ó
N
n
Ø
ï
Ä
S
N
C
c
5
˜
†
É
ƒ
é
Ó
N
“
ê
+
•
Æ
ö
‚
2
•
'
5
.
§
å
u
1969
c
Auslander
Ú
Brigder
•
V
>
Noetherian
‚
þ
k
•
)
¤
Ú
\
G-
‘
ê
V
g
(
„
[1]).
Enochs
Ú
Jenda
÷
X
Auslander
Ú
Brigder
g
´
Ú
\
Gorenstein
Ý
Ú
S
V
g
(
„
[2]).
3
[3][4]
¥
,Ding
©
O
ï
Ä
Gorenstein
Ý
Ú
S
A
Ï
œ
¹
:Gorenstein
²
"
Ú
Gorenstein
FP
-
S
.
a
q
u
Noetherian
‚
þ
Gorenstein
Ý
Ú
S
,
ù
ü
«
3
v
à
‚
þ
k
é
õ
`
{
5
Ÿ
(
„
[3–7]).
Ï
Ding
Ú
Chen
#
Ñ
ó
Š
,Gillespie
©
O
ò
§
‚·¶
•
Ding
Ý
Ú
Ding
S
(
„
[5]).
,Bravo
•
?
˜
Ú
ï
Ä
˜
„
‚
þ
Gorenstein
Ó
N
“
ê
,
Ú
\
¿
ï
Ä
Gorenstein
AC
-
Ý
Ú
Gorenstein
AC
-
S
(
„
[8]).
DOI:10.12677/pm.2022.121015110
n
Ø
ê
Æ
o
•
ˆ
§
¡
ÿ
A
,
B
•
‚
,
U
•
(
B,A
)-
V
,
T
=
A
0
UB
.
T
þ
\
{
Ú
¦
{
•
˜
„
Ý
\
{
Ú
¦
{
,
ù
ž
T
/
¤
˜
‡
‚
,
·
‚
¡
ƒ
•
/
ª
n
Ý
‚
.
Š
•
˜
«
š
†‚
,
/
ª
n
Ý
‚
3
“
ê
L
«
Ø
Ú
‚
n
Ø
¥
å
-
‡
Š
^
.
C
c
5
,
¯
õ
;
[
Æ
ö
é
/
ª
n
Ý
‚
þ
Ó
N
5
Ÿ
?
1
ï
Ä
,
¿
N
õ
¤
J
µ
X
Zhang
£
ã
Artin
n
Ý
‚
þ
Gorenstein
Ý
(
„
[9]),Li
3
[10]
¥
•
x
/
ª
n
Ý
‚
Gorenstein
Ý
,2019
c
,Mao
ï
Ä
/
ª
n
Ý
‚
þ
Ding
[11],
Mou
‰
Ñ
˜
½
^
‡
e
/
ª
n
Ý
‚
þ
Gorenstein
AC
-
Ý
d
•
x
(
„
[12]).2016
c
,
Zhu
£
ã
n
Ý
‚
þ
Gorenstein
Ó
N
‘
ê
(
„
[13]),
3
[11]
¥
,Mao
‰
Ñ
n
Ý
‚
Ú
Ù
þ
Ding
Ý
‘
ê
X
e
•
x
:
max
{
Dpd(
A
M
1
)
,
Dpd(
B
M
2
)
}≤
Dpd(
T
M
)
≤
max
{
Dpd(
A
M
1
)+1
,
Dpd(
B
M
2
)
}
.
±
9
†
ƒ
é
ó
Ding
S
‘
ê
•
x
.
É
þ
ã
ï
Ä
é
u
,
©
J
Ñ
E
Gorenstein
AC
-
Ý
Ú
Gorenstein
AC
-
Ý
Ü
S
#
•{
,
¿
é
/
ª
n
Ý
‚
þ
Gorenstein
AC
-
Ý
‘
ê
ù
˜
™
)û
¯
K
‰
Ñ
M
#5
ï
Ä
.
y
²
e
B
N
Gorenstein
AC
-
Ý
‘
ê
k
•
,
U
A
•
k
•
)
¤
Ý
,
B
U
•
Ý
,
é
u
†
T
-
M
=
M
1
M
2
ϕ
M
,
·
‚
k
Gorenstein
AC
-
Ý
‘
ê
X
e
'
X
:
max
{
G
AC
pd(
A
M
1
)
,
G
AC
pd(
B
M
2
)
}≤
G
AC
pd(
T
M
)
≤
max
{
G
AC
pd(
A
M
1
)+1
,
G
AC
pd(
B
M
2
)
}
.
?
,
e
B
6
= 0,
K
‚
T
,
A
,
B
†
N
Gorenstein
AC
-
Ý
‘
ê
m
k
X
e
'
X
:
max
{
lG
AC
PD(
A
)
,
lG
AC
PD(
B
)
,
1
}≤
lG
AC
PD(
T
)
≤
max
{
lG
AC
PD(
A
)+1
,
lG
AC
PD(
B
)
}
.
2.
ý
•
£
©
¥
¤
k
‚
þ
•
k
ü
š
"
(
Ü
‚
,
¤
k
þ
•
j
.
é
u
‚
R
,
·
‚
^
R
-Mod(
Mod-
R
)
L
«
†
(
m
)
R
-
‰
Æ
,
^
R
M
(
M
R
)
L
«
˜
‡
†
(
m
)
R
-
.
·
‚
^
pd
(
M
),
id
(
M
)
Ú
fd
(
M
)
©
OL
«
M
Ý
,
S
Ú
²
"
‘
ê
,
^
G
AC
pd(
R
M
)
L
«
†
R
-
M
Gorenstein
AC
-
Ý
‘
ê
.
¿
^
lG
AC
PD(
R
)
Ú
lLID(
R
)
©
OL
«
‚
R
†
N
Gorenstein
AC
-
Ý
‘
ê
Ú
†
N
Level
S
‘
ê
.
e
†
R
-
F
k
Ý
©
)
···→
P
2
→
P
1
→
P
0
→
F
→
0
¦
Ù
¥
¤
k
Ý
†
R
-
P
i
þ
•
k
•
)
¤
,
K
¡
F
•
‡
k
•
L
«
.
e
†
R
-
L
é
?
¿
‡
k
•
L
«
m
R
-
F
þ
k
Tor
R
1
(
F,L
)=0,
K
¡
L
•
Level
.
é
u
‚
R
Ú
¤
k
†
R
-
R
X
,
·
‚
½
Â
lLID(
R
)=sup
{
id
(
R
X
)
|
R
X
•
?
¿
Level
†
R
-
}
•
‚
R
†
N
Level
S
‘
ê
.
•
Ä
Ý
†
R
-
Ü
P
:
···→
P
1
→
P
0
→
P
0
→
P
1
→···
,
Ù
¥
M
∼
=
Ker(
P
0
→
P
1
),
e
é
u
?
¿
Level
†
R
-
L
,
þ
k
Hom
R
(
P
,L
)
Ü
,
·
‚
¡
M
•
Gorenstein
AC
-
Ý
.
é
u
†
R
-
X
,
½
Â
G
AC
pd(
R
X
)=inf
{
n
|
•
3
†
R
-
Ü
0
→
G
n
→···→
G
1
→
G
0
→
X
→
0,
Ù
¥
¤
k
G
i
þ
•
Gorenstein
AC
-
Ý
}
•
X
Gorenstein
AC
-
Ý
‘
ê
.
e
÷
v
^
‡
n
Ø
•
3
,
K
-
G
AC
pd(
R
X
)=
∞
;
½
Â
lG
AC
PD(
R
)=sup
{
G
AC
pd(
R
X
)
|
X
•
?
¿
†
R
-
}
•
‚
R
†
N
Gorenstein
AC
-
Ý
‘
ê
.
DOI:10.12677/pm.2022.121015111
n
Ø
ê
Æ
o
•
ˆ
§
¡
ÿ
T
=
A
0
UB
L
«
˜
‡
/
ª
n
Ý
‚
,
Ù
¥
A
Ú
B
•
‚
,
U
•
˜
‡
(
B,A
)-
V
.
d
[14][
½
n
1.5]
Œ
•
,
‰
Æ
T
-Mod
d
u
‰
Æ
Ω,
Ù
é
–
•
n
|
M
=
M
1
M
2
ϕ
M
,
Ù
¥
M
1
∈
A
-Mod,
M
2
∈
B
-
Mod,
ϕ
M
:
U
⊗
A
M
1
→
M
2
•
˜
‡
B
-
Ó
;Ω
¥
•
d
M
1
M
2
ϕ
M
N
1
N
2
ϕ
N
f
1
f
2
,
Ù
¥
f
1
∈
Hom
A
(
M
1
,N
1
)
,f
2
∈
Hom
B
(
M
2
,N
2
),
…
÷
v
e
ã
†
.
U
⊗
A
M
1
ϕ
M
1
⊗
f
1
/
/
U
⊗
A
N
1
ϕ
N
M
2
f
2
/
/
N
2
.
Œ
±
u
y
,
†
T
-
S
0
→
M
0
1
M
0
2
ϕ
M
0
→
M
1
M
2
ϕ
M
→
M
00
1
M
00
2
ϕ
M
00
→
0
Ü
…
=
†
A
-
S
0
→
M
0
1
→
M
1
→
M
00
1
→
0
Ú
†
B
-
S
0
→
M
0
2
→
M
2
→
M
00
2
→
0
þ
Ü
.
3.
Ì
‡
(
J
·
‚
k
‰
Ñ
±
e
Ú
n
,
•
Ì
‡
(
J
y
²
‰
Ð
Á
=
.
Ú
n
3.1.
[12][
½
n
1]
e
T
=
A
0
UB
•
/
ª
n
Ý
‚
,
Ù
¥
A
Ú
B
•
‚
,
B
U
²
"
,
U
A
•
k
•
)
¤
Ý
,
K
k
e
ã
·
K
d
:
(1)
†
T
-
M
=
M
1
M
2
ϕ
M
•
Gorenstein
AC
-
Ý
.
(2)
M
1
•
Gorenstein
AC
-
Ý
†
A
-
,
M
2
/
im(
ϕ
M
)
•
Gorenstein
AC
-
Ý
†
B
-
,
B
Ó
ϕ
M
:
U
⊗
A
M
1
→
M
2
•
ü
Ó
.
?
˜
Ú
,
U
⊗
A
M
1
•
Gorenstein
AC
-
Ý
†
B
-
…
=
M
2
•
Gorenstein
AC
-
Ý
†
B
-
.
Ú
n
3.2.
[15][
Ú
n
2.2.1]
é
u
†
R
-
,
e
ã
·
K
d
:
(1)G
AC
pd(
R
M
)
≤
n
.
(2)
X
J
é
?
¿
†
R
-
Ü
S
0
→
K
n
→
P
n
−
1
→···→
P
1
→
P
0
→
M
→
0,
Ù
¥
z
‡
P
i
þ
•
Gorenstein
AC
-
Ý
†
R
-
,
@
o
K
n
•
Gorenstein
AC
-
Ý
†
R
-
.
e
ã
ü
^
Ú
n
©
O
‰
Ñ
‚
R
†
N
Level
S
‘
ê
Ú
†
N
Gorenstein
AC
-
Ý
‘
ê
m
Œ
'
X
,
±
9
†
B
-
U
⊗
A
P
´
Ý
†
B
-
˜
‡
¿
©
^
‡
.
Ú
n
3.3.
e
R
•
‚
,
K
k
lLID(
R
)
≤
lG
AC
PD(
R
)
.
Proof.
lG
AC
PD(
R
)=
n<
∞
.
K
é
?
¿
†
R
-
M
,
•
3
†
R
-
Ü
0
→
G
n
→
G
n
−
1
→
···→
G
1
→
G
0
→
M
→
0,
Ù
¥
¤
k
G
i
þ
•
Gorenstein
AC
-
Ý
†
R
-
.
?
Level
†
R
-
DOI:10.12677/pm.2022.121015112
n
Ø
ê
Æ
o
•
ˆ
§
¡
ÿ
L
.
Ï
•
G
n
•
Gorenstein
AC
-
Ý
†
R
,
¤
±
7
•
3
Hom
R
(
−
,L
)-
Ü
Ý
†
R
-
Ü
···→
P
2
→
P
1
→
P
0
→
G
n
→
0.
é
?
¿
i
≥
1,
k
Ext
n
+
i
R
(
M,L
)
∼
=
Ext
i
R
(
G
n
,L
)=0
,
d
d
Œ
id
(
R
L
)
≤
n
,
=
k
lLID(
R
)
≤
lG
AC
PD(
R
) =
n
.
Ú
n
3.4.
e
U
•
Ý
†
B
-
,
P
•
Ý
†
A
-
,
K
U
⊗
A
P
•
Ý
†
B
-
.
Proof.
Ï
•
U
•
Ý
†
B
-
,
P
•
Ý
†
A
-
,
¤
±
Hom
A
(
P,
−
),Hom
B
(
U,
−
)
þ
•
ܼ
f
,
§
‚
E
ܼ
f
Hom
A
(
P,
Hom
B
(
U,
−
))
½
Ü
.
d
Š
‘
Ó
½
n
,
k
¼
f
Hom
B
(
U
⊗
A
P,
−
)
Ü
,
U
⊗
A
P
•
Ý
†
B
-
.
Ú
n
3.5.
lG
AC
PD(
B
)
<
∞
,
U
A
²
"
‘
ê
k
•
,
B
U
•
Ý
.
e
X
•
Gorenstein
AC
-
Ý
†
A
-
,
K
U
⊗
A
X
•
Gorenstein
AC
-
Ý
†
B
-
.
Proof.
Ï
•
X
•
Gorenstein
AC
-
Ý
†
A
-
,
¤
±
•
3
Ý
†
A
Ü
Λ :
···→
P
−
1
→
P
0
→
P
1
→
P
2
→···
¦
A
X
=ker(
P
0
→
P
1
).
Ï
•
B
U
Ý
,
d
Ú
n
3.4,
Œ
U
⊗
A
P
i
þ
•
Ý
†
B
-
.
q
Ï
•
fd
(
U
A
)
<
∞
,
¤
±
Œ
d
[16][
Ú
n
2.3]
Ý
†
B
-
Ü
U
⊗
A
Λ :
···→
U
⊗
A
P
−
1
→
U
⊗
A
P
0
→
U
⊗
A
P
1
→
U
⊗
A
P
2
→···
¦
†
B
-
U
⊗
A
X
∼
=
ker(
U
⊗
A
P
0
→
U
⊗
A
P
1
).
d
Ú
n
3.3,
é
¤
k
Level
†
B
-
L
,
k
id
(
B
L
)
<
∞
.
d
[16][
Ú
n
2.4]
k
Hom
B
(
U
⊗
A
Λ
,L
)
Ü
.
=
k
U
⊗
A
X
•
Gorenstein
AC
-
Ý
†
B
-
.
e
¡
‰
Ñ
©
Ì
‡
(
J
.
½
n
3.6.
lG
AC
PD(
B
)
<
∞
,
U
A
•
k
•
)
¤
Ý
,
B
U
•
Ý
.
K
é
u
†
T
-
M
=
M
1
M
2
ϕ
M
,
k
max
{
G
AC
pd(
A
M
1
)
,
G
AC
pd(
B
M
2
)
}≤
G
AC
pd(
T
M
)
≤
max
{
G
AC
pd(
A
M
1
)+1
,
G
AC
pd(
B
M
2
)
}
.
Proof.
Ä
k
y
²
max
{
G
AC
pd(
A
M
1
)
,
G
AC
pd(
B
M
2
)
}≤
G
AC
pd(
T
M
).
G
AC
pd(
T
M
)=
m<
∞
.
K
k
†
T
-
Ü
0
→
N
m
1
N
m
2
ϕ
m
∂
m
1
∂
m
2
→
N
m
−
1
1
N
m
−
1
2
ϕ
m
−
1
→···→
N
0
1
N
0
2
ϕ
0
∂
0
1
∂
0
2
→
M
1
M
2
ϕ
M
→
0
,
Ù
¥
¤
k
N
i
1
N
i
2
ϕ
i
þ
•
Gorenstein
AC
-
Ý
†
T
-
.
d
Ú
n
3.1,
·
‚
A
N
i
1
Ú
B
(
N
i
2
/
im(
ϕ
i
))
þ
•
Gorenstein
AC
-
Ý
.
qd
Ú
n
3.5,
Œ
U
⊗
A
N
i
1
þ
•
Gorenstein
AC
-
Ý
†
B
.
U
d
Ú
n
3.1,
k
B
N
i
2
þ
•
Gorenstein
AC
-
Ý
.
•
3
†
A
-
Ü
0
→
N
m
1
∂
m
1
→
N
m
−
1
1
→···→
DOI:10.12677/pm.2022.121015113
n
Ø
ê
Æ
o
•
ˆ
§
¡
ÿ
N
0
1
∂
0
1
→
M
1
→
0
Ú
†
B
Ü
0
→
N
m
2
∂
m
2
→
N
m
−
1
2
→···→
N
0
2
∂
0
2
→
M
2
→
0,
d
d
G
AC
pd(
A
M
1
)
≤
m
Ú
G
AC
pd(
B
M
2
)
≤
m
y
.
e
5
y
²
G
AC
pd(
T
M
)
≤
max
{
G
AC
pd(
A
M
1
)+1
,
G
AC
pd(
B
M
2
)
}
.
max
{
G
AC
pd(
A
M
1
)+1
,
G
AC
pd(
B
M
2
)
}
=
n<
∞
.
K
•
3
†
A
-
Ü
0
→
C
n
−
1
f
n
−
1
→
C
n
−
2
f
n
−
2
→···→
C
1
f
1
→
C
0
f
0
→
M
1
→
0,
Ù
¥
¤
k
C
i
þ
•
Gorenstein
AC
-
Ý
†
A
-
.
qk
†
B
-
Ü
P
0
g
0
→
M
2
→
0,
Ù
¥
P
0
•
Ý
†
B
-
.
P
†
A
-
ker(
f
i
−
1
)
•
K
i
1
.
w
,
k
÷
Ó
π
i
:
C
i
→
K
i
1
,
i
=1
,
2
,
···
,n
−
1.
½
Â
B
-
Ó
h
0
:(
U
⊗
A
C
0
)
⊕
P
0
→
M
2
,
é
u
u
∈
U,c
0
∈
C
0
,x
0
∈
P
0
,
h
0
(
u
⊗
c
0
,x
0
)=
ϕ
M
(
u
⊗
f
0
(
c
0
)) +
g
0
(
x
0
).
w
,
h
0
•
÷
Ó
,
P
†
B
-
ker(
h
i
−
1
)
•
K
i
2
,
Œ
±
†
T
-
Ü
S
0
→
K
1
1
K
1
2
ψ
1
→
C
0
(
U
⊗
A
C
0
)
⊕
P
0
f
0
h
0
→
M
1
M
2
ϕ
M
→
0
.
Ó
n
,
•
3
†
B
-
Ü
P
1
g
1
→
K
1
2
→
0,
Ù
¥
P
1
•
Ý
†
B
-
.
½
Â
B
-
Ó
h
1
: (
U
⊗
A
C
1
)
⊕
P
1
→
K
1
2
,
é
u
u
∈
U,c
1
∈
C
1
,x
1
∈
P
1
,
h
1
(
u
⊗
c
1
,x
1
)=
ψ
1
(
u
⊗
π
1
(
c
1
))+
g
1
(
x
1
).
Ï
•
h
1
÷
,
Œ
†
T
-
Ü
S
0
→
K
2
1
K
2
2
ψ
2
→
C
1
(
U
⊗
A
C
1
)
⊕
P
1
π
1
h
1
→
K
1
1
K
1
2
ψ
1
→
0
.
-
E
ù
‡
L
§
,
·
‚
Œ
†
T
-
Ü
S
0
→
0
K
n
−
1
2
→
C
n
−
1
(
U
⊗
A
C
n
−
1
)
⊕
P
n
−
1
→···
→
C
1
(
U
⊗
A
C
1
)
⊕
P
1
→
C
0
(
U
⊗
A
C
0
)
⊕
P
0
→
M
1
M
2
ϕ
M
→
0
.
d
Ú
n
3.5,
¤
k
U
⊗
A
C
i
þ
•
Gorenstein
AC
-
Ý
†
B
-
.
d
[15][
Ú
n
2.1.8]
•
,Gorenstein
AC
-
Ý
a
é
†
Ú
µ
4
,
Ý
†
B
-
P
i
þ
•
Gorenstein
AC
-
Ý
,
¤
k
(
U
⊗
A
C
i
)
⊕
P
i
½
þ
•
Gorenstein
AC
-
Ý
†
B
-
.
q
Ï
•
G
AC
pd(
B
M
2
)
≤
n
,
¤
±
d
Ú
n
3.2
Œ
í
Ñ
K
n
−
1
2
•
Gorenstein
AC
-
Ý
†
B
-
.
d
Ú
n
3.1
•
,
0
K
n
−
1
2
Ú
C
i
(
U
⊗
A
C
i
)
⊕
P
i
þ
•
Gorenstein
AC
-
Ý
†
T
-
.
Ï
d
G
AC
pd(
T
M
)
≤
n
.
d
½
n
3.6
§
·
‚
Œ
Ñ
±
e
í
Ø
.
DOI:10.12677/pm.2022.121015114
n
Ø
ê
Æ
o
•
ˆ
§
¡
ÿ
í
Ø
3.7.
B
U
6
= 0
´
Ý
,
U
A
•
k
•
)
¤
Ý
.
K
max
{
lG
AC
PD(
A
)
,
lG
AC
PD(
B
)
,
1
}≤
lG
AC
PD(
T
)
≤
max
{
lG
AC
PD(
A
)+1
,
lG
AC
PD(
B
)
}
.
Proof.
Ä
k
·
‚
y
²
max
{
lG
AC
PD(
A
)
,
lG
AC
PD(
B
)
,
1
}≤
lG
AC
PD(
T
).
lG
AC
PD(
T
)=
m<
∞
.
Ï
B
-
Ó
U
6
=0,
ϕ
M
:
U
⊗
A
=
U
→
0
Ø
•
ü
Ó
.
d
Ú
n
3.1
•
,
†
T
-
X
=
A
0
Ø
•
Gorenstein
AC
-
Ý
†
T
-
.
m
≥
G
AC
pd(
T
X
)
≥
1.
?
†
B
-
N
,
d
½
n
3.6
•
,G
AC
pd(
B
N
)
≤
G
AC
pd
T
0
N
≤
lG
AC
PD(
T
)=
m
.
Ï
d
k
lG
AC
PD(
B
)
≤
m
.
?
†
A
-
Y
,
d
½
n
3.6
•
,G
AC
pd(
A
Y
)
≤
G
AC
pd
T
Y
0
≤
lG
AC
PD(
T
)=
m
.
Ï
d
k
lG
AC
PD(
A
)
≤
m
.
n
þ
,
{
lG
AC
PD(
A
)
,
lG
AC
PD(
B
)
,
1
}≤
lG
AC
PD(
T
).
e
¡
·
‚
5
y
²
lG
AC
PD(
T
)
≤
max
{
lG
AC
PD(
A
)+1
,
lG
AC
PD(
B
)
}
.
{
lG
AC
PD(
A
)+1
,
lG
AC
PD(
B
)
}
=
m<
∞
.
´
„
lG
AC
PD(
B
)
<
∞
.
Œ
d
½
n
3.6
•
,
é
?
¿
†
T
-
M
=
M
1
M
2
ϕ
M
k
G
AC
pd(
T
M
)
≤
max
{
G
AC
pd(
A
M
1
)+1
,
G
AC
pd(
B
M
2
)
}≤
max
{
lG
AC
PD(
A
)+1
,
lG
AC
PD(
B
)
}
.
Ï
d
lG
AC
PD(
T
)
≤
max
{
lG
AC
PD(
A
)+1
,
lG
AC
PD(
B
)
}
.
©
ï
Ä
é
–
þ
•
‚
§
•
Ä
–
“
ê
(
§
é
J
‰
Ñ
ä
N
ä
k
ê
Š
•
ý
~
f
"
Ø
L
Š
•
©
•{
k
5
˜
‡
`
²
§
·
‚
Œ
±
A^
½
n
3.6
Ú
í
Ø
3.7
‰
Ñ
X
e
í
Ø
Š
•
«
~
.
í
Ø
3.8.
R
•
‚
,
T
(
R
) =
R
0
RR
.
K
(1)
e
lG
AC
PD(
R
)
<
∞
,
M
=
M
1
M
2
ϕ
M
•
†
T
(
R
)-
,
K
max
{
G
AC
pd(
R
M
1
)
,
G
AC
pd(
R
M
2
)
}≤
G
AC
pd(
T
(
R
)
M
)
≤
max
{
G
AC
pd(
R
M
1
)+1
,
G
AC
pd(
R
M
2
)
}
.
(2)
max
{
lG
AC
PD(
R
)
,
1
}≤
lG
AC
PD(
T
(
R
))
≤
lG
AC
PD(
R
)+1
.
ë
•
©
z
[1]Auslander,M.andBridge,M.(1969)StableModuleTheory.In:
MemoirsoftheAmerican
MathematicalSociety
,No.94,AmericanMathematicalSociety,Providence,RI.
[2]Enochs, E.E.and Jenda,O.M.G. (1995)GorensteinInjective andGorenstein Projective Mod-
ules.
MathematischeZeitschrift
,
220
,611-633.https://doi.org/10.1007/BF02572634
DOI:10.12677/pm.2022.121015115
n
Ø
ê
Æ
o
•
ˆ
§
¡
ÿ
[3]Ding,N.Q.,Li,Y.L.andMao,L.X.(2009)StronglyGorensteinFlatModules.
Journalofthe
AustralianMathematicalSociety
,
86
,323-338.https://doi.org/10.1017/S1446788708000761
[4]Mao, L.X.andDing, N.Q. (2008)Gorenstein
FP
-InjectiveandGorensteinFlat Modules.
Jour-
nalofAlgebraandItsApplications
,
7
,491-506.https://doi.org/10.1142/S0219498808002953
[5]Gillespie, J. (2010) Model Structures on Modules over Ding-Chen Rings.
Homology,Homotopy
andApplications
,
12
,61-73.https://doi.org/10.4310/HHA.2010.v12.n1.a6
[6]Yang,G.(2012)HomologicalPropertiesofModulesoverDing-ChenRings.
Journalofthe
KoreanMathematicalSociety
,
49
,31-47.https://doi.org/10.4134/JKMS.2012.49.1.031
[7]Yang,G.,Liu, Z.K.andLiang,L. (2013) DingProjective and DingInjective Modules.
Algebra
Colloquium
,
20
,601-612.https://doi.org/10.1142/S1005386713000576
[8]Bravo,D.,Gillespie,J. andHovey,M.(2014)TheStable ModuleCategory ofaGeneralRing.
arxiv:1210.0196
[9]Zhang,P.(2013)Gorenstein-ProjectiveModulesandSymmetricRecollements.
JournalofAl-
gebra
,
388
,65-80.https://doi.org/10.1016/j.jalgebra.2013.05.008
[10]Li,H.H.,Zheng,Y.F., Hu,J.S.,
etal.
(2020) GorensteinProjective ModulesandRecollements
overTriangularMatrixRings.
CommunicationsinAlgebra
,
48
,4932-4947.
https://doi.org/10.1080/00927872.2020.1775240
[11]Mao,L.X.(2019)DingModulesandDimensionsoverFormalTriangularMatrixRings.arx-
iv:1912.06968
[12]
+
x
,
œ
,
Ó
²
.
n
Ý
‚
þ
Gorenstein
AC
-
Ý
[J].
3
Œ
ÆÆ
(
n
Æ
‡
),2021,
59(6):1361-1367.
[13]Zhu,R.M.,Liu,Z.K.andWang,Z.P.(2016)GorensteinHomologicalDimensionsofModules
overTriangularMatrixRings.
TurkishJournalofMathematics
,
40
,146-160.
https://doi.org/10.3906/mat-1504-67
[14]Green,E.L.(1982)OntheRepresentationTheoryofRingsinMatrixForm.
PacificJournal
ofMathematics
,
100
,123-138.https://doi.org/10.2140/pjm.1982.100.123
[15]
ˆ
À
ÿ
.
E
/
Gorenstein
AC
-
Ý
‘
ê
[D]:[
a
¬
Æ
Ø
©
].
=
²
:
=
²
Ï
Œ
Æ
,2019:1-38.
[16]Enochs,E.E., Izurdiaga,M.C.andTorrecillas, B.(2014)GorensteinConditionsoverTriangular
MatrixRings.
JournalofPureandAppliedAlgebra
,
218
,1544-1554.
https://doi.org/10.1016/j.jpaa.2013.12.006
DOI:10.12677/pm.2022.121015116
n
Ø
ê
Æ