设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(1),132-147
PublishedOnlineJanuary2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.121018
Sobolev.©ê‘ÅuЕ§šÛܯK
Mild)•35
xxxŒŒŒ'''
Ü“‰ŒÆêƆÚOÆ§[‹=²
ÂvFϵ2021c1215F¶¹^Fϵ2022c117F¶uÙFϵ2022c124F
Á‡
©|^ØÄ:½nÚý)ŽfnØ?ØHilbert ˜m¥Sobolev .α∈(1,2) Riemann-
Liouville©ê‘ÅuЕ§šÛܯKmild)•35"
'…c
Riemann-Liouville©êê§Sobolev.©ê‘ÅuÐXÚ§ØÄ:½n§
š;5ÿÝ
ExistenceofMildSolutionsfor
NonlocalProblemsofFractional
StochasticEvolutionEquations
ofSobolevType
YujieBai
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Dec.15
th
,2021;accepted:Jan.17
th
,2022;published:Jan.24
th
,2022
©ÙÚ^:xŒ'.Sobolev.©ê‘ÅuЕ§šÛܯKMild)•35[J].nØêÆ,2022,12(1):132-147.
DOI:10.12677/pm.2022.121018
xŒ'
Abstract
Inthispaper,byutilizingtheresolventoperatortheoryandthefixedpointtheorem,
theexistenceofmildsolutionsfornonlocalproblemsofRiemann-Liouvillefractional
stochasticevolutionequationsofSobolev-typewithorderα∈(1,2)isdiscussedin
Hilbertspaces.
Keywords
Riemann-LiouvilleFractionalDerivative, StochasticFractionalEvolutionSystemsof
SobolevType, FixedPointTheorem,TheMeasureofNoncompactness
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
©ê‡©•§2•A^u‰ÆÚó§Eâˆ‡+•, …'ê‡©•§•O(/£ãy
¢)¹¥y–ÄåÆ1•. ~X, Ê5!>zÆ!õš0Ÿ6Ä!˜íÄåÆy–ÑŒ±Ï
L©ê‡©•§5ï, Ïd-yNõÆöéTa•§nØÚ¢‚?1&¢. 3©z[1]¥,
Ponce|^ý)x;5©OïÄα∈(0,1) Úα∈(1,2)Caputo .©êuЕ§Ú
Riemann-Liouville.©êuЕ§šÛܯKmild)•35.
d, Sobolev .uЕ§~Ñy3ˆ«Ôn¯K¥, X6NÏLYñœ6Ä!9åÆ!
Ì•ÅDÂ.Ïd, Cc5†ƒƒ'¯KÚå<‚2•'5. ~X, Brill[2]ÚShowalter
[3]ïáBanach ˜m¥Sobolev .Œ‚5uЕ§)•35(J. ,˜•¡,D(½‘Å6Ä
3y¢-.´Ã{;•. Ïd, •Ä‘k‘ÅA©ê‡©•§äk¢S¿Â.AO/,z
Æ!ÔnÚ)ԉƥNõÄL§êÆ.ÑŒ±^‘Ň©•§|5£ã. 3©z[4]¥,
Mahmudov?Ø3Hilbert˜m¥Sobolev.©êŒ‚5‘ÅuЕ§mild)•359Cq
Œ›5. 3©z[5]¥,Benchaabane<|^ŽfŒ+nØ!©ê‡È©Ú‘Å©ÛEâïá
ySobolev .α∈(0,1) ©ê‘ÅuЕ§)•35Ú•˜5˜|¿©^‡. d,3©
z[6]¥, Šö|^Picard S“E|Sobolev .α∈(1,2) Caputo .ÚRiemann-Liouville
.©ê‘ÅuЕ§mild)•3•˜5.
DOI:10.12677/pm.2022.121018133nØêÆ
xŒ'
â·‚¤•,Sobolev.α∈(0,1)uЕ§)•35®²2•ïÄ,'u
α∈(1,2) Riemann-Liouville .©ê‘ÅuЕ§mild )•35ïÄ(Jƒé. É
þã©zéu, ©ò|^ý)ŽfnØÚØÄ:½nïÄHilbert˜m¥äkšÛÜ^‡
Sobolev.Riemann-Liouville©ê‘ÅuЕ§



D
α
t
(Ex(t)) = Ax(t)+f(t,x(t))+σ(t,x(t))
dW(t)
d(t)
, t∈I
0
:= (0,a],
E(g
2−α
∗x)(0) = x
0
−g(x),E(g
2−α
∗x)
0
(0) = x
1
−h(x)
(1.1)
mild )•35, Ù¥1<α<2, D
α
t
´αRiemann-Liouville .©êê, G¼êx(t) 
ŠuHilbert ˜mH, A:D(A)⊆H→H´È½4‚5Žf,E:D(E)⊆H→H´4‚5Žf,
x
0
,x
1
∈H,¼êf,g,h,σ´e©‰½·¼ê.
ïÄSobolev.‡©•§ž,·‚Ï~b:
(1)E,A´4‚5Žf;
(2)D(E) ⊂D(A),E´V;
(3)E
−1
´;Žf.
3ù«œ¹e,−AE
−1
´˜‡k.‚5Žf,§Œ±)¤˜‡˜—ëYŒ+,ë„©z[5][7].
©3ØbŽfE
−1
•35Ú;5œ¹e,$^Žfé(A,E))¤(α,α−1)-ý)x
{S
E
α,α−1
(t)}
t>0
˜5ŸÚLaplaceC†5½ÂXÚ(1.1)mild),¿3vký)ŽfS
E
α,α−1
(t)
;5^‡e,|^ØÄ:½nÚý)ŽfnØy²XÚ(1.1)mild)•35.
2.ý•£
(Ω,F,{F
t
}
t>0
,P)L«‘kÈf{F
t
}
t>0
…÷v~5^‡Vǘm.3(Ω,F,{F
t
}
t>0
,P)
¥{W
t
}
t>0
•ŠuHQ-‘BL§,Ù¥Q•k.‚5•Žf…trQ<+∞. `
k
>0´˜
‡k.S,{e
k
}
k>0
´H˜‡IOX,÷v
Qe
k
= `
k
e
k
,k= 1,2,3···.
{β
k
}
k>1
´˜‡ÕáÙK$Ä…÷v
hW(t),xi=
∞
X
k=1
p
`
k
he
k
,xiβ
k
(t),∀x∈H,t>0.
F
t
´d{W(s) : 0 6s6t})¤σ-“ê. -L
0
2
:= L
2
(Q
1
2
,Y). KL
0
2
´˜‡¢Œ©Hilbert
˜m, äk‰êkπk
2
L
0
2
= tr[πQπ
∗
], L
2
(Ω,H) L«Hilbert ˜mH¥¤krF
b
-Œÿ‘ÅCþ¤
˜m.C(I,L
2
(Ω,H)) ´lI:= [0,a] L
2
(Ω,H) ëYN˜m,…÷vÏ"^‡
sup
t∈I
Ekx(t)k
2
<∞.
DOI:10.12677/pm.2022.121018134nØêÆ
xŒ'
C(I,H) •C(I,L
2
(Ω,H)) 4f˜m, dŒÿÚF
t
-·AH-ŠL§x∈C(I,L
2
(Ω,H))
|¤,Ù‰ê½Â•
kxk
C
= (sup
t∈I
Ekx(t)k
2
)
1
2
,∀x∈C(I,H),
K(C(I,H),k·k
C
) •Banach˜m.B(H) :=B(H,H) L«lHgk.‚5ŽfNU
‰êk·k¤˜m.
½Â2.1 [8][1]é∀α>0, 
g
α
(t) =





t
α−1
Γ(α)
,t>0,
0,t60,
Ù¥Γ(·)L«Gamma¼ê.˜„/,¼êfÚgòȽ•
(f∗g)(t) =
Z
t
0
f(t−s)g(s)ds.
½Â2.2 [8][1]¼êu∈L
1
(I) α>0Riemann-Liouville.©êÈ©½Â•
J
α
t
u(t) := (g
α
∗u)(t) =
Z
t
0
g
α
(t−s)u(s)ds,t>0.
AO/,-J
0
t
u(t) = u(t),dòÈ5Ÿ,È©Žf{J
α
t
}
α>0
÷vŒ+Æ
J
α
t
J
β
t
= J
α+β
t
,α,β>0.
½Â2.3[8][1]¼êu∈L
1
(I) ÷vg
n−α
∗u∈W
n,1
(I), u∈L
1
(I) α>0 Riemann-
Liouville.©êê½Â•
D
α
t
u(t) := D
n
t
(g
n−α
∗u)(t) =
d
n
dt
n
Z
t
0
g
n−α
(t−s)u(s)ds,t>0,
Ù¥D
n
t
=
d
n
dt
n
,n= [α]L«Œu½uα•ê.
½Â2.4 [6]¼êf½Â3R
+
þ.eÈ©
Z
∞
0
e
−λt
f(t)dt
Âñ,KfLaplace C†•
b
f(λ) =
Z
∞
0
e
−λt
f(t)dt.
DOI:10.12677/pm.2022.121018135nØêÆ
xŒ'
Riemann-Liouville.©êêLaplaceC†•
c
D
α
t
u(λ) = λ
α
bu(λ)−
n−1
X
k=0
(g
n−α
∗u)
(k)
(0)λ
n−1−k
,(2.1)
Ù¥α>0,n= [α].
e¡,·‚0˜'u©êý)x{S
E
α,β
(t)}
t>0
ÄVg,•õ[!ë„©z[8][1].
½Â
ρ
E
(A) = {λ∈C: (λE−A) : D(E)∩D(A) →HŒ_,
(λE−A)
−1
∈B(H,D(E)∩D(A))}
•Žfé(A,E)ý)8,Ù¥D(A)ÚD(E) ©OL«ŽfAÚE½Â•. é∀λ>0,·
‚¡R(λE,A) := (λE−A)
−1
•ŽfAE-ý)Žf.
½Â2.5[9]{T(t)}
t>0
⊆B(H) ´˜‡C
0
-Œ+.e•3~êM>1,ω>0 ÷v
kT(t)k6Me
ωt
,t>0,
K¡{T(t)}
t>0
´(M,ω) .½•êk..
½Â2.6[10]A: D(A) ⊆H→H,E: D(E) ⊆H→H´Hilbert ˜mH¥4‚5Žf,
÷vD(A)∩D(E) 6= {0}.é∀α,β>0, e•3ω>0ÚrëY¼êS
E
α,β
: [0,∞) →B(H), ¦
S
E
α,β
(t)´(M,ω) .,{λ
α
: Reλ>ω}⊂ρ
E
(A),…é∀x∈H, k
λ
α−β
R(λ
α
E,A)x=
Z
∞
0
e
−λt
S
E
α,β
(t)xdt,Reλ>ω,(2.2)
K¡{S
E
α,β
(t)}
t>0
´dŽfé(A,E))¤(α,β)-ý)x.
52.1é∀1 <α<2,β= α−1 >0,Šâ(2.2)ªŒ
λR(λ
α
E,A)x=
Z
∞
0
e
−λt
S
E
α,α−1
(t)xdt,Reλ>ω,x∈H,
K¡{S
E
α,α−1
(t)}
t>0
´dŽfé(A,E))¤(M,ω) .(α,α−1)-ý)x. AO/,β= 1,d
(2.2)ªŒ•
λ
α−1
R(λ
α
E,A)x=
Z
∞
0
e
−λt
S
E
α,1
(t)xdt,Reλ>ω,x∈H,
K¡{S
E
α,1
(t)}
t>0
´dŽfé(A,E))¤(α,1)-ý)x.
DOI:10.12677/pm.2022.121018136nØêÆ
xŒ'
é∀α,β,γ>0,dcg
α
(λ) = λ
−α
Ú
c
D
α
t
u(λ) = λ
α
bu(λ)•
\
S
E
α,β+γ
(λ) = λ
α−(β+γ)
E(λ
α
E−A)
−1
=
1
λ
γ
λ
α−β
E(λ
α
E−A)
−1
=
1
λ
γ
d
S
E
α,β
(λ)
=
\
(g
γ
∗S
E
α,β
)(λ).
ŠâLaplaceC†•˜5,Œ
S
E
α,β+γ
(t) = (g
γ
∗S
E
α,β
)(t),t>0.
1 <α<2,β= α−1,γ= 1 ž,k
S
E
α,α
(t) = (g
1
∗S
E
α,α−1
)(t) =
Z
t
0
S
E
α,α−1
(s)ds,t>0.
Ïd,é∀x∈H, k
R(λ
α
E,A)x=
Z
∞
0
e
−λt
S
E
α,α
(t)dt,Reλ>ω.
aqu©z[6],|^LaplaceC†5Ÿ(2.1)ªÚ(2.2)ª,·‚‰ÑXe½Â.
½Â2.7e‘ÅL§x∈C(I,H) ÷vÈ©•§
x(t) = S
E
α,α−1
(t)(x
0
−g(x))+S
E
α,α
(t)(x
1
−h(x))
+
Z
t
0
S
E
α,α
(t−s)f(s,x(s))ds+
Z
t
0
S
E
α,α
(t−s)σ(s,x(s))dW(s),t∈I,(2.3)
K¡x•šÛܯK(1.1)mild).
52.2dLaplaceC†•˜5,šÛܯK(1.1)mild)•Œ±¤
x(t) = S
E
α,α−1
(t)(x
0
−g(x))+(g
1
∗S
E
α,α−1
)(t)(x
1
−h(x))+
Z
t
0
(g
1
∗S
E
α,α−1
)(t−s)f(s,x(s))ds
+
Z
t
0
(g
1
∗S
E
α,α−1
)(t−s)σ(s,x(s))dW(s),t∈I.(2.4)
Ú n2.1[8]eŽfé(A,E) )¤˜‡(M,ω) .(α,β)-ý)x{S
E
α,β
(t)}
t>0
, Ké?¿
γ>0, (A,E)•)¤˜‡(
M
ω
γ
,ω) .(α,β+γ)-ý)x{S
E
α,β+γ
(t)}
t>0
.
Ún2.2[8]α>0,1<β62.e{S
E
α,β
(t)}
t>0
´dŽfé(A,E))¤(M,ω).
(α,β)-ý)x,Ké∀t>0, ¼êt7→S
E
α,β
(t)3B(H)¥ëY.
D⊂H´˜‡š˜k.4à8,P
DOI:10.12677/pm.2022.121018137nØêÆ
xŒ'
γ(D) := inf{ε>0 : D3H¥kk•ε−}.
•DHausdorffš;5ÿÝ,©O^γ(·)Úγ
C
(·)L«˜mHÚC(I,H)¥Hausdorffš
;5ÿÝ.eB⊂C(I,H)k.,Ké∀t∈I,B(t):={u(t):u∈B}•H¥k.f8…
γ(B(t)) 6γ
C
(B).
Ún2.3 [11]S,T´Banach˜mX¥š˜k.8,ρ∈R, Kš;5ÿÝγ(·)÷v±e
5Ÿ:
(1)γ(S) = 0 ⇔S•ƒé;8;
(2)S⊂T=⇒γ(S) 6γ(T);
(3)γ(S+T) 6γ(S)+γ(T),Ù¥S+T= {x+y:x∈S,y∈T};
(4)γ(S∪T) 6max{γ(S),γ(T)};
(5)γ(ρS) = |ρ|γ(S).
Ún2.4[12]X•Banach ˜m, ŽfP:D(P) ⊂X→XëYk.. eé?¿k.šƒé
;8S⊂D(P),k
γ(P(S)) <γ(S),
K¡P´vàN.
Ún2.5 [13]σ: I×Ω →L
0
2
´˜‡rŒÿN,e
Z
a
0
Ekσ(θ)k
p
L
0
2
dθ<+∞.K
E



Z
t
0
σ(θ)dW(θ)



p
6L
σ
Z
t
0
Ekσ(θ)k
p
L
0
2
dθ,∀t∈I,p>2,
Ù¥L
σ
>0´†pÚaƒ'~ê.
Ún2.6[1]( Marzur½n)D´Banach˜mX¥˜‡;f8. K§à4•conv(D)
•´;.
Ún2.7[1]( Krasnoselskii ØÄ:½n)B•Banach ˜mX¥˜‡š˜4àf8. e
ŽfP,Q: B→X÷v
(i)é∀x,y∈B,kPx+Qy∈B;
(ii)P´Ø Žf;
(iii)Q´ëYŽf,
KP+Q3BS–k˜‡ØÄ:.
Ún2.8[14](SadovskiiØÄ:½n)X•Banach˜m,S⊂X•k.4à8.e
F:S→S•vàN, KF3Sþ–•3˜‡ØÄ:.
3.̇(J9y²
3ù˜Ü©,·‚©O|^KrasnoselskiiØÄ:½nÚSadovskiiØÄ:½ny²XÚ(1.1)
DOI:10.12677/pm.2022.121018138nØêÆ
xŒ'
mild)•35.
é?¿~êr>0,½Â8ÜB
r
•
B
r
:= {x∈C(I,H) : Ekx(t)k
2
6r,t∈I}.
•y²©̇(Ø,·‚Ú\Xeb^‡:
(F1) ¼êf: I×H→H÷v:
(i)é∀t∈I,f(t,·) : H→HëY,é∀x∈H, f(·,x) : I→HŒÿ.
(ii)•3¼êm∈L
1
(I,R
+
),¦
Ekf(t,x)k
2
6m(t)Ekxk
2
,∀t∈I,x∈H.
(F2)¼êg,h: C(I,H) →HëY, …•3~êN
g
,N
h
>0,¦é∀x,y∈C(I,H), k
Ekg(x)k
2
6N
g
(Ekxk
2
+1),Ekg(x)−g(y)k
2
6N
g
Ekx−yk
2
,
Ekh(x)k
2
6N
h
(Ekxk
2
+1),Ekh(x)−h(y)k
2
6N
h
Ekx−yk
2
.
(F3)¼êσ: I×H→L
0
2
ëY,…•3~êN
σ
>0,¦é∀t∈I,x,y∈H, k
Ekσ(t,x)k
2
6N
σ
(Ekxk
2
+1),Ekσ(t,x)−σ(t,y)k
2
6N
σ
Ekx−yk
2
.
(F4) é∀t∈I, 8ÜV
ε
:= {f(s,x(s)) : x∈B
r
,s∈[0,t−ε],ε∈(0,t)}´;.
©O½ÂŽfQ
1
,Q
2
: C(I,H) →C(I,H) Xe:
(Q
1
x)(t) := S
E
α,α−1
(t)(x
0
−g(x))+(g
1
∗S
E
α,α−1
)(t)(x
1
−h(x))
+
Z
t
0
(g
1
∗S
E
α,α−1
)(t−s)σ(s,x(s))dW(s),
(Q
2
x)(t) :=
Z
t
0
(g
1
∗S
E
α,α−1
)(t−s)f(s,x(s))ds.
d½Â2.7,XÚ(1.1)mild)duŽfQ:=Q
1
+Q
2
ØÄ:,Ïd,éŽfQA^
KrasnoselskiiØÄ:½ny²Ù3B
r
þ–•3˜‡ØÄ:.
Ún3.1e^‡(F1)−(F3) ÷v,…Øª
4
M
2
e
2ωa
ω
2
(2N
g
ω
2
+2N
h
+akmk
∞
+aL
σ
N
σ
) <1(3.1)
¤á,K•3˜‡~êr>0,¦Q: B
r
→B
r
.
DOI:10.12677/pm.2022.121018139nØêÆ
xŒ'
y²:w,B
r
•C(I,H)¥š˜k.4à8,‡é∀r>0,∃x∈B
r
,¦Ek(Qx)(t)k
2
>
r.dQ½Â,k
r<Ek(Qx)(t)k
2
64E(kS
E
α,α−1
(t)kkx
0
−g(x)k)
2
+4E(k(g
1
∗S
E
α,α−1
)(t)kkx
1
−h(x)k)
2
+4Ek
Z
t
0
(g
1
∗S
E
α,α−1
)(t−s)f(s,x(s))dsk
2
+4Ek
Z
t
0
(g
1
∗S
E
α,α−1
)(t−s)σ(s,x(s))dW(s)k
2
64M
2
e
2ωa
Ekx
0
−g(x)k
2
+4
M
2
e
2ωa
ω
2
Ekx
1
−h(x)k
2
+4
M
2
e
2ωa
ω
2
Z
t
0
Ekf(s,x(s))k
2
ds+4
M
2
e
2ωa
ω
2
L
σ
Z
t
0
Ekσ(s,x(s))k
2
ds
64
M
2
e
2ωa
ω
2
[(2Ekx
0
k
2
+2N
g
(r+1))ω
2
+(2Ekx
1
k
2
+2N
h
(r+1))+rakmk
∞
+aL
σ
N
σ
(r+1)],
þªü>ÓØ±r,r→∞ž,Œ
1 64
M
2
e
2ωa
ω
2
(2N
g
ω
2
+2N
h
+akmk
∞
+aL
σ
N
σ
),
ù†(3.1)ªgñ.Ïd,•3r>0,¦Q: B
r
→B
r
.
Ún3.2e^‡(F2),(F3)÷v,KŽfQ
1
3B
r
¥Ø .
y²:é∀x,y∈B
r
,t∈I,d(3.1) ª,k
Ek(Q
1
x)(t)−(Q
1
y)(t)k
2
63E(kS
E
α,α−1
(t)kkg(x)−g(y)k)
2
+3E(k(g
1
∗S
E
α,α−1
)(t)kkh(x)−h(y)k)
2
+3Ek
Z
t
0
(g
1
∗S
E
α,α−1
)(t−s)[σ(s,x(s))−σ(s,y(s))]dW(s)k
2
63
M
2
e
2ωa
ω
2
(N
g
ω
2
+N
h
+aL
σ
N
σ
)Ekx−yk
2
<Ekx−yk
2
.
ŽfQ
1
Ø .
Ún3.3e^‡(F1) ÷v,KQ
2
: B
r
→B
r
ëY.
DOI:10.12677/pm.2022.121018140nØêÆ
xŒ'
y²:S{x
n
}
n>1
⊂B
r
,é∀x∈B
r
,÷vlim
n→+∞
x
n
= x.KdQ
2
½Â,Œ•
Ek(Q
2
x
n
)(t)−(Q
2
x)(t)k
2
= Ek
Z
t
0
(g
1
∗S
E
α,α−1
)(t−s)[f(s,x
n
(s))−f(s,x(s))]dsk
2
6
M
2
e
2ωa
ω
2
Z
t
0
Ekf(s,x
n
(s))−f(s,x(s))k
2
ds
6
M
2
e
2ωa
ω
2
Z
t
0
(2Ekf(s,x
n
(s))k
2
+2Ekf(s,x(s))k
2
)ds
64r
M
2
e
2ωa
ω
2
Z
t
0
m(s)ds.
5¿,¼ês7→m(s)3IþŒÈ,n→∞ž,
Z
t
0
f(s,x
n
(s))−f(s,x(s))ds→0,Ïdd
Lebesgue››Âñ½n,ŽfQ
2
: B
r
→B
r
ëY.
½Â8ÜV:= {Q
2
x: x∈B
r
},V(t) := {(Q
2
x)(t) : x∈B
r
}.
½n3.1e^‡(F1)−(F4) 9(3.1)ª¤á,KXÚ(1.1)3Iþ–•3˜‡mild ).
y²:dÚn3.1-3.3Œ•,·‚•I‡`²8ÜV3C(I,H) ¥ƒé;.
1˜Ú:y²8ÜV´ÝëY.
é∀x∈B
r
,0 6t
2
<t
1
6a,k
Ek(Q
2
x)(t
1
)−(Q
2
x)(t
2
)k
2
= Ek
Z
t
1
0
(g
1
∗S
E
α,α−1
)(t
1
−s)f(s,x(s))ds−
Z
t
2
0
(g
1
∗S
E
α,α−1
)(t
2
−s)f(s,x(s))dsk
2
62Ek
Z
t
2
0
[(g
1
∗S
E
α,α−1
)(t
1
−s)−(g
1
∗S
E
α,α−1
)(t
2
−s)]f(s,x(s))dsk
2
+2Ek
Z
t
1
t
2
(g
1
∗S
E
α,α−1
)(t
1
−s)f(s,x(s))dsk
2
:= I
1
+I
2
.
쥎uI
1
,d^‡(F1), k
I
1
= 2Ek
Z
t
2
0
[(g
1
∗S
E
α,α−1
)(t
1
−s)−(g
1
∗S
E
α,α−1
)(t
2
−s)]f(s,x(s))dsk
2
62
Z
t
2
0
k(g
1
∗S
E
α,α−1
)(t
1
−s)−(g
1
∗S
E
α,α−1
)(t
2
−s)k
2
Ekf(s,x(s))k
2
ds
62r
Z
t
2
0
k(g
1
∗S
E
α,α−1
)(t
1
−s)−(g
1
∗S
E
α,α−1
)(t
2
−s)k
2
m(s)ds,
…
k(g
1
∗S
E
α,α−1
)(t
1
−·)−(g
1
∗S
E
α,α−1
)(t
2
−·)k
2
m(s) 64
M
2
e
2ωa
ω
2
m(s) ∈L
1
(I,R
+
).
DOI:10.12677/pm.2022.121018141nØêÆ
xŒ'
¤±,é∀t>0,dÚn2.1Œ(g
1
∗S
E
α,α−1
)(t) = S
E
α,α
(t).dÚn2.2•S
E
α,α
(t)‰êëY. Ïd,
t
1
→t
2
ž, (g
1
∗S
E
α,α−1
)(t
1
−s) −(g
1
∗S
E
α,α−1
)(t
2
−s)→0 uB(H), ÏddLebesgue ››Âñ½
nŒlim
t
1
→t
2
I
1
= 0.
éuI
2
,d^‡(F
1
),k
I
2
= 2Ek
Z
t
1
t
2
(g
1
∗S
E
α,α−1
)(t
1
−s)f(s,x(s))dsk
2
62
M
2
e
2ωa
ω
2
Z
t
1
t
2
Ekf(s,x(s))k
2
ds
62r
M
2
e
2ωa
ω
2
Z
t
1
t
2
m(s)ds
→0(t
2
−t
1
→0).
Ïd,8ÜV3C(I,H) ¥ÝëY.
1Ú:y²8ÜV(t) 3H¥ƒé;.
t= 0 ž,V(0) ´ƒé;. •Iy²é∀t∈I
0
, 8ÜV(t) 3H¥ƒé;. é∀0 <ε<t,
½ÂŽfQ
ε
2
Xeµ
(Q
ε
2
x)(t) :=
Z
t−ε
0
(g
1
∗S
E
α,α−1
)(t−s)f(s,x(s))ds,
V
ε
2
(t) := {(Q
ε
2
x)(t) : x∈B
r
}.
db^‡(F4)ÚÚn2.6Œ•conv(V
ε
)´˜‡;8,l
Me
ωa
ω
(t−ε)conv(V
ε
)•´˜‡;8,Ù
¥conv(V
ε
)•V
ε
4à•.dBochnerÈ©¥Š½n,Œ
(Q
ε
2
x)(t) ∈
Me
ωa
ω
(t−ε)conv(V
ε
),∀t∈I.
Ïd,é∀ε>0, 8ÜV
ε
2
(t)3H¥ƒé;.é∀x∈B
r
,k
Ek(Q
2
x)(t)−(Q
ε
2
x)(t)k
2
= Ek
Z
t
t−ε
(g
1
∗S
E
α,α−1
)(t−s)f(s,x(s))dsk
2
6
M
2
e
2ωa
ω
2
Z
t
t−ε
Ekf(s,x(s))k
2
ds
6
M
2
e
2ωa
ω
2
r
Z
t
t−ε
m(s)ds.
¼ês7→m(s) ∈L
1
([t−ε,t],R
+
),dLebesgue››Âñ½n,Œ
lim
ε→0
Ek(Q
2
x)(t)−(Q
ε
2
x)(t)k
2
= 0,
DOI:10.12677/pm.2022.121018142nØêÆ
xŒ'
=t∈I
0
ž, •3˜‡ƒé;8V
ε
2
(t) ?¿ªCuV(t), V(t) 3H¥ƒé;. dAscoli-Arzela
½n•,é∀t∈I,8ÜV3C(I,H) ¥ƒé;.
dÚn2.7•,ŽfQ3B
r
¥•3˜‡ØÄ:x,dØÄ:=•XÚ(1.1)mild).
e5,bS
E
α,α−1
(t)(t>0) 3˜—ŽfÿÀ¥ëY,·‚Ú\Xeb:
(F5) é∀t∈I, 8Ü{
Z
t−ε
0
(g
1
∗S
E
α,α−1
)(t−ε−s)σ(s,x(s))dW(s):x∈B
r
,s∈[0,t−ε],ε∈
(0,t)}´;.
½n3.2e^‡(F1)−(F5) Ú(3.1)ª¤á,KXÚ(1.1)3Iþ–•3˜‡mild ).
y²:w,,db^‡(F1)−(F3), ŽfQ: C(I,H) →C(I,H) ëY.
½ÂŽfQ= Q
1
+Q
2
Xe:
(Q
1
x)(t) := S
E
α,α−1
(t)(x
0
−g(x))+(g
1
∗S
E
α,α−1
)(t)(x
1
−h(x)),
(Q
2
x)(t) :=
Z
t
0
(g
1
∗S
E
α,α−1
)(t−s)f(s,x(s))ds+
Z
t
0
(g
1
∗S
E
α,α−1
)(t−s)σ(s,x(s))dW(s).
eyW:= {Q
2
x: x∈B
r
}3C(I,H)¥ƒé;.dAscoli-Arzela½n,·‚I‡y²W3C(I,H)
¥˜—k.…ÝëY,W(t) 3H¥ƒé;.aquÚn3.1y²•W´˜—k..
Äky²WÝëY.é∀x∈B
r
,0 6t
2
<t
1
6až, k
Ek(Q
2
x)(t
1
)−(Q
2
x)(t
2
)k
2
= Ek
Z
t
2
0
[(g
1
∗S
E
α,α−1
)(t
1
−s)−(g
1
∗S
E
α,α−1
)(t
2
−s)]f(s,x(s))ds
+
Z
t
2
0
[(g
1
∗S
E
α,α−1
)(t
1
−s)−(g
1
∗S
E
α,α−1
)(t
2
−s)]σ(s,x(s))dW(s)
+
Z
t
1
t
2
(g
1
∗S
E
α,α−1
)(t
1
−s)f(s,x(s))ds
+
Z
t
1
t
2
(g
1
∗S
E
α,α−1
)(t
1
−s)σ(s,x(s))dW(s)k
2
64Ek
Z
t
2
0
[(g
1
∗S
E
α,α−1
)(t
1
−s)−(g
1
∗S
E
α,α−1
)(t
2
−s)]f(s,x(s))dsk
2
+4Ek
Z
t
2
0
[(g
1
∗S
E
α,α−1
)(t
1
−s)−(g
1
∗S
E
α,α−1
)(t
2
−s)]σ(s,x(s))dW(s)k
2
+4Ek
Z
t
1
t
2
(g
1
∗S
E
α,α−1
)(t
1
−s)f(s,x(s))dsk
2
+4Ek
Z
t
1
t
2
(g
1
∗S
E
α,α−1
)(t
1
−s)σ(s,x(s))dW(s)k
2
:= 4
4
X
i=1
J
i
.
DOI:10.12677/pm.2022.121018143nØêÆ
xŒ'
d½n3.1y²Œt
1
→t
2
ž,J
1
,J
3
→0.,˜•¡, d^‡(F3), k
J
2
6L
σ
Z
t
2
0
k(g
1
∗S
E
α,α−1
)(t
1
−s)−(g
1
∗S
E
α,α−1
)(t
2
−s)k
2
Ekσ(s,x(s))k
2
ds
64aL
σ
N
σ
(r+1)
M
2
e
2ωa
ω
2
.
d(g
1
∗S
E
α,α−1
)(t)3B(H) ¥ëYŒ•,t
1
→t
2
ž,(g
1
∗S
E
α,α−1
)(t
1
)−(g
1
∗S
E
α,α−1
)(t
2
) →0,
ÏdŠâLebesgue››Âñ½nŒlim
t
1
→t
2
J
2
= 0.éuJ
4
,d^‡(F3), k
J
4
6
M
2
e
2ωa
ω
2
L
σ
Z
t
1
t
2
Ekσ(s,x(s))k
2
ds
6
M
2
e
2ωa
ω
2
L
σ
N
σ
(r+1)(t
1
−t
2
)
→0(t
1
→t
2
).
Ïd,8ÜW3C(I,H) ¥ÝëY.
Ùg,y²é∀t∈I,8ÜW(t) := {(Q
2
x)(t) : x∈B
r
}3H¥ƒé;.t= 0ž, W(0) ´ƒ
é;,•Iy²é∀t∈I
0
,W(t) ´ƒé;.é∀0 <ε<t,½ÂŽfQ
ε
Xe:
(Q
ε
x)(t) := (Q
1,ε
x)(t)+(Q
2,ε
x)(t),
W
ε
(t) := {(Q
ε
x)(t) : x∈B
r
},∀0 <ε<t,
Ù¥
(Q
1,ε
x)(t) := S
E
α,α−1
(ε)
Z
t−ε
0
(g
1
∗S
E
α,α−1
)(t−ε−s)f(s,x(s))ds,
(Q
2,ε
x)(t) := S
E
α,α−1
(ε)
Z
t−ε
0
(g
1
∗S
E
α,α−1
)(t−ε−s)σ(s,x(s))dW(s).
d½n3.1y²Œ•
M
2
e
2ωa
ω
(t−ε)conv(V
ε
)´˜‡;8.¤±dBochnerÈ©¥Š½n,Œ
(Q
1,ε
x)(t) ∈
M
2
e
2ωa
ω
(t−ε)conv(V
ε
),∀t∈I.
Ïd,é∀ε>0,8Ü{(Q
1,ε
x)(t):x∈B
r
}3H¥ƒé;.qdb^‡(F5)Œ8Ü
DOI:10.12677/pm.2022.121018144nØêÆ
xŒ'
{(Q
2,ε
x)(t) : x∈B
r
}3H¥ƒé;.Ïd,8ÜW
ε
(t)3H¥ƒé;.é∀x∈B
r
,k
Ek(Q
2
x)(t)−(Q
ε
x)(t)k
2
= Ek
Z
t
0
(g
1
∗S
E
α,α−1
)(t−s)f(s,x(s))ds
−S
E
α,α−1
(ε)
Z
t−ε
0
(g
1
∗S
E
α,α−1
)(t−ε−s)f(s,x(s))ds
+
Z
t
0
(g
1
∗S
E
α,α−1
)(t−s)σ(s,x(s))dW(s)
−S
E
α,α−1
(ε)
Z
t−ε
0
(g
1
∗S
E
α,α−1
)(t−ε−s)σ(s,x(s))dW(s)k
2
62Ek
Z
t
0
(g
1
∗S
E
α,α−1
)(t−s)f(s,x(s))ds
−S
E
α,α−1
(ε)
Z
t−ε
0
(g
1
∗S
E
α,α−1
)(t−ε−s)f(s,x(s))dsk
2
+2Ek
Z
t
0
(g
1
∗S
E
α,α−1
)(t−s)σ(s,x(s))dW(s)
−S
E
α,α−1
(ε)
Z
t−ε
0
(g
1
∗S
E
α,α−1
)(t−ε−s)σ(s,x(s))dW(s)k
2
:= 2(K
1
+K
2
).
éuK
1
,k
K
1
63
Z
t−ε
0
kS
E
α,α−1
(ε)−Ik
2
Ek(g
1
∗S
E
α,α−1
)(t−ε−s)f(s,x(s))k
2
ds
+3sup
06s6t−ε
k(g
1
∗S
E
α,α−1
)(t−ε−s)−(g
1
∗S
E
α,α−1
)(t−s)k
2
Z
t−ε
0
Ekf(s,x(s))k
2
ds
+3
M
2
e
2ωa
ω
2
Z
t
t−ε
Ekf(s,x(s))k
2
ds.
aqu½n3.1y²,ε→0
+
ž,K
1
→0.ÓnK
2
→0.Ïd
lim
ε→0
+
Ek(Q
2
x)(t)−(Q
ε
x)(t)k
2
= 0,
=t∈I
0
ž,•3˜‡ƒé;8W
ε
(t)?¿ªCuW(t), W(t)3H¥ƒé;. dAscoli-Arzela
½nŒ•,8ÜW3C(I,H) ¥ƒé;,Ïd,γ
C
(W) = γ
C
(Q
2
(B
r
)) = 0.
qϕ
Ek(Q
1
x)(t)−(Q
1
y)(t)k
2
62kS
E
α,α−1
(t)k
2
Ekg(x)−g(y)k
2
+2k(g
1
∗S
E
α,α−1
)(t)k
2
Ekh(x)−h(y)k
2
62
M
2
e
2ωa
ω
2
(N
g
ω
2
+N
h
)Ekx−yk
2
,
DOI:10.12677/pm.2022.121018145nØêÆ
xŒ'
dÚn2.3Ú(3.1)ª,k
γ
C
(Q(B
r
)) 6γ
C
(Q
1
(B
r
))+γ
C
(Q
2
(B
r
))
62
M
2
e
2ωa
ω
2
(N
g
ω
2
+N
h
)γ
C
(B
r
)
6γ
C
(B
r
),
ù¿›XQ:B
r
→B
r
´˜‡vàN. dÚn2.8 •, ŽfQ3B
r
¥•3˜‡ØÄ:x,
dØÄ:=•XÚ(1.1)mild).
4.(Ø
©?ØHilbert ˜m¥Sobolev .α∈(1,2)Riemann-Liouville ©ê‘ÅuЕ§š
ÛܯKmild)•35.·‚Äk½ÂdŽfé(A,E))¤(α,α−1)-ý)x{S
E
α,α−1
(t)}
t>0
.
Ùg, 3Øb{S
E
α,α−1
(t)}
t>0
;œ¹e, ·‚|^KrasnoselskiiØÄ:½nÚSadovskiiØÄ:
½ny²XÚ(I) mild )•35.
Ä7‘8
I[g,‰ÆÄ7“cÄ7‘8(No.11701457)"
ë•©z
[1]Ponce,R.(2016)ExistenceofMildSolutionstoNonlocalFractionalCauchyProblemsvia
Compactness.AbstractandAppliedAnalysis,2016,ArticleID:4567092.
https://doi.org/10.1155/2016/4567092
[2]Brill,H. (1977)A SemilinearSobolevEvolution EquationinBanach Space.JournalofDiffer-
entialEquations,24,412-425.https://doi.org/10.1016/0022-0396(77)90009-2
[3]Showalter,R.E.(1972)ExistenceandRepresentationTheoremsforaSemilinearSobolevE-
quationinBanachSpace.SIAMJournalonMathematicalAnalysis,3,527-543.
https://doi.org/10.1137/0503051
[4]Mahmudov,N.I.(2014)ExistenceandApproximateControllabilityofSobolevTypeFrac-
tionalStochasticEvolutionEquations.BulletinofthePolishAcademyofSciences:Technical
Sciences,62,205-215.https://doi.org/10.2478/bpasts-2014-0020
[5]Benchaabane,A.andSakthivel,R.(2017)Sobolev-TypeFractionalStochasticDifferentialE-
quations with Non-Lipschitz Coefficients. JournalofComputationalandAppliedMathematics,
312,65-73.https://doi.org/10.1016/j.cam.2015.12.020
DOI:10.12677/pm.2022.121018146nØêÆ
xŒ'
[6]Yang,H.(2020)ExistenceResultsofMildSolutionsfortheFractionalStochasticEvolution
EquationsofSobolevType.Symmetry,12,Article1031.https://doi.org/10.3390/sym12061031
[7]Ahmed,H.M.(2017)Sobolev-TypeFractionalStochasticIntegrodifferentialEquationswith
NonlocalConditionsinHilbertSpace.JournalofTheoreticalProbability,30,771-783.
https://doi.org/10.1007/s10959-016-0665-9
[8]Chang,Y.K., Pereira, A. and Ponce, R. (2017) Approximate Controllability for Fractional Dif-
ferentialEquations ofSobolevType viaPropertiesonResolvent Operators. FractionalCalculus
andAppliedAnalysis,20,963-987.https://doi.org/10.1515/fca-2017-0050
[9]Pazy,A.(1983)SemigroupsofLinearOperatorsandApplicationstoPartialDifferentialE-
quations.Springer-Verlag,NewYork.
[10]Chang,Y.K.,Pei,Y.T.andPonce,R.(2019)ExistenceandOptimalControlsforFractional
StochasticEvolutionEquationsofSobolevTypeviaFractionalResolventOperators.Journal
ofOptimizationTheoryandApplications,90,558-572.
https://doi.org/10.1007/s10957-018-1314-5
[11]Kamenskii,M.,Obukhovskii,V.andZecca,P.(2001)CondensingMultivaluedMapsand
SemilinearDifferentialInclusionsinBanachSpaces.DeGruyter,Berlin.
https://doi.org/10.1515/9783110870893
[12]HŒ,š²k.Ä–˜m~‡©•§[M].12‡.LH:ìÀ‰ÆEâч,2005.
[13]Ichikawa, A.(1982) Stability ofSemilinearStochastic Evolution Equations.JournalofMathe-
maticalAnalysisandApplications,90,12-44.https://doi.org/10.1016/0022-247X(82)90041-5
[14]Yang,H.andZhao,Y.J.(2020)ControllabilityofFractionalEvolutionSystemsofSobolev
TypeviaResolventOperators.BoundaryValueProblem,2020,ArticleNo.119.
https://doi.org/10.1186/s13661-020-01417-1
DOI:10.12677/pm.2022.121018147nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.