设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2022,11(1),318-325
PublishedOnlineJanuary2022inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2022.111039
äÚ´¦Èã2Â/Úê9
Ɖ/Úê
444ZZZwww
úô“‰ŒÆêƆOŽÅ‰ÆÆ§úô7u
ÂvFϵ2021c1224F¶¹^Fϵ2022c119F¶uÙFϵ2022c126F
Á‡
©?Ø{üãäÚ´¦È㧉ÑäÚ´¦Èã˜‡‚5S§0§2Â/Ú
ê§Óž‰ÑäÚ´¦È㕌ÑÝ•›•˜‡~ê˜‡½•§¿dd0äÚ´¦
ÈãƉ/Úê"
'…c
¦Èã§Æ‰/Úê§2Â/Úê
TheGeneralizedColoringNumber
andGameColoringNumberof
ProductGraphofTree
andPath
JialiLiu
CollegeofMathematicsandComputerScience,ZhejiangNormalUniversity,JinhuaZhejiang
Received:Dec.24
th
,2021;accepted:Jan.19
th
,2022;published:Jan.26
th
,2022
©ÙÚ^:4Zw.äÚ´¦Èã2Â/Úê9Ɖ/Úê[J].A^êÆ?Ð,2022,11(1):318-325.
DOI:10.12677/aam.2022.111039
4Zw
Abstract
Thispaperconsiderstheproductgraphofsimplegraphtreeandpath,givesalinear
orderoftheproductgraphoftreeandpath,andintroducesthegeneralizedcoloring
numberoftheproductgraphoftreeandpath.Meanwhile,wegiveanorientationthat
themaximumout-degreeoftheproductgraphoftreeandpathisatmostaconstant
andintroducethegamecoloringnumberoftheproductgraphoftreeandpath.
Keywords
ProductGraph,GameColoringNumber,GeneralizedColoringNumber
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
32003c,ã2Â/Úê[1]ÄgJÑ,31991 c,BodlaenderJÑãƉ/Úê[2]
Vg.aq,KiersteadJÑ(a,b)-Ɖ/Úê[3]V g.¦È㘆´2É'5˜aã,
,éu¦Èã2Â/Úê±9Ɖ/Úê,ïÄ,©òlã2Â/ÚêÚÆ‰/
Úêùü‡ëêÑu,•ÄäÚ´¦Èã2Â/ÚêÚÆ‰/Úê.
©•Ä¦È㕱en«:(kÈ,†È,rÈ.Äk·‚‰Ñùn«¦Èã½Â:
ãAÚãB(kÈ(PŠA2B)d:8V(A)×V(B)|¤,Ù¥,ØÓ:(v,x),(w,y)∈
V(A)×V(B)ƒ…=÷v:(1)v= w…xy∈E(B),½(2)x= y…vw∈E(A) .
ãAÚãB†È(PŠA×B)d:8V(A) ×V(B)|¤,Ù¥,ØÓ:(v,x),(w,y)∈
V(A)×V(B)ƒ…=÷v:vw∈E(A)…xy∈E(B).
ãAÚãBrÈ(PŠAB)d:8V(A) ×V(B)|¤,Ù¥,ØÓ:(v,x),(w,y)∈
V(A) ×V(B)ƒ…=÷v:(1)v=w…xy∈E(B),½(2)x=y…vw∈E(A),½(3)
vw∈E(A)…xy∈E(B).
d(kÈ,†È,rÈ½ÂŒ•:rÈAB´A2BÚA×B¿.
DOI:10.12677/aam.2022.111039319A^êÆ?Ð
4Zw
e5,·‚0ã2Â/ÚêVg,-G=(V,E)´˜‡ã,-k´˜‡ê.-
Q
(G)´V(G) ¤k‚5S8Ü,L∈
Q
(G) .-xÚy´ãGü‡º:.XJx≺
L
y¿…•
3˜^y−x•Ý•õ•k´P¦é´þ¤kS:z÷vx≺
L
z, ·‚¡x´lyfk- Œ
ˆ.d,XJé´Pþ¤kS:z÷vy≺
L
z,·‚¡x´lyk-Œˆ.-R
k
(G
L
§y)
´¤klyk-Œˆº:8.Q
k
(G
L
§y) ´¤klyfk-Œˆº:8,R
k
[G
L
§y] = R
k
(G
L
§
y)∪{y}§Q
k
[G
L
§y] = Q
k
(G
L
§y)∪{y}.½ÂãGk-coloringnumber(PŠcol
k
(G) )ÚãG
weakk-coloringnumber(PŠwcol
k
(G))•
col
k
(G)=min
L∈
Q
(G)
max
v∈V(G)
|R
k
[G
L
,y]|Ú
wcol
k
(G)=min
L∈
Q
(G)
max
v∈V(G)
|Q
k
[G
L
,y]|.
éuãƉ/Ú,31991c,BodlaenderJÑãƉ/ÚêVg.aq,Kierstead
JÑã(a,b) -Ɖ/ÚêVg.a= 1,b=1 ž,ã(a,b) -Ɖ/Úê=•ã Ɖ/
Úê,Ïd©Ì‡•ÄäÚ´¦Èãšé¡œ¹eƉ/Úê=(a,1) -Ɖ/Úê.e
5·‚‰ÑãƉ/ÚêÚ(a,b)-Ɖ/Úê½Â.ãGƉ/Úê´d˜‡IPƉ½Â
.ãGIPƉ¥,åФk:Ñ™IP,Alice ÚBob Ó6IPG¥™IPº:,d
Alice km©IP.ܺ:IPƉ (å.éuãGz˜‡º:x,-b(x) L«•3x
IPcxIPØê.Ɖ©ê½Â•
s= 1+max
x∈V(G)
b(x).
Alice 8I´¦©ê•,Bob 8I´¦©ê•Œ.Ɖ/Úê••s¦Alice k
˜‡üѦ©ê•õ•s.PŠcol
g
(G).
ãG(a,b)-Ɖ/ÚêƉ9©êÚIPƉ˜,ØÓƒ?3uz˜‡IP£Ü¥
Alice IPa‡ :,Bob IPb‡:.(a,b) -Ɖ/Úê•• s¦Alicek˜‡üѦ©
ê•õ•s.PŠ(a,b)-col
g
(G).
éu˜‡ãG,O(G)´ãG¤k½•8Ü.éuãG˜‡½•
~
G±9
~
G˜‡:x,
-N
+
~
G
(x) PŠ•:x¤kØ8Ü,i.e.,N
+
~
G
(x) = {y: x→y}.-d
+
~
G
(x) •xÑÝ,i.e.,
d
+
~
G
(x) = |N
+
~
G
(x)|.-∆
+

~
G

= max
v∈V
d
+
~
G
(v),∆
∗
(G) = min
~
G∈O(G)
∆
+

~
G

.
éu˜‡ãG,
~
G´ãG˜‡½•,éuG¥z‡:v,-L
v
•N
+
~
G
(v)˜‡‚5S.
-
P
={L
v
: v∈V(G)},XJv<
L
z
u,@o¡zé'u`kv.XJv∈N
+
~
G
(u) ½ö•3˜‡:
z¦u,v∈N
+
~
G
(z)…zé'u`kv,@o¡v´u˜‡t Ø,R
~
G
(
P
,U)PŠ:ut
Ø8Ü.-
r
~
G
(
X
) =max
u∈V(G)
|R
~
G
(
X
,U)|
~
Grank½Â•
r
~
G
= min
P
|r
~
G
(
X
)|.
DOI:10.12677/aam.2022.111039320A^êÆ?Ð
4Zw
Ún1[4]a´˜‡ê,XJãG÷v∆
∗
(G) = k≤a,@o(a,1)-col
g
(G)≤2k+2 .
Ún2[5]XJ
~
G´˜‡∆
+

~
G

=k>ak•ã,-r
~
G
(
P
)=r,@o(a,1)-col
g
(G)≤
k+b(1+
1
a
)rc+2 .
2.äÚ´¦Èã2Â/Úê
-T´˜†ä,P´˜^´.éuäTÚ´P¦ÈãG,·‚ŠâäT¥:°Ý`kü
S±9´P¥:üS,‰ãG:?1üS.Šâ¦ÈãA:9ãG:‚5S,ÏLOŽ
y²ÑØÓ¦Èã2Â/Úê.
½n1é¤kêk>0XJãG=T×P,Ù¥T´˜†ä,P´˜^´,@o
wcol
k
(G) ≤k
2
+k+1.col
k
(G) ≤k+2 .
y²éuäT,·‚‰§:?1°Ý`küS,äT:‚5SPŠσ∈
Q
(T) .b
x
0,1
´ääŠ,x
0,1
•°Ý`k©10 ,-1i1j‡:P•x
i,j
.éu´P,·‚
‰§:(y
1
,y
2
,...,y
m
,...)?1˜‡üSPŠτ, y
i
<
τ
y
j
…=i<j.@oéuãG= TP,
:8•V(G)=((x
0,1
,y
1
),(x
0,1
,y
2
),...,(x
0,1
,y
m
),...,(x
1,1
,y
1
),(x
1,1
,y
2
)
,...,(x
1,1
,y
m
),...,(x
i,1
,y
1
),(x
i,1
,y
2
),...,(x
i,1
,y
m
),...) .
éuãG:?1üS,-L•ãGº:Uì±e5Kü‚5S.éãG?¿ü ‡
:(x
i,j
,y
m
),(x
i
0
,j
0
,y
m
0
):
1.XJi6= i
0
,@o(x
i,j
,y
m
) ≺
L
(x
i
0
,j
0
,y
m
0
)…=i≤i
0
.
2.XJi= i
0
,j6= j
0
,@o(x
i,j
,y
m
) ≺
L
(x
i
0
,j
0
,y
m
0
)…=j≤j
0
.
3.XJi= i
0
…j= j
0
,@o(x
i,j
,y
m
) ≺
L
(x
i
0
,j
0
,y
m
0
)…=m≤m
0
.
éuãG:?1©:-(x
0,1
,y
1
) , (x
0,1
,y
2
) ,..., (x
0,1
,y
m
) ,...•1˜:,-(x
1,1
,y
1
) ,
(x
1,1
,y
2
),...,(x
1,1
,y
m
),...•1:,...§-(x
i,1
,y
1
),(x
i,1
,y
2
),...,(x
i,1
,y
m
)
,...•1i:.
dãG©±9 fk-Œˆ½ÂŒ•µ|i−j|≥2 ž,1i:†1j:vk>
ƒë,Ïdéu?¿˜‡:v∈G(:v•1l:)5`,lvfk-Œ ˆ:y
0
ŒUá31
p(l−k≤p≤l,l≥k),…y
0
≺
L
v,duG¥:3Ó˜vk>,Ïd,
lvfk-Œˆ:31l–õ•b
k
2
c,
lvfk-Œˆ:31l−1 –õ•2d
k
2
e,
lvfk-Œˆ:31l−2 –õ•1+2b
k
2
c,(k≥2) ,
lvfk-Œˆ:31l−3 –õ•2d
k
2
e,(k≥3) ,
lvfk-Œˆ:31l−4 –õ•1+2b
k
2
c,(k≥4) ,
,...,
lvfk-Œˆ:31l−i–õ•2d
k
2
e,(k≥i)
lvfk-Œˆ:31l−i−1 –õ•1+2b
k
2
c,(k≥i+1),
DOI:10.12677/aam.2022.111039321A^êÆ?Ð
4Zw
Ïd,·‚kk•óêž,wcol
k
(G) ≤b
k
2
c+(2d
k
2
e+1+2b
k
2
c)
k
2
+1.k•Ûêž,wcol
k
(G) ≤
b
k
2
c+(2d
k
2
e+1+2b
k
2
c)
k−1
2
+2d
k
2
c+1.n:wcol
k
(G) ≤k
2
+k+1.
dãG©Œ•µ|i−j|≥2ž,1i:†1j:vk>ƒë,Ïd,éu?¿˜
‡:v∈G5`,k≥2ž,lvk-Œˆ:y
0
•Uá3:v¤3þ(Ø”•1l)9:v
þ˜(Ø”•1l−1 ),…y
0
≺
L
v,duG¥:3Ó˜vk>,Ïdlv k-Œˆ
:31l–õ•b
k
2
c, lvk-Œˆ:31l−1–õ•d
k+2
2
e, Ïd, ·‚kcol
k
(G) ≤k+2.
½n2é¤kêk>0XJãG=T2P,Ù¥T´˜†ä,P´˜^´,@o
wcol
k
(G) ≤k
2
+k+1.0 <k≤2ž§col
k
(G) ≤3;k>2 ž§col
k
(G) ≤2k−1 .
y²éuäT,·‚‰§:?1°Ý`küS,äT:‚5SPŠσ∈
Q
(T) .b
x
0,1
´ääŠ,x
0,1
•°Ý`k©10 ,-1i1j‡:P•x
i,j
.éu´P,·‚
‰§:(y
1
,y
2
,...,y
m
,...) ?1˜‡üSPŠτ,y
i
<
τ
y
j
…=i<j.@oéuãG=TP,
:8•V(G)=((x
0,1
,y
1
),(x
0,1
,y
2
),...,(x
0,1
,y
m
),...,(x
1,1
,y
1
),(x
1,1
,y
2
),...,
(x
1,1
,y
m
),...,(x
i,1
,y
1
),(x
i,1
,y
2
),...,(x
i,1
,y
m
),...) .
duü‡ãTPÚT×P:8ƒÓ,·‚éãT×P¥:üSÚ©æ^½n1¥•
{,•;•-E,ùp†¦^½n1¥:üSÚ©.
dãG©±9 fk-Œˆ½ÂŒ•µ|i−j|≥2 ž,1i:†1j:vk>
ƒë,Ïdéu?¿˜‡:v∈G(:v•1l:)5`,lvfk-Œ ˆ:y
0
ŒUá31
p(l−k≤p≤l,l≥k),…y
0
≺
L
v,Ïd,
lvfk-Œˆ:31l–õ•k,
lvfk-Œˆ:31l−1 –õ•1+2(k−1) ,
lvfk-Œˆ:31l−2 –õ•1+2(k−2),(k≥2) ,
lvfk-Œˆ:31l−3 –õ•1+2(k−3),(k≥3) ,
,...,
lvfk-Œˆ:31l−i–õ•1+2(k−i),(k≥i) ,
Ïd,·‚kwcol
k
(G)≤k+1 +2(k−1)+1 +2(k−2)+ ...+ 1+ 2(k−k)+ 1.n:
wcol
k
(G) ≤k
2
+k+1.
dãG©Œ•µ|i−j|≥2ž,1i:†1j:vk>ƒë,Ïd,éu?¿˜
‡:v∈G5`,k≥2ž,lvk-Œˆ:y
0
•Uá3:v¤3þ(Ø”•1l)9:v
þ˜(Ø”•1l−1 ),…y
0
≺
L
v,d½ÂŒ•G¥:3Ó˜k>,…éu?¿˜:
(x
i,j
,y
m
) –õ•kü‡Ø•(x
i,j
,y
m−1
) ,(x
i,j
,y
m+1
) ,Ïdk>2 ž,lv k-Œˆ:31l
–õ•k−2,lvk-Œˆ:31l−1–õ•k,Ïd,·‚k0 <k≤2ž§col
k
(G) ≤3;
k>2ž§col
k
(G) ≤2k−1 .
½n3é¤kêk>0XJãG=TP,Ù¥T´˜†ä,P´˜^´,@o
wcol
k
(G) ≤2k
2
+k+1.col
k
(G) ≤2k+3 .
y²éuäT,·‚‰§:?1°Ý`küS,äT:‚5SPŠσ∈
Q
(T) .b
x
0,1
´ä䊧x
0,1
•°Ý`k©10,-1i1j‡:P•x
i,j
.éu´P,·‚
DOI:10.12677/aam.2022.111039322A^êÆ?Ð
4Zw
‰§:(y
1
,y
2
,...,y
m
,...)?1˜‡üSPŠτ, y
i
<
τ
y
j
…=i<j.@oéuãG= TP,
:8•V(G)=((x
0,1
,y
1
),(x
0,1
,y
2
),...,(x
0,1
,y
m
),...,(x
1,1
,y
1
),(x
1,1
,y
2
)
,...,(x
1,1
,y
m
),...,(x
i,1
,y
1
),(x
i,1
,y
2
),...,(x
i,1
,y
m
),...) .
duü‡ãTPÚT×P:8ƒÓ,·‚éãT×P¥:üSÚ©æ^½n1¥
•{,•;•-E,ùp†¦^½n1¥:üSÚ©.
dãG©±9 fk-Œˆ½ÂŒ•µ|i−j|≥2 ž,1i:†1j:vk>
ƒë,Ïdéu?¿˜‡:v∈G(:v•1l:)5`,lvfk-Œ ˆ:y
0
ŒUá31
p(l−k≤p≤l,l≥k),…y
0
≺
L
v,Ïd,
lvfk-Œˆ:31l–õ•k,
lvfk-Œˆ:31l−1 –õ•1+2k,
lvfk-Œˆ:31l−2 –õ•1+2k,(k≥2) ,
,...,
lvfk-Œˆ:31l−i–õ•1+2k,(k≥i) ,
Ïd,·‚kwcol
k
(G) ≤k+(1+2k)k+1 .n:wcol
k
(G) ≤2k
2
+k+1.
dãG©Œ•µ|i−j|≥2ž,1i:†1j:vk>ƒë,Ïd,éu?¿˜
‡:v∈G5`,k≥2ž,lvk-Œˆ:y
0
•Uá3:v¤3þ(Ø”•1l)9:
vþ˜(Ø”•1l−1),…y
0
≺
L
v,d½ÂŒ•G¥:3Ó˜k>,…éu?¿˜:
(x
i,j
,y
m
) –õ•kü‡Ø•(x
i,j
,y
m−1
) ,(x
i,j
,y
m+1
) ,Ïdk>2 ž,lv k-Œˆ:31l
–õ•k,lvk-Œˆ:31l−1 –õ•k+2 ,Ïd,·‚kcol
k
(G) ≤2k+3 .
3.äÚ´¦ÈãƉ/Úê
-T´˜†ä,P´˜^´.éuäTÚ´P¦ÈãGƉ/Úê,·‚ÏL‰ãG˜
‡Ü·½•,¦ãG•ŒÑÝ•˜‡~ê,2(ÜÚn1 ÑãG(a,1) -Ɖ/Úê.
½n4éu?¿êa≥2XJG=T×P,Ù¥T´˜†ä,P´˜^´,@o
(a,1)-col
g
(G)≤6.
y²éuãG:,·‚†æ^½n1 üSÚ©.
e5·‚éãG>?1½•,dT×P½Â±9·‚éT×P¥:©´•,ãT×P
vkÓ˜>.éuƒ>©•ü«œ¹µ
1.e= ((x
i−1,a
,y
m−1
),(x
i,j
,y
m
))••l(x
i,j
,y
m
)(x
i−1,a
,y
m−1
).
2.e= ((x
i−1,a
,y
m+1
),(x
i,j
,y
m
))••l(x
i,j
,y
m
)(x
i−1,a
,y
m+1
).
Ïd,é?¿˜‡:(x
i,j
,y
m
)Ñkd
+
G
((x
i,j
,y
m
)) ≤2ŠâÚn1 Œ(a,1)-col
g
(G)≤6.
½n5éu?¿êa≥2XJG=T2P,Ù¥T´˜†ä,P´˜^´,@o
(a,1)-col
g
(G)≤6.
y²éuãG:,·‚†æ^½n1 üSÚ©.
e5·‚éãG>?1½•,éuÓ˜>e= ((x
i,j
,y
m−1
),(x
i,j
,y
m
))••l(x
i,j
,y
m
)
DOI:10.12677/aam.2022.111039323A^êÆ?Ð
4Zw
(x
i,j
,y
m−1
) .éuƒ>e= ((x
i−1,a
,y
m
) ,(x
i,j
,y
m
)) ••l(x
i,j
,y
m
) (x
i−1,a
,y
m
) .Ï
d,é?¿˜‡:(x
i,j
,y
m
)Ñkd
+
G
((x
i,j
,y
m
)) ≤2ŠâÚn1 Œ(a,1)-col
g
(G)≤6.
½n6éu?¿êa≥4,XJG=TP,Ù¥T´˜†ä,P´˜^´,@o
(a,1)-col
g
(G)≤10.
y²éuãG:,·‚†æ^½n1 üSÚ©.
e5·‚éãG>?1½•,éuÓ˜>e= ((x
i,j
,y
m−1
),(x
i,j
,y
m
))••l(x
i,j
,y
m
)
(x
i,j
,y
m−1
).éuƒ>©•n«œ¹µ
1.e= ((x
i−1,a
,y
m
),(x
i,j
,y
m
))••l(x
i,j
,y
m
)(x
i−1,a
,y
m
).
2.e= ((x
i−1,a
,y
m−1
),(x
i,j
,y
m
))••l(x
i,j
,y
m
)(x
i−1,a
,y
m−1
).
3.e= ((x
i−1,a
,y
m+1
),(x
i,j
,y
m
))••l(x
i,j
,y
m
)(x
i−1,a
,y
m+1
).
Ïd,é?¿˜‡:(x
i,j
,y
m
)Ñkd
+
G
((x
i,j
,y
m
)) ≤4ŠâÚn1 Œ(a,1)-col
g
(G)≤10.
éua<4 ž,(ܽn1½•,Œ±±eíØµ
íØ1éu?¿êa<4XJG= TP,Ù¥T´˜†ä,P´˜^´,-r
~
G
(
P
) = r,
@o(a,1)−col
g
(G)≤4+b(1+
1
a
)rc+2 .
y²d½n3Œ•é?¿˜‡:(x
i,j
,y
m
),d
+
G
((x
i,j
,y
m
))≤4,ŠâÚn2Œ(a,1)−
col
g
(G)≤4+b(1+
1
a
)rc+2 .
4.(Š
©‰ÑäÚ´¦Èã2Â/Úêþ.±9(a,b) -Ɖ/Úêþ..¿3y²L§
¥‰ÑäÚ´¦Èã˜‡‚5S±9•ŒÑÝ• ›•˜‡~ê½•,3ïÄ,ãëê
ž,I‡^ã•ŒÑÝ.T½•JøïÄg´.3ãØ¥,¦Èã2Â/ÚêÚÆ‰/Úê
ïÄ,ØÓã¦Èã2Â/Úê9Ɖ/ÚêÑ´Š?˜Ú&?¯K.©‰
ÑäÚ´¦Èã±9¦‚2Â/Úê,?Ø¦ÈãƉ/Úê,@oéu?¿ü‡ã
¦Èã2Â/Úê´Äk˜‡‚5þ.Q,ù•´Š?˜Ú&?¯K.
ë•©z
[1]Kierstead,H.A. and Yang D. (2003) Orderings on Graphs and Game Coloring Number. Order,
20,255-264.https://doi.org/10.1023/B:ORDE.0000026489.93166.cb
[2]Bodlaender,H.L.(1991)OntheComplexityofSomeColoringGames.In:M¨ohring,R.H.,
Eds.,Graph-TheoreticConceptsinComputerScience.WG1990.LectureNotesinComputer
Science,Springer,Berlin,30-40.https://doi.org/10.1007/3-540-53832-129
[3]Kierstead,H.A.(2005)AsymmetricGraphColoringGames.JournalofGraphTheory,48,
169-185.https://doi.org/10.1002/jgt.20049
DOI:10.12677/aam.2022.111039324A^êÆ?Ð
4Zw
[4]Kierstead,H.A.andYang,D.(2005)VeryAsymmetricMarkingGames.Order,22,93-107.
https://doi.org/10.1007/s11083-005-9012-y
[5]Yang,D.andZhu,X.(2008)ActivationStrategyforAsymmetricMarkingGames.European
JournalofCombinatorics,29,1123-1132.https://doi.org/10.1016/j.ejc.2007.07.004
DOI:10.12677/aam.2022.111039325A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.