设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(2),257-263
PublishedOnlineFebruary2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.122030
ÛÜÈiù6/ŒØCf6/
>>>áááLLL§§§oooÔÔÔ>>>§§§ÛÛÛ]]]
∗
§§§XXX„„„
#õ“‰ŒÆêÆ‰ÆÆ§#õ¿°7à
ÂvFϵ2022c13F¶¹^Fϵ2022c23F¶uÙFϵ2022c210F
Á‡
©Ì‡ïÄÛÜÈiù6/ŒØCf6/ƒ'5Ÿ"Äk§ÏLWeingartenúª§‰Ñ
ÛÜÈiù6/Œ ØCf6/R†©ÙD
⊥
ŒÈ¿‡^‡A
FZ
W∈D
⊥
"Ùg§
ÛÜÈiù6/ŒØCf6/¤•·Üÿ/ŒØCf6/¿©^‡"
'…c
iù6/§ÛÜȧŒØCf6/§R†©Ù§·Üÿ/
Semi-InvariantSubmanifoldsofaLocally
ProductRiemannianManifold
LizeBian,ShuwenLi,YongHe
∗
,ChangTian
SchoolofMathematicsScience,XinjiangNormalUniversity,UrumqiXinjiang
Received:Jan.3
rd
,2022;accepted:Feb.3
rd
,2022;published:Feb.10
th
,2022
Abstract
Inthispaper,westudythesemi-invariantsubmanifoldsofalocallyproductRie-
mannianmanifold.Firstly,forthesemi-invariantsubmanifoldsofalocallyproduct
∗ÏÕŠö"
©ÙÚ^:>áL,oÔ>,Û],X„.ÛÜÈiù6/ŒØCf6/[J].nØêÆ,2022,12(2):257-263.
DOI:10.12677/pm.2022.122030
>áL
Riemannianmanifold,thenecessaryandsufficientconditionsforitsverticaldistribu-
tiontobecompletelyintegrablearegivenbytheWeingartenformula.Secondly,a
sufficient conditionisobtained forthesemi-invariantsubmanifolds ofa locally product
Riemannianmanifoldtobemixed-geodesicsubmanifolds.
Keywords
RiemannianManifold,LocallyProduct,Semi-InvariantSubmanifolds,Vertical
Distribution,Mixed-Geodesic
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
3‡©AÛ¥,äkE(J
2
=−I(I´ðÓN)6/kXš~´L AÛ5Ÿ.1951c,
NijenhuisïÄE(JŒÈ5[1].1958c,Yano&Ä˜‡aqE(1w(
F
2
= I(F6= ±I),=’È(,¿3ÛÜ‹IXe‰ÑFAŠ1Ú−1éAü‡Ö©Ù
T
+1
ÚT
−1
©OŒÈ¿‡^‡[2].
äk’È(‡©6/¡•’È6/.1959c,YanoïÄ’È6/ŒÈ©Ù[3].
1964c,Hsué’È6/Š•¡ïÄ[4].
1960c, Tachibana3ÛÜ‹IXe^’È(F‰ÑÛÜÈiù6/½Â[5].1981c,
Adati3ïÄÛÜÈiù6/f6/¯K žuy,ÛÜ‹IXeÛÜÈiù6/†Ùf6/'
XØéÐ¥y,u´l’È(FN5Ñu½ÂÛÜÈiù6/ØCf6/Ú‡
ØCf6/[6].
1984c, Bejancu½ÂÛÜÈiù6/ŒØCf6/[7],d,Matsumoto[8], Atceken
[9–13]ÚGerdan[13,14]<ïÄ´Lù˜af6/.BejancuÏL1Ä/ªB‰ÑÛÜ
Èiù6/ŒØCf6/R†©ÙD
⊥
ÚY²©ÙD©OŒÈ¿‡^‡[7].2003c,
Atceken•|^1Ä/ªB‰ÑR†©ÙD
⊥
ÚY²©ÙD©OŒÈØÓ¿‡^
‡[9],2005c,Atceken/Ï•þ©)•{qDÚD
⊥
©OŒÈ#¿‡^‡[10].
©òÏLWeingartenúª‰ÑR †©ÙD
⊥
ŒÈ¿‡^‡A
FZ
W∈D
⊥
,ùí2
Atceken3©z[10]¥¤A
FZ
W= 0ù˜(Ø,4Œ/´LR†©ÙŒÈ5.
ÿ/f6/´iùAÛ¥˜aš~ kïÄdŠf6/,ÛÜÈiù6/ÿ/ŒØCf
6/•´›©-‡.ÿ/ŒØCf6/ϕ٠©ÙÀØÓ,kn«a.,=·Üÿ/ŒØC
f6/,D
⊥
ÿ/ŒØCf6/,Dÿ/ŒØCf6/[10].
DOI:10.12677/pm.2022.122030258nØêÆ
>áL
©,˜‡¯K´&ÄÛÜÈiù6/ŒØCf6/¤•·Üÿ/ŒØCf 6/¿
©^‡.
Äu±þ©Û,©ïÄŒ±˜«EäkR†©ÙŒÈŒØCf6/k•
{,„Œ±˜«EÛÜÈiù6/·Üÿ/ŒØCf6/kå».
2.ý•£
!̇0ïĤIÄVg,¿½ÎÒ.
(
¯
M,¯g)Ú(M,g)©O´m+n‘Úm‘iù6/, (M,g)´(
¯
M,¯g)åE\f6/.
T
¯
MÚTM©OL«(
¯
M,¯g)Ú(M,g)ƒm,
¯
∇Ú∇©O´(
¯
M,¯g)Ú(M,g)þéä.-
T
⊥
ML«(M,g){m,=T
¯
M= TM⊕T
⊥
M,∇
⊥
L«(M,g)þ{éä.
(
¯
M,¯g)å‰\f6/(M,g)Gaussúª•[15]:
¯
∇
X
Y= ∇
X
Y+B(X,Y),(1)
Ù¥X,Y∈TM,∇
X
Y∈TM,B(X,Y) ∈T
⊥
M.
(
¯
M,¯g)å‰\f6/(M,g)Weingartenúª•[15]:
¯
∇
X
ξ= −A
ξ
X+∇
⊥
X
ξ,(2)
Ù¥X∈TM,ξ∈T
⊥
M,A
ξ
X∈TM,∇
⊥
X
ξ∈T
⊥
M.
¯
∇
X
Y'u(M,g) {•©þB(X,Y)Ú
¯
∇
X
ξ'u(M,g)ƒ•©þA
ξ
XkXe'X[15]:
¯g(A
ξ
X,Y) =¯g(B(X,Y),ξ) =¯g(X,A
ξ
Y).(3)
½½½ÂÂÂ2.1[5](
¯
M,¯g)´iù6/,F´(
¯
M,¯g)þ’È(,e∀
¯
X,
¯
Y∈T
¯
M,k
¯g(F
¯
X,F
¯
Y) =¯g(
¯
X,
¯
Y),(4)
K¡(
¯
M,¯g,F)´’Èiù6/.
½½½ÂÂÂ2.2[5](
¯
M,¯g,F)´’Èiù6/,e
¯
∇F= 0,K¡(
¯
M,¯g,F)´ÛÜÈiù6/.
½½½ÂÂÂ2.3[7](M,g)´ÛÜÈiù6/(
¯
M,¯g,F)åE\f6/,e(M,g)R†©Ù
D
⊥
ÚY²©ÙD÷v:
(i)TM= D
⊥
⊕D;
(ii)F(D) = D;
(iii)F(D
⊥
) ⊂T
⊥
M,
K¡(M,g)´ÛÜÈiù6/(
¯
M,¯g,F)ŒØCf6/.
dim(D
⊥
) = 0 ž, ¡(M,g) •ØCf6/[6]; dim(D) = 0 ž, ¡(M,g) •‡ØCf6/[6].
(M,g)´ŒØCf6/ž,V´F(D
⊥
)3T
⊥
M¥Ö©Ù,=T
⊥
M= F(D
⊥
)⊕V.
···KKK2.1[15]NB:TM×TM→T
⊥
M´(M,g)3(
¯
M,¯g)¥1Ä/ª,KB
DOI:10.12677/pm.2022.122030259nØêÆ
>áL
´é¡…C
∞
V‚5,=∀X,Y∈TM,k:
(i)B(X,Y) = B(Y,X),
(ii)B(aX,bY) = abB(X,Y).
½½½ÂÂÂ2.4[15](M,g)´(
¯
M,¯g)åE\f6/,e(M,g)3(
¯
M,¯g)¥1Ä/ª
B= 0,K¡(M,g)•(
¯
M,¯g)ÿ/f6/.
½½½ÂÂÂ2.5[9](M,g) ´ÛÜÈiù6/(
¯
M,¯g,F)ŒØCf6/,e∀X∈D,Z∈D
⊥
,k
B(X,Z) = 0,K¡(M,g)´(
¯
M,¯g,F)·Üÿ/ŒØCf6/.
½½½ÂÂÂ2.6[10](M,g)´ÛÜÈiù6/(
¯
M,¯g,F)ŒØCf6/,e∀X,Y∈D,
Z,W∈D
⊥
,kB(Z,W)=0(½B(X,Y) =0),K¡(M,g)´(
¯
M,¯g,F)D
⊥
(½D)ÿ/Œ
ØCf6/.
½½½ÂÂÂ2.7[16]D
l
•m‘¢‡©6/Ml‘©Ù,e∀X,Y∈D
l
,kLie)Ò
[X,Y] ∈D
l
,
K¡©ÙD
l
÷vFrobenius^‡.
ÚÚÚnnn2.1[16]D
l
•m‘¢‡©6/Ml‘©Ù,K©ÙD
l
ŒÈdu©ÙD
l
÷vFrobenius^‡.
···KKK2.2[5](
¯
M,¯g,F)´ÛÜÈiù6/,K∀
¯
X,
¯
Y∈T
¯
M,k
¯
∇
¯
X
(F
¯
Y) = F(
¯
∇
¯
X
¯
Y).(5)
···KKK2.3[9](M,g)´ÛÜÈiù6/(
¯
M,¯g,F)ŒØCf6/,K∀Z,W∈D
⊥
,k
A
FZ
W= −A
FW
Z.(6)
ÚÚÚnnn2.2[9](M,g)´ÛÜÈiù6/(
¯
M,¯g,F)ŒØCf6/,T
⊥
M= F(D
⊥
)⊕V,K
D
⊥
ŒÈ…=∀X∈D,Z∈D
⊥
,k
B(X,Z) ∈V.(7)
3.ίCf6/
ŒØCf6/ƒmÚ©Ùk›©—ƒ'X,ÏdÏL©Ù5•xŒØCf6/´š~k¿
Â.!̇&ÄÛÜÈiù6/ŒØCf6/R†©ÙD
⊥
ŒÈ¿‡^‡±9ŒØ
Cf6/¤•·Üÿ/ŒØCf6/¿©^‡.
···KKK3.1(M,g) ´ÛÜÈiù6/(
¯
M,¯g,F)ŒØCf6/,K∀Z,W∈D
⊥
,X∈D,k
¯g([Z,W],FX) = 2¯g(A
FZ
W,X).(8)
DOI:10.12677/pm.2022.122030260nØêÆ
>áL
yyy²²²Šâ½Â2.3,∀Z,W∈D
⊥
,kFZ,FW∈T
⊥
M,2d(2),Œ
¯
∇
Z
(FW) = −A
FW
Z+∇
⊥
Z
FW,(9)
¯
∇
W
(FZ) = −A
FZ
W+∇
⊥
W
FZ.(10)
d(9)~(10),Œ
¯
∇
Z
(FW)−
¯
∇
W
(FZ) = −A
FW
Z+A
FZ
W+∇
⊥
Z
FW−∇
⊥
W
FZ.(11)
duW,Z∈D
⊥
⊂TM⊂T
¯
M,A^(5),Œ±
¯
∇
Z
(FW)−
¯
∇
W
(FZ) = F(
¯
∇
Z
W)−F(
¯
∇
W
Z) = F[Z,W].(12)
Šâ(6),∀Z,W∈D
⊥
,k
−A
FW
Z+A
FZ
W= 2A
FZ
W.(13)
ò(12)Ú(13)“\(11),
F[Z,W] = 2A
FZ
W+∇
⊥
Z
FW−∇
⊥
W
FZ.(14)
Ï•∇
⊥
Z
FW−∇
⊥
W
FZ∈T
⊥
M,X∈D⊂TM,¤±¯g(∇
⊥
Z
FW−∇
⊥
W
FZ,X) =0,d(14)Œ±

¯g(F[Z,W],X) = 2¯g(A
FZ
W,X).(15)
Šâ(4),¿5¿F
2
= I,k
¯g(F[Z,W],X) =¯g(F
2
[Z,W],FX) =¯g([Z,W],FX).(16)
d(16)Ú(15),´
¯g([Z,W],FX) = 2¯g(A
FZ
W,X).
½½½nnn3.1(M,g)´ÛÜÈiù6/(
¯
M,¯g,F)ŒØCf6/,KD
⊥
ŒÈ…=
∀Z,W∈D
⊥
,kA
FZ
W∈D
⊥
.
yyy²²²(M,g)´ÛÜÈiù6/(
¯
M,¯g,F)ŒØCf6/,dÚn2.1Œ•, D
⊥
ŒÈ
du[Z,W] ∈D
⊥
,l∀X∈D,k¯g([Z,W],FX) = 0,2d·K3.1,ùduA
FZ
W∈D
⊥
,=
D
⊥
ŒÈ…=A
FZ
W∈D
⊥
,½ny.
½½½nnn3.2(M,g)´ÛÜÈiù6/(
¯
M,¯g,F)ŒØCf6/,eD
⊥
ŒÈ,…
F(D
⊥
) = T
⊥
M,K(M,g)´(
¯
M,¯g,F)·Üÿ/ŒØCf6/.
yyy²²²(M,g)´ÛÜÈiù6/(
¯
M,¯g,F)ŒØCf6/,Šâ(3), ∀Z,W∈D
⊥
,X∈D,
k
¯g(A
FZ
W,X) =¯g(B(X,W),FZ).(17)
DOI:10.12677/pm.2022.122030261nØêÆ
>áL
d·K3.1Ú(17),´
¯g([Z,W],FX) = 2¯g(B(X,W),FZ).(18)
ŠâÚn2.2,D
⊥
ŒÈduB(X,W)∈V,2dF(D
⊥
)=T
⊥
M,=T
⊥
M¥Ø•3©
ÙV,(18)¥B(X,W) = 0.ld½Â2.5Œ•,(M,g)´(
¯
M,¯g,F)·Üÿ/ŒØCf6/,
½ny.
íííØØØ3.1(M,g)´ÛÜÈiù6/(
¯
M,¯g,F)·Üÿ/ŒØCf6/,K(M,g)R
†©ÙD
⊥
ŒÈ.
ííí ØØØ3.2(M,g)´ÛÜÈiù6/(
¯
M,¯g,F)·Üÿ/ŒØCf6/,K∀Z∈D
⊥
,
X∈D,ξ∈T
⊥
M,k
A
ξ
Z∈D
⊥
,
A
ξ
X∈D.
ííí ØØØ3.3(M,g)´ÛÜÈiù6/(
¯
M,¯g,F)D
⊥
ÿ/ŒØCf6/,K∀Z∈D
⊥
,
ξ∈T
⊥
M,k
A
ξ
Z∈D.
íííØØØ3.4(M,g)´ÛÜÈiù6/(
¯
M,¯g,F)Dÿ/ŒØCf6/,K∀X∈D,
ξ∈T
⊥
M,k
A
ξ
X∈D
⊥
.
4.(Ø
©‰ÑÛÜÈiù6/ŒØCf6/R†©ÙD
⊥
ŒÈ¿‡^‡,=
A
FZ
W∈D
⊥
,lŒ±˜«EäkR†©ÙŒÈŒØCf6/k•{.©„
ÛÜÈiù6/ŒØCf6/¤•·Üÿ/ŒØCf6/¿©^‡,Œ±dd5E
ÛÜÈiù6/·Üÿ/ŒØCf6/.
Ä7‘8
I[g,䮀7(11761069).
ë•©z
[1]Nijenhuis, A. (1951) X
n−1
-Forming Sets of Eigenvectors. IndagationesMathematicae, 54,200-
212.https://doi.org/10.1016/S1385-7258(51)50028-8
[2]Yano,K.(1958)OnWalkerDifferentiationinAlmostProductorAlmostComplexSpaces.
IndagationesMathematicae,61,573-580.https://doi.org/10.1016/S1385-7258(58)50082-1
DOI:10.12677/pm.2022.122030262nØêÆ
>áL
[3]Yano, K.(1959)AffineConnexions inanAlmostProduct Space. KodaiMathematicalJournal,
11,1-24.https://doi.org/10.2996/kmj/1138844134
[4]Hsu,C.(1964)RemarksonCertainAlmostProductSpaces.PacificJournalofMathematics,
14,163-176.https://doi.org/10.2140/pjm.1964.14.163
[5]Tachibana,S.(1960)SomeTheoremsonLocallyRiemannianSpaces.TohokuMathematical
Journal,12,281-292.https://doi.org/10.2748/tmj/1178244441
[6]Adati,T.(1981)Submanifolds ofanAlmostProduct Riemannian Manifold.KodaiMathemat-
icalJournal,4,327-343.https://doi.org/10.2996/kmj/1138036379
[7]Bejancu, A. (1984) Semi-Invariant Submanifolds of Locally Product Riemannian Manifold. An
UnivTimisoaraSerStiintMathAl,22,3-11.
[8]Matsumoto,K.(1982)OnSubmanifoldsofLocallyProductRiemannianManifolds.TRU
Mathematics,18,145-157.
[9]Sahin,B.andAtceken,M.(2003)Semi-InvariantSubmanifoldsofRiemannianProductMan-
ifold.BalkanJournalofGeometryandItsApplications,24,549-558.
[10]Atceken, M.(2005) Submanifolds ofRiemannian Product Manifolds. TurkishJournalofMath-
ematics,29,389-401.
[11]Atceken, M.(2010)Geometry ofSemi-Invariant Submanifoldsofa RiemannianProductMan-
ifold.MathematicaMoravica,14,23-34.https://doi.org/10.5937/MatMor1001023A
[12]Atceken, M.(2008)AConditionforWarpedProductSemi-Invariant SubmanifoldstoBeRie-
mannianProductSemi-InvariantSubmanifoldsinLocallyRiemannianProductManifolds.
TurkishJournalofMathematics,32,349-362.
[13]Tastan, H.M.andGerdan, S.(2018)DoublyTwistedProductSemi-InvariantSubmanifoldsof a
Locally Product RiemannianManifold. MathematicalAdvancesinPureandAppliedSciences,
1,23-26.
[14]Traore,M.,Tastan,H.M. andGerdan,S.(2021) MultiplyWarped ProductGeneralizedSemi-
InvariantSubmanifolds.InternationalElectronicJournalofGeometry,14,313-330.
[15]xI,!˜X.iùAÛÐÚ[M].®:p˜Ñ‡,2004.
[16]•‘ƒ.‡©6/ÐÚ[M].®:p˜Ñ‡,2001.
DOI:10.12677/pm.2022.122030263nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.