设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(3),354-367
PublishedOnlineMarch2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.123039
Cartan-EilenbergX-SÚX-²"E/
æææwww
Ü“‰ŒÆêƆÚOÆ§[‹=²
ÂvFϵ2022c127F¶¹^Fϵ2022c32F¶uÙFϵ2022c39F
Á‡
X•˜‡†R-a"©Ú\CEX-SE/ÚCEX-²"E/Vg§3X÷v˜½^
‡œ¹e§?ØùüaE/éX§‰ÑùüaE/˜d•x"
'…c
CE X-SE/§CE X-²"E/§X-S§X-²"
Cartan-EilenbergX-InjectiveandX-Flat
Complexes
YaliWang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Jan.27
th
,2022;accepted:Mar.2
nd
,2022;published:Mar.9
th
,2022
Abstract
LetXbeaclassofleftR-modules.Inthispaper,thenotionsofCEX-injectivecom-
plexesandCEX-flatcomplexesareintroduced.Undercertainmildassumptionson
X,the relationshipofCEX-injective complexesandCEX-flatcomplexesisdiscussed,
©ÙÚ^:æw.Cartan-EilenbergX-SÚX-²"E/[J].nØêÆ,2022,12(3):354-367.
DOI:10.12677/pm.2022.123039
æw
and equivalent characterizations of CEX-injective complexes and CEX-flat complexes
aregiven,respectively.
Keywords
CEX-InjectiveComplex,CEX-FlatComplex,X-InjectiveModule,X-FlatModule
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
1956 c,Cartan ÚEilenberg 3©z[1]¥‰ÑE/˜«Ý©)Ú˜«S©).‘,
3©z[2]¥Verdier òE/ùü«©)©O¡•E/Cartan-Eilenberg Ý©)ÚCartan-
Eilenberg S©)({¡•CE-ÝÚCE-S),•ÄCE-Ý©)ÚCE-S©)•35,
¿Ú\ÚïÄCE-SE/!CE-ÝE/!CE-SE/.2011 c,Enochs 3©z[3] ¥y²
z˜‡E/ÑkCE-S•äÚCE-ÝýCX,˜‡E/´CE-²"…=§´k•)¤
CE-ÝE/•4•,¿…„ïÄCE-Gorenstein ÝE/ÚCE-Gorenstein SE/ƒ
'5Ÿ.2014 c,Yang ÚLiang 3©z[4],[5] Ú[6] ¥?˜ÚïÄCE-Gorenstein ÝE/Ú
CE-Gorenstein²"E/5Ÿ9CE-Gorenstein‰Æ-½5.
1970 c,Stenstr¨om 3©z[7] ¥Ú\FP-SVg.3và‚þ,FP-SkNõa
quS5Ÿ.2015c,Gao ÚWang 3©z[8]¥òFP-SVg?1í2,Ú\¿ï
ÄfSÚf²",¿…y²fSØ´FP-S,f²"Ø´²".2013 c,Š
•S!FP-S!P-S!(m,n)-SaÚ˜í2,Zhu 3©z[9] ¥Ú\X-S
Vg,Ù¥X´˜‡†R-a.éó/,Zhu 3©z[9] ¥•Ú\¿ïÄX-²".2016
c,Lu ÚLiu 3©z[10] ¥Ú\¿ïÄCE FP-SE/ÚCE FP-²"E/.2018 c,Ma 3©
z[11]¥©OÚ\¿ïÄCE-fSÚCE-f²"E/.
ÉþãóŠéu,©Ú\CE X-SE/ÚCE X-²"E/Vg,3X÷v˜½^‡
œ¹e,ïÄCEX-SE/ÚCE X-²"E/˜5Ÿ,‰ÑùüaE/˜d•x.
2.ý•£
©¥,R´äkü ‚,X´˜‡?¿½†R-a.¤k†(m) R-¤‰Æ
P•ModR( Mod R
op
).^C(R)L«†R-E/‰Æ.
DOI:10.12677/pm.2022.123039355nØêÆ
æw
¡R-S
···
//
C
2
δ
C
2
//
C
1
δ
C
1
//
C
0
δ
C
0
//
C
−1
δ
C
−1
//
C
−2
//
···
´E/,XJé?¿n∈Z,δ
C
n−1
δ
C
n
=0,PŠ(C,δ) ½C,Ù¥δ
C
n
¡•C1n‡‡©.^
Kerδ
C
n
L«E/C1n‡Ì‚, PŠZ
n
(C).^Imδ
C
n+1
L«E/C1n‡>, PŠB
n
(C).
¡H
n
(C)=Z
n
(C)/B
n
(C) •E /C1n‡ÓN.·‚^þI«©E/. ÏdXJ{C
i
}
i∈I
´
˜qE/,@oC
i
Ò´
C
i
: ···
//
C
i
2
δ
C
i
2
//
C
i
1
δ
C
i
1
//
C
i
0
δ
C
i
0
//
C
i
−1
δ
C
i
−1
//
C
i
−2
//
···.
bC´˜‡E/. ^ΣCL«ùE/: Ù1i‡g•(ΣC)
i
=C
i−1
, >¼f•
δ
ΣC
i
= −δ
C
i−1
.8B/,·‚Œ±½ÂE/Σ
n
C=Σ(Σ
n−1
C),=Ù1i‡g•(Σ
n
C)
i
= C
i−n
,
>¼f•δ
Σ
n
C
i
= (−1)
n
δ
C
i−1
.‰˜‡†R-M, ^ML«E/
···
//
0
//
M
id
M
//
M
//
0
//
···,
=11‡gÚ10‡g´M, Ù¦gÑ•0E/.^ML«E/
···
//
0
//
M
//
0
//
···,
Ù¥M u10 ‡g.
CÚD´E/.^Hom
R
(C,D)L«Abel+E/,Ù¥Hom
R
(C,D)
n
=
Q
i∈Z
Hom
R
(C
i
,D
i+n
),
…éf∈Hom
R
(C,D)
n
,(δ
n
(f))
i
= δ
D
i+n
f
i
−(−1)
n
f
i−1
δ
C
i
.eé∀n∈Z,δ
n
(f) = 0, K¡f•Ý•n
óN.AO/,Ý•0óN¡•E/,=¡f= (f
i
)
i∈Z
•CDE/,XJé?
¿i∈Z, eãŒ†
···
//
C
i+1
f
i+1

δ
C
i+1
//
C
i
f
i

δ
C
i
//
C
i−1
//
f
i−1

···
···
//
D
i+1
δ
D
i+1
//
D
i
δ
D
i
//
D
i−1
//
···.
·‚^Hom(C,D) L«lCDE/¤Abel +, ^Ext
i
(−,−) L«¼fHom(−,−)
pmѼf.
-Hom(C,D)=Z(Hom
R
(C,D)).KHom(C,D)´˜‡E/,Ù¥Hom(C,D)
n
´C
Σ
−n
DE/¤Abel+,1n‡gþ‡©•(δ
n
(f))
m
=(−1)
n
δ
D
m+n
f
m
,Ù¥
f∈Hom(C,D)
n
,m∈Z.^Ext
i
(−,−)L«Hom(−,−)mѼf.ØJyExt
i
(C,D)
´ùE/
···
//
Ext
i
(C,Σ
−(n+1)
D)
//
Ext
i
(C,Σ
−n
D)
//
Ext
i
(C,Σ
−(n−1)
D)
//
···.
DOI:10.12677/pm.2022.123039356nØêÆ
æw
é?¿E/C, ÙAE/Hom(C,Q/Z),P•C
+
.
C´mR-E/,D´†R-E/.CÚDÜþÈC
N
R
D´Z-E/,Ù
¥(C
N
R
D)
n
=
L
i∈Z
(C
i
N
R
D
n−i
), éuc∈C
i
±9d∈D
n−i
, δ
C
N
R
D
(c
N
d)=δ
C
(c)
N
d+
(−1)
i
c
N
δ
D
(d).½ÂC
N
D= C
N
R
D/B(C
N
R
D).KC
N
D•Abel +E/,Ù>Žf•
(C
N
R
D)
m
B
m
(C
N
R
D)
→
(C
N
R
D)
m−1
B
m−1
(C
N
R
D)
, x
O
y7→δ
C
(x)
O
y,
Ù¥x
N
yL«(C
N
R
D)
m
/B
m
(C
N
R
D) ¥8. N´y²−
N
−´mܼf, Ù†Ѽ
fP•Tor
i
(−,−).
½Â1.1 [3](1)¡E/P´CE-Ý, XJP,Z(P),B(P) ÚH(P)Ñ´ÝE/;
(2)¡E/I´CE-S,XJI, Z(I),B(I)ÚH(I) Ñ´SE/;
(3)¡E/F´CE-²", XJF,Z(F),B(F) ÚH(F) Ñ´²"E/.
½Â1.2[10]¡E/S···→C
1
→C
0
→C
−1
→···´CE-Ü, XJeS´
Ü:
(1)···→C
1
→C
0
→C
−1
→···;
(2)···→Z(C
1
) →Z(C
0
) →Z(C
−1
) →···;
(3)···→B(C
1
) →B(C
0
) →B(C
−1
) →···;
(4)···→C
1
/Z(C
1
) →C
0
/Z(C
0
) →C
−1
/Z(C
−1
) →···;
(5)···→C
1
/B(C
1
) →C
0
/B(C
0
) →C
−1
/B(C
−1
) →···;
(6)···→H(C
1
) →H(C
0
) →H(C
−1
) →···.
d[3] Œ•,3þãS¥,e(1) †(2)½(1)†(3),(1)†(4), (1)†(5)Ü,K(1)-(6)Ñ
Ü.
½Â1.3 [10] (1) ¡E/C´CE-k•)¤,XJC´k.…é?¿m∈Z,C
m
,Z
m
(C),
B
m
(C) ÚH
m
(C) Ñ´k•)¤;
(2) ¡E/C´CE-k•L«, XJC´k.…é?¿m∈Z, C
m
, Z
m
(C), B
m
(C) Ú
H
m
(C) Ñ´k•L«.
½Â1.4 [10]¡E/C´CEFP-S,XJé?¿CE-k•L«E/P,Ext
1
(P,C) = 0.
d©z[10,Ún4.7]Œ•E/C´CE-²"…=é?¿CE-k•L«E/P,
Tor
1
(P,C) = 0.
½Â1.5[11]¡E/C´CE-‡k• L«, XJC´k.…é?¿m∈Z, C
m
, Z
m
(C),
B
m
(C) ÚH
m
(C) Ñ´‡k•L«.
DOI:10.12677/pm.2022.123039357nØêÆ
æw
½Â1.6[11] (1)¡E/C´CE-fS,XJé?¿CE-‡k•L«E/F, Ext
1
(F,C) =
0;
(2)¡mR-E/D´CE-f²",XJé?¿CE-‡k•L«E/F,Tor
1
(D,F) = 0.
½Â1.7 [9] X´˜k•)¤†R-a,
(1) ¡†R-M´X-S, XJé?¿X∈X,Ext
1
R
(X,M) =0. ^XI5L«X-S
a;
(2)¡mR-M´X-²", XJé?¿X∈X,Tor
R
1
(M,X) = 0.
Ún1.8 [3] ¼fHom(−,−)3C(R)×C(R)þ'uCE(P)×CE(I) m²ï.
Œ•,|^CE-Ý½CE-S©)5OŽHom(−,−)mѼfExt
n
(−,−).é?¿E/
CÚD,Ext
n
(C,D) ⊆Ext
n
(C,D).´,é?¿CE-ÜS0
//
X
//
Y
//
Z
//
0
•3•ÜS
0
//
Hom(C,X)
//
Hom(C,Y)
//
Hom(C,Z)
//
Ext
1
(C,X)
//
···,
Ú
0
//
Hom(Z,D)
//
Hom(Y,D)
//
Hom(X,D)
//
Ext
1
(Z,D)
//
···.
Ún1.9 [10](1)¼fHom(−,−) 3C(R)×C(R) þ'uCE(P)×CE(I)m²ï;
(2)¼f−
N
−3C(R)×C(R) þ'uCE(F)×CE(F) †²ï.
T(ØL²,·‚Œ±|^CE-Ý½CE-S©)5OŽHom(−,−)mѼf
Ext
n
(−,−),Œ±|^CE-²"©)5OŽ−
N
−†ѼfTor
n
(−,−).´„,é?¿E
/CÚD,Ext
n
(C,D) ⊆Ext
n
(C,D);é?¿mR-E/CÚ†R-E/D,Tor
n
(C,D) ⊆
Tor
n
(C,D).
3.CEX-SE/ÚCEX-²"E/
½Â2.1X´˜‡†R-a.-
CE-C
b
(X) = {C∈C(R) |C´k.E/,…é?¿m∈Z,C
m
,Z
m
(C),B
m
(C) ÚH
m
(C)
ÑáuX}.
e©¥,·‚o´b½X´˜‡†R-a,…÷ve^‡:
(1)X'uÜÀµ4;
(2)X'u*ܵ4;
DOI:10.12677/pm.2022.123039358nØêÆ
æw
(3)X•¹uk•L«†R-a.
5P2.2(1)R´†và‚,X´¤kk•L«†R-a,KX'uÜÀµ4,CE-C
b
(X)
´CE-k•L«E/a;
(2) eX´¤k‡k•L«†R-a, KX'uÜÀµ4, CE-C
b
(X) ´CE-‡k•L«E
/a;
(3)Šâ[9,½n2.10]•, (
⊥
XI,XI)´{Lé.®•X'uÜÀµ4,d[12, íØ5.25]
•,(
⊥
XI,XI)´¢D{Lé.
·K2.3C´E/.XJC∈CE-C
b
(X),@o•3CE-ÜS
0
//
K
//
P
//
C
//
0,
Ù¥P´CE-k•)¤…CE-Ý,K∈CE-C
b
(X).
y²i∈Z.duC∈CE-C
b
(X),KB
i
(C) ∈X,H
i
(C) ∈X,•3Ü
0
//
K
B
i
(C)
//
P
B
i
(C)
//
B
i
(C)
//
0,
0
//
K
H
i
(C)
//
P
H
i
(C)
//
H
i
(C)
//
0,
Ù¥P
B
i
(C)
ÚP
H
i
(C)
´k•)¤Ý,K
B
i
(C)
ÚK
H
i
(C)
ÑáuX.•ÄeÜS
0
//
B
i
(C)
//
Z
i
(C)
//
H
i
(C)
//
0.
KŠâêLÚnŒ±e1Ü†ã:
0

0

0

0
//
K
B
i
(C)

//
K
Z
i
(C)

//
K
H
i
(C)

//
0
0
//
P
B
i
(C)

//
P
B
i
(C)
L
P
H
i
(C)

//
P
H
i
(C)

//
0
0
//
B
i
(C)

//
Z
i
(C)

//
H
i
(C)

//
0
000.
DOI:10.12677/pm.2022.123039359nØêÆ
æw
Ï•X'u*ܵ4,¤±K
Z
i
(C)
∈X.2ŠâêLÚnŒ±e1Ü†ã:
0

0

0

0
//
K
Z
i
(C)

//
K
i

//
K
B
i−1
(C)

//
0
0
//
P
B
i
(C)
L
P
H
i
(C)

//
P
B
i
(C)
L
P
H
i
(C)
L
P
B
i−1
(C)

//
P
B
i−1
(C)

//
0
0
//
Z
i
(C)

//
C
i

//
B
i−1
(C)

//
0
000.
KkK
i
∈X.lŠâi?¿5Œ±eÜ†ã:
0

0

0

0

···
//
K
B
i
(C)

//
K
Z
i
(C)

//
K
i

//
K
B
i−1
(C)

//
···
···
//
P
B
i
(C)

//
P
B
i
(C)
L
P
H
i
(C)

//
P
B
i
(C)
L
P
H
i
(C)
L
P
B
i−1
(C)

//
P
B
i−1
(C)

//
···
···
//
B
i
(C)

//
Z
i
(C)

//
C
i

//
B
i−1
(C)

//
···
0000.
ÏdŒeCE-ÜS
0
//
K
//
P
//
C
//
0,
Ù¥P
i
=P
B
i
(C)
L
P
H
i
(C)
L
P
B
i−1
(C)
.duE/C´k.,PÚK´k.,¿…Œ•
P´CE-k•)¤…CE-Ý.Ï•é?¿i∈Z,kZ
i
(K)=K
Z
i
(C)
,B
i
(K)=K
B
i
(C)
Ú
H
i
(K) = K
H
i
(C)
,…K
i
,K
Z
i
(C)
,K
B
i
(C)
ÚK
H
i
(C)
ÑáuX,¤±K∈CE-C
b
(X).
·K2.4{C
i
}
i∈I
´˜qE/,X∈CE-C
b
(X).Kk
Ext
1
(X,
M
i∈I
C
i
)
∼
=
M
i∈I
Ext
1
(X,C
i
).
y²E/X∈CE-C
b
(X).KŠâ·K2.3 Œ••3CE-ÜS
0
//
K
//
P
//
X
//
0,
DOI:10.12677/pm.2022.123039360nØêÆ
æw
Ù¥P´CE-k•)¤…CE-Ý,K∈CE-C
b
(X).ke1Ü†ã:
Hom(P,
L
i∈I
C
i
)
//
α

Hom(K,
L
i∈I
C
i
)
//
β

Ext
1
(X,
L
i∈I
C
i
)
//

0
L
i∈I
Hom(P,C
i
)
//
L
i∈I
Hom(K,C
i
)
//
L
i∈I
Ext
1
(X,C
i
)
//
0.
Ï•X•¹uk•L«a,¤±K∈CE-C
b
(X) ´CE-k•)¤.Šâ[10,Ún5.3] Œα
ÚβÑ´Ó.ÏddÊÚnŒExt
1
(X,
L
i∈I
C
i
)
∼
=
L
i∈I
Ext
1
(X,C
i
).
½Â2.5(1)¡E/C´CEX-S,XJéu?¿E/X∈CE-C
b
(X),kExt
1
(X,C) = 0;
(2)¡mRE/F´CE X-²",XJéu?¿E/X∈CE-C
b
(X),kTor
1
(F,X) = 0.
5P2.6(1)CEX-SE/aPŠCE(X-Inj);
(2)XJX´¤kk•L«†R-a,@oCE(X-Inj) L«CEFP-SE/a;
(3)XJX´¤k‡k•L«†R-a, @oCE(X-Inj)L«CE-fSE/a;
5P2.7(1)CEX-²"E/aPŠCE(X-Flat);
(2)XJX´¤kk•L«†R-a,@oCE(X-Flat) L«CEFP-²"E/a;
(3)XJX´¤k‡k•L«†R-a,@oCE(X-Flat) L«CE-f²"E/a;
·K2.8E/C´CEX-S…=é?¿E/X∈CE-C
b
(X),kExt
1
(X,C) = 0.
y²E/X∈CE-C
b
(X).d½ÂŒ•E/Ext
1
(X,C)•
···
//
Ext
1
(X,Σ
−(n+1)
C)
//
Ext
1
(X,Σ
−n
C)
//
Ext
1
(X,Σ
−(n−1)
C)
//
···.
E/C´CEX-S…=é?¿E/X∈CE-C
b
(X),kExt
1
(X,C) = 0.
·K2.9(1)CE(X-Inj) 'u†È,†Ú,†Ú‘ÚCE-*ܵ4;
(2)CE(X-Flat) 'u†Ú,†Ú‘ÚCE-*ܵ4.
y²(1) ŠâCE X-SE/½ÂŒ•,CE(X-Inj) 'u†È,†Ú‘ÚCE-*ܵ4´w
,.eyCE(X-Inj) 'u†Úµ4.
{C
i
}
i∈I
´˜qCEX-SE/,X∈CE-C
b
(X).KŠâ·K2.3 •,•3CE-ÜS
0
//
K
//
P
//
X
//
0,
Ù¥P´CE-k•)¤…CE-Ý,K∈CE-C
b
(X).2Šâ[10,Ún5.3]Ú·K2.4ŒXe1
DOI:10.12677/pm.2022.123039361nØêÆ
æw
Ü†ã:
0
//
Hom(X,
L
i∈I
C
i
)
//
∼
=

Hom(P,
L
i∈I
C
i
)
//
∼
=

Hom(K,
L
i∈I
C
i
)
∼
=

0
//
L
i∈I
Hom(X,C
i
)
//
L
i∈I
Hom(P,C
i
)
//
L
i∈I
Hom(K,C
i
)
//
0.
duP´CE-Ý,Ext
1
(P,
L
i∈I
C
i
)=0,KkExt
1
(X,
L
i∈I
C
i
)=0.Ïdd·K2.8 Œ
L
i∈I
C
i
´CEX-SE/.
(2)ŠâCEX-²"E/½ÂŒ•,CE(X-Flat)'u†Ú,†Ú‘ÚCE-*ܵ4´¤á.
·K2.10M´†R-. Kk
(1)M´X-S…=M´CEX-SE/;
(2)M´X-S…=M´CEX-SE/.
y²(1) ⇒)M´X-S,X∈CE-C
b
(X).KX
0
,H
0
(X),B
−1
(X) Ñ´áuX.d
ÜS0 →H
0
(X) →X
0
/B
0
(X) →B
−1
(X) →0±9X'u*ܵ4, ŒX
0
/B
0
(X) ∈X.
Ext
1
(X
0
/B
0
(X),M) =0.d[3,Ún9.3] •Ext
1
(X,M)
∼
=
Ext
1
(X
0
/B
0
(X),M),Ext
1
(X,M)=
0.ÏdM
´CEX-S.
⇐) X∈X.KX∈CE-C
b
(X),Ext
1
(X,M)=0.Šâ[3,Ún9.1] ŒExt
1
(X,M)
∼
=
Ext
1
(X,M),Ext
1
(X,M) = 0.ÏdM´X-S.
(2) ⇒) M´X-S,X∈CE-C
b
(X).KX
0
∈X,Ext
1
(X
0
,M)=0.d[3,Ún9.3]
•Ext
1
(X,M)
∼
=
Ext
1
(X
0
,M),Ext
1
(X,M) = 0.ÏdM´CEX-S.
⇐)†R-X∈X.Œ•X∈CE-C
b
(X),Ext
1
(X,M)=0.Šâ[3,Ún9.2]Œ•
Ext
1
(X,M)
∼
=
Ext
1
(X,M),ÏdExt
1
(X,M) = 0,=M´X-S.
·K2.11C´E/.K±ed:
(1)C´CEX-SE/;
(2)é?¿CE-ÜS
0
//
X
//
Y
//
Z
//
0,
Ù¥Z∈CE-C
b
(X),S
0
//
Hom(Z,C)
//
Hom(Y,C)
//
Hom(X,C)
//
0
Ü;
DOI:10.12677/pm.2022.123039362nØêÆ
æw
(3)z‡CE-ÜS
0
//
C
//
I
//
L
//
0
Ñ´Œ,Ù¥L∈CE-C
b
(X).
y²(1) ⇒(3)S0
//
C
//
I
//
L
//
0´CE-Ü,Ù¥L∈CE-C
b
(X).
d(1)ŒExt
1
(L,C) = 0.S0
//
C
//
I
//
L
//
0Œ.
(2) ⇒(1)E/X∈CE-C
b
(X).Šâ·K2.3 Œ••3CE-ÜS
0
//
K
//
P
//
X
//
0,
Ù¥P´CE-k•)¤…CE-Ý,K∈CE-C
b
(X).kÜS
0
//
Hom(X,C)
//
Hom(P,C)
//
Hom(K,C)
//
Ext
1
(X,C)
//
0.
KŠâ^‡(2)ŒExt
1
(X,C) = 0.ÏdC´CEX-SE/.
(3)⇒(2) S0
//
A
//
B
//
X
//
0´CE-Ü,Ù¥X∈CE-C
b
(X).é
?¿α: A→C,ŒXeíÑã:
0
//
A
α

f
//
B
g

//
X
//
0
0
//
C
β
//
H
//
X
//
0.
d^‡(3)Œ•S
0
//
C
β
//
H
//
X
//
0
´Œ,•3γ: H→C, ¦γβ= 1. -θ= γg.Kθ: B→C…θf= α. ¤±(2)¤á.
½n2.12C´E/.Ke^‡d:
(1)C´CEX-SE/;
(2)é?¿i∈Z, C
i
,Z
i
(C) ´X-S;
(3)é?¿i∈Z, B
i
(C), H
i
(C) ´X-S;
(4)é?¿i∈Z, C
i
,B
i
(C), Z
i
(C)ÚH
i
(C) ´X-S.
y²(1)⇒(2)C´CEX-SE/,X∈X,i∈Z.KΣ
i−1
X,Σ
i
X∈CE-C
b
(X).
Ext
1
(Σ
i−1
X,C) = 0,Ext
1
(Σ
i
X,C) = 0.d[3,Ún9.1Ú9.2]•Ext
1
(Σ
i
X,C)
∼
=
Ext
1
(X,Z
i
(C)),
Ext
1
(Σ
i−1
X,C)
∼
=
Ext
1
(X,C
i
),lkExt
1
(X,C
i
)=0,Ext
1
(X,Z
i
(C))=0.ÏdC
i
,Z
i
(C)´
X-S.
DOI:10.12677/pm.2022.123039363nØêÆ
æw
(2) ⇒(3)i∈Z.Ï•C
i+1
,Z
i+1
(C) ´X-S,¤±dÜ
0
//
Z
i+1
(C)
//
C
i+1
//
B
i
(C)
//
0
Ú5P2.2(3)Œ•B
i
(C) ´X-S.qŠâÜ
0
//
B
i
(C)
//
Z
i
(C)
//
H
i
(C)
//
0
Ú5P2.2(3)Œ•H
i
(C) ´X-S.
(3) ⇒(4)i∈Z.d(3)Œ•B
i
(C), H
i
(C) ´X-S.KdÜ
0
//
B
i
(C)
//
Z
i
(C)
//
H
i
(C)
//
0
ŒZ
i
(C) ´X-S.2dÜ
0
//
Z
i
(C)
//
C
i
//
B
i−1
(C)
//
0
ŒC
i
´X-S.
(4) ⇒(1)X∈CE-C
b
(X).IyExt
1
(X,C) = 0.S0
//
C
//
L
//
X
//
0
´CE-Ü,i∈Z.KkÜ
0
//
B
i
(C)
//
B
i
(L)
//
B
i
(X)
//
0,
0
//
H
i
(C)
//
H
i
(L)
//
H
i
(X)
//
0.
Ï•X∈CE-C
b
(X),¤±B
i
(X)∈X, H
i
(X)∈X.d(4) •B
i
(C) ÚH
i
(C) ´X-S,þ¡
ü‡ÜÑ´Œ.lB
i
(C) →B
i
(L)ÚH
i
(C) →H
i
(L)Ñk N, ©OPŠγ
B
i
Úγ
H
i
.
•ıe1ŒÜ,Ü†ã:
0

0

0

0
//
B
i
(C)

//
B
i
(L)

//
B
i
(X)

//
0
0
//
Z
i
(C)

//
Z
i
(L)

//
Z
i
(X)

//
0
0
//
H
i
(C)

//
H
i
(L)

//
H
i
(X)

//
0
000.
DOI:10.12677/pm.2022.123039364nØêÆ
æw
duH
i
(X) ∈X,…B
i
(C),Z
i
(C)´X-S,Ext
1
R
(H
i
(X),B
i
(C)) = 0,Ext
1
R
(H
i
(X),Z
i
(C)) =
0.d[3,Ún9.5] Œ••3Z
i
(C)→Z
i
(L) Â Nγ
Z
i
:Z
i
(L)→Z
i
(C),¦γ
B
i
†γ
Z
i
ƒN,
γ
Z
i
†γ
H
i
ƒN.Ón,Šâ1ŒÜ,Ü†ã:
0

0

0

0
//
Z
i
(C)

//
Z
i
(L)

//
Z
i
(X)

//
0
0
//
C
i

//
L
i

//
X
i

//
0
0
//
B
i−1
(C)

//
B
i−1
(L)

//
B
i−1
(X)

//
0
000.
ΥC
i
→L
i
Â Nγ
C
i
: L
i
→C
i
,¦γ
Z
i
†γ
C
i
ƒN,γ
C
i
†γ
B
i−1
ƒN.u´d†ã:
L
i
γ
C
i

//
B
i−1
(L)
γ
B
i−1

//
Z
i−1
(L)
γ
Z
i−1

//
L
i−1
γ
C
i

C
i
//
B
i−1
(C)
//
Z
i−1
(C)
//
C
i−1
†ã:
L
i

γ
C
i
//
C
i

L
i−1
γ
C
i−1
//
C
i−1
.
ÏdCE-ÜS0
//
C
//
L
//
X
//
0´Œ,lExt
1
(X,C)=0.C
´CEX-SE/.
½n2.13C´E/.K:
(1)C´CEX-²"E/…=C
+
´CEX-SE/;
(2)C´CEX-SE/…=C
+
´CEX-²"E/.
y²(1) Šâ[10,Ún4.8] Ú·K2.8Œy.
(2)E/X∈CE-C
b
(X).KŠâ·K2.3 ŒCE-ÜS
0
//
K
//
P
//
X
//
0,
DOI:10.12677/pm.2022.123039365nØêÆ
æw
Ù¥P´CE-k•)¤…CE-ÝE/,K∈CE-C
b
(X).u´k±e1Ü†ã:
0
//
Tor
1
(C
+
,X)
//

C
+
N
K
//
ϕ

C
+
N
P
φ

0
//
Ext
1
(X,C)
+
//
Hom(K,C)
+
//
Hom(P,C)
+
.
d[10,Ún3.7]•ϕÚφ´Ó,ÏdExt
1
(X,C)
+
∼
=
Tor
1
(C
+
,X), (2)¤á.
½n2.14C´E/.K±ed:
(1)C´CEX-²"E/;
(2)é?¿i∈Z, C
i
,C
i
/B
i
(C) ´X-²";
(3)é?¿i∈Z, B
i
(C), H
i
(C) ´X-²";
(4)é?¿i∈Z, C
i
,B
i
(C), Z
i
(C)ÚH
i
(C) ´X-²".
y²Ï•é?¿i∈Z,kZ
i
(C
+
)
∼
=
(C
−i
/B
−i
(C))
+
,B
i
(C
+
)
∼
=
(B
i−1
(C))
+
,H
i
(C
+
)
∼
=
(H
−i
(C))
+
,¤±d½n2.12Ú½n2.13Œ(ؤá.
íØ2.15N´mR-,K±e(ؤá:
(1)N´X-²"…=
N´CE X-²"E/;
(2)N´X-²"…=N´CEX-²"E/.
y²(1)⇒)N´X-²"mR-.Kd[9,½n2.7]ŒN
+
´X-S†R-,d·K
2.10•N
+
´CE X-SE/.qÏ•N
+
∼
=
(N)
+
,¤±(N)
+
´CE X-SE/,d½n2.13(1)
Œ•N´CE X-²"E/.
⇐) N´CEX-²"E/.Kd½n2.13(1) •(N)
+
´CE X-SE/,2dN
+
∼
=
(N)
+
±9·K2.11N
+
´X-S†R-,ÏdŠâ[9,½n2.7] ŒN´X-²"mR-.
(2)†(1)y²L§aq.
Ä7‘8
I[g,‰ÆÄ7]Ï‘8(11861055,12061061).
ë•©z
[1]Cartan,H.andEilenberg,S.(1957)Review.HomologicalAlgebra,41,310-311.
https://doi.org/10.2307/3610160
[2]Verdier, J.L.(1996)Descat´egories d´eriv´eesdescat´egories ab´eliennes.Ast´erisque, 239, 227-229.
DOI:10.12677/pm.2022.123039366nØêÆ
æw
[3]Enochs,E.E.(2011)Cartan-EilenbergComplexesandResolution.JournalofAlgebra,342,
16-39.https://doi.org/10.1016/j.jalgebra.2011.05.011
[4]Yang,G. andLiang,L.(2014) Cartan-EilenbergGorensteinProjective Complexes.Journalof
AlgebraandItsApplications,13,ArticleID:1350068.
https://doi.org/10.1142/S0219498813500680
[5]Yang,G.andLiang,L.(2014)Cartan-EilenbergGorensteinFlatComplexes.Mathematica
Scandinavica,114,5-25.https://doi.org/10.7146/math.scand.a-16637
[6]Yang, G. and Liang, L. (2014) Stability ofCartan-Eilenberg Gorenstein Categories. Rendiconti
delSeminarioMatematicodellaUniversit`adiPadova,132,103-122.
https://doi.org/10.4171/RSMUP/132-8
[7]Stenstr¨om, B.(1970) Coherent Ringsand FP-Injective Modules.JournaloftheLondonMath-
ematicalSociety,2,323-329.https://doi.org/10.1112/jlms/s2-2.2.323
[8]Gao,Z.H.andWang,F.G.(2015)WeakInjectiveandWeakFlatModules.Communications
inAlgebra,43,3857-3868.https://doi.org/10.1080/00927872.2014.924128
[9]Zhu,Z.M.(2013)C-CoherentRings,C-SemiherditaryRingsandC-RegularRings.Studia
ScientiarumMathematicarumHungarica,50,491-508.
https://doi.org/10.1556/sscmath.50.2013.4.1256
[10]Lu,B.andLiu,Z.K.(2017)Cartan-EilenbergFP-InjectiveComplexes.JournaloftheAus-
tralianMathematicalSociety,103,387-401.https://doi.org/10.1017/S1446788716000586
[11]ê+Þ.Cartan-EilenbergfSÚf²"E/[D]:[a¬Æ Ø©].=²:Ü“‰ŒÆ,2018.
[12]Gobel,R.andTrlifaj,J.(2006)ApproximationsandEndomorphismAlgebrasofModules.
WalterdeGruyter,Berlin,NewYork.
DOI:10.12677/pm.2022.123039367nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.