设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2022,11(3),973-979
PublishedOnlineMarch2022inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2022.113104
´ÚÜÎÒ¦Èã>/Ú
äää···
úô“‰ŒÆ§êƆOŽÅ‰ÆÆ§úô7u
ÂvFϵ2022c29F¶¹^Fϵ2022c34F¶uÙFϵ2022c311F
Á‡
2019c§Behr|^ÎÒã>/ÚVgy²éu?¿ÎÒã(G,σ)Ñk∆(G,σ)≤
χ
0
(G,σ)≤∆(G,σ)+1§Ù¥χ
0
(G,σ)´(G,σ)>/Úê§∆(G,σ)´(G,σ)•ŒÝ"©
·‚y²3´Ú ÜÎÒ¦Èã(P
n
2T
m
,σ)¥§Ù¥P
n
ÚT
m
©O´kn‡º:´Úkm‡
º:Ü§n>2…∆(T
m
) >1ž§Kχ
0
(P
n
2T
m
,σ) = ∆(P
n
2T
m
,σ)"
'…c
ÎÒ㧦Èã§´§Ü§>/Ú
EdgeColoringoftheSignedProduct
GraphsofPathsandForests
YajingWang
CollegeofMathematicsandComputerScienceofZhejiangNormalUniversity,JinhuaZhejiang
Received:Feb.9
th
,2022;accepted:Mar.4
th
,2022;published:Mar.11
th
,2022
Abstract
2019,Behrusedtheconceptofedgecoloringofsignedgraphstoprovethatforany
©ÙÚ^:ä·.´ÚÜÎÒ¦Èã>/Ú[J].A^êÆ?Ð,2022,11(3):973-979.
DOI:10.12677/aam.2022.113104
ä·
signedgraphs(G,σ) thereis∆(G,σ) ≤χ
0
(G,σ) ≤∆(G,σ)+1,whereχ
0
(G,σ) isthenumber
ofedgecoloringof(G,σ),∆(G,σ)isthemaximumdegreeof(G,σ).Inthispaper,we
provethatinthesignedproductgraphsofpathsandforests(P
n
2T
m
,σ),P
n
andT
m
arerespectivelypathswiththenumberofnverticesandforestswiththenumberof
mvertices.Whenn>2and∆(T
m
) >1,thenχ
0
(P
n
2T
m
,σ) = ∆(P
n
2T
m
,σ).
Keywords
SignedGraphs,ProductGraphs,Paths,Forests,Edge-Coloring
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
Harary 3þ-V50c“JÑÎÒãVg[1]"ÎÒã(G,σ) ´‰Ä:ãG=(V(G),E(G))
>8\˜‡ÎÒNσ:E(G)→{+1,−1}§¦Gz˜^>eÑk˜‡ÎÒσ(e)"σ(e)=
+1ž§>e•>¶ σ(e)= −1ž§>e•K>"(G,σ) ˜‡incidence´:->kSé(v,e)§v
´e˜‡à:"‰½˜‡ÎÒã(G,σ)§I(G)L«(G,σ) ¥¤kincidence 8Ü"V(G) L«
(G,σ)º:8¶E(G,σ) L«(G,σ)>8"∆(G)L«G•ŒÝ"©¤?ØÎÒãþ´
§Ã->{ük•ÎÒã"
©™`²PÒÚâŠþë©z[2]"
½Â1{üÎÒã(G,σ) >/Ú´•é(G,σ)incidence XÚ§¦Ó˜‡º:'é
incidenceþkØÓôÚ"ÎÒã(G,σ)>Úêχ
0
(G,σ)´•¦ÎÒã(G,σ)•~>/Ú
•ôÚê"
Vizing31964c§‰Ñ{üã>/Úêþe."
½n1(Vizing,1964,[3])˜‡ãG>/Úêχ
0
(G)÷v∆(G) ≤χ
0
(G) ≤∆(G)+1"
2019c§Behr ‰Ñ{üÎÒã>/ÚVg[4]¿y²þã(Ø3{üÎÒã(G,σ)¥
Ó÷v∆(G,σ) ≤χ
0
(G,σ) ≤∆(G,σ)+1"
½Â2ãGÚH¦ÈãG2H´•äkº:8V(G2H)Ú>8E(G2H)ã§Ù¥V(G2H) =
V(G)×V(H)={(u,v)|u∈V(G),v∈V(H)},E(G2H)= {(u,v)(u
0
,v
0
)|u=u
0
,vv
0
∈E(H)½v=
v
0
,uu
0
∈E(G)}"
DOI:10.12677/aam.2022.113104974A^êÆ?Ð
ä·
½Â3ÎÒ¦Èã(G2H,σ)´‰§>8\˜‡ÎÒNσ:E(G2H)→{+1,−1}§¦
G2Hz˜^>eÑk˜‡ÎÒσ(e)"
½Â4éuÎÒã(G,σ)§XJχ
0
(G,σ)=∆(G,σ)§K¡ÎÒã(G,σ)•1˜aÎÒã"
P(G,σ) ∈C
1
"
½Â5éuÎÒã(G,σ)§XJχ
0
(G,σ)=∆(G,σ) +1§K¡ÎÒã(G,σ)•1aÎÒ
ã"P(G,σ) ∈C
2
"
3©z[5]§[6]§[7]¥§þïÄÎÒã/Ú"3©¥§·‚òÎÒã˜‡n- >/Ú
½Â•:
½Â6(G,σ)´˜‡ÎÒã§n´˜‡ê§en=2k§K(G,σ)˜‡n->/
ÚÒ´˜‡Nγ:E(G)→{±k,±(k−1),···,±1}¶en=2k+ 1§Kγ:E(G)→{±k,±(k−
1),···,±1,0}§¦é?¿>e=vw∈E(G)Ñkγ(v,e)=σ(e)γ(w,e)"?¿ƒü^
>e
1
= vwÚe
2
= vu§¦γ(v,e
1
) 6= γ(v,e
2
)§K¡γ´(G,σ)þ~n->/Ú"
Behr ÏLé½n1?1í2§?¿{üÎÒã(G,σ)>/Úêχ
0
(G,σ)÷v∆(G,σ)≤
χ
0
(G,σ)≤∆(G,σ)+ 1"3©¥§·‚y²´ÚÜÎÒ¦Èã(P
n
2T
m
,σ)>/Ú
êχ
0
(P
n
2T
m
,σ)÷vn>2…∆(T
m
)>1ž§Kχ
0
(P
n
2T
m
,σ)=∆(P
n
2T
m
,σ)"·‚©¤2 ‡½
n5y²ù‡(Ø"·‚Äky²3´ÚÜÎÒ¦Èã(P
n
2T
m
,σ)¥§1≤∆(T
m
)≤2ž§
½n2¤á¶2y²n>2…∆(T
m
) >2ž§½n3¤á"
½n23ÎÒ¦Èã(P
n
2T
m
,σ)¥§Ù¥n§m©O´P
n
§T
m
þ:ê"
(i)n= 2§∆(T
m
) =1…ÎÒã(P
n
2T
m
,σ)´˜‡š²ïž§ KÎÒã(P
n
2T
m
,σ)•1
aÎÒã"
(ii)n= 2§∆(T
m
) =1…ÎÒã(P
n
2T
m
,σ)´˜‡²ïž§KÎÒã(P
n
2T
m
,σ)•1˜a
ÎÒã"
(iii)n>2…∆(T
m
) = 2ž§KÎÒã(P
n
2T
m
,σ)•1˜aÎÒã"
½n33ÎÒ¦Èã(P
n
2T
m
,σ)¥§Ù¥n§m©O´P
n
§T
m
þ:ê"
n>2…∆(T
m
) >2ž§KÎÒã(P
n
2T
m
,σ)•1˜aÎÒã"
2.½n2y²
y²3ÎÒ¦Èã(P
n
2T
m
,σ)¥§1≤∆(T
m
)≤2ž§ÎÒã(P
n
2T
m
,σ)=(P
n
2P
m
,σ)"
dP
n
2P
m
(•§(P
n
2P
m
,σ)´‘kÎÒ•‚ã"
Äky²(i)"n=2§∆(T
m
)=1…ÎÒã(P
n
2T
m
,σ)•k˜‡š²ïž·‚ù‡š
²ï•C=v
0
v
1
v
2
v
3
v
0
"v
3
v
0
´˜^>§Ï•C´š²ï§¤±P=v
0
v
1
v
2
v
3
þ˜½k
Ûê^K>"P–Œ±^2«ôÚ/Ч^±a/Ð"bl(v
0
,v
0
v
1
)m©^aÚ−a?1/Ú§
K(v
3
,v
2
v
3
)˜½/−a"¤±Cþ•˜^>v
3
v
0
˜½‡^1n«ôÚâU/Ч•b"¤
±χ
0
(P
2
2P
2
,σ) = 3"džÎÒã∆(P
2
2P
2
,σ) = 2§¤±džÎÒã(P
n
2T
m
,σ)´1aÎÒ
ã"
DOI:10.12677/aam.2022.113104975A^êÆ?Ð
ä·
Ùgy²(ii)"n=2§∆(T
m
)=1…ÎÒã(P
n
2T
m
,σ)•k˜‡²ïž·‚ù‡²ï
•C
0
=v
0
0
v
0
1
v
0
2
v
0
3
v
0
0
"v
0
3
v
0
0
´˜^>§Ï•C
0
´²ï§¤±P
0
=v
0
0
v
0
1
v
0
2
v
0
3
þ˜½kóê
^K>"P
0
–Œ±^2«ôÚ/Ч^±a/Ð"bl(v
0
0
,v
0
0
v
0
1
)m©^aÚ−a?1/Ú§
K(v
0
3
,v
0
2
v
0
3
)˜½/a"¤±C
0
þ•˜^>v
0
3
v
0
0
Œ±^−a/Ð"¤ ±χ
0
(P
2
2P
2
,σ) = 2"dž
ÎÒã∆(P
2
2P
2
,σ) = 2§¤±ÎÒã(P
n
2T
m
,σ)´1˜aÎÒã"
•·‚y²(iii)"n>2…∆(T
m
) = 2ž§∆(P
n
2P
m
) = 4"
·‚‰Ñù‡ÎÒã(P
n
2P
m
,σ)˜‡~4->/Úγ¿…y²ù‡.´;"
Äk·‚‰Ñù‡ÎÒã(P
n
2P
m
,σ)˜‡~4->/Úγ"
éu?¿i§j§i∈[m]§j∈[n]§iL«(P
n
2P
m
,σ)1i1§jL«(P
n
2P
m
,σ)1j§
u
i,j
L«(P
n
2P
m
,σ)þ1i1§1j:"
-









γ(u
i,1
,e(u
i,1
u
i,2
)) = 1,
γ(u
i,j
,e(u
i,j
u
i,j−1
)) = γ(u
i,j−1
,e(u
i,j−1
u
i,j
))σ(e(u
i,j−1
u
i,j
)),
γ(u
i,j
,e(u
i,j
u
i,j+1
)) = −γ(u
i,j
,e(u
i,j
u
i,j−1
)),
(1)
-Eþã/ÚL§,†31m1"éu?¿1i1´P
i
5`§§•˜^>e(u
i,n−1
u
i,n
)/
Ú•:









γ(u
i,n−1
,e(u
i,n−1
u
i,n−2
)) = γ(u
i,n−2
,e(u
i,n−1
u
i,n−2
))σ(e(u
i,n−2
u
i,n−1
)),
γ(u
i,n−1
,e(u
i,n−1
u
i,n
)) = −γ(u
i,n−1
,e(u
i,n−2
u
i,n−1
)),
γ(u
i,n
,e(u
i,n
u
i,n−1
)) = γ(u
i,n−1
,e(u
i,n−1
u
i,n
))σ(e(u
i,n−1
u
i,n
)),
(2)
di?¿5•(P
n
2P
m
,σ)z˜1incidence ÑŒ±^?¿2‡ƒ‡ôÚ±a/Ð"þã/Ú
·‚´a= 1"
;X-









γ(u
1,j
,e(u
1,j
u
2,j
)) = 2,
γ(u
i,j
,e(u
i,j
u
i−1,j
)) = γ(u
i−1,j
,e(u
i−1,j
u
i,j
))σ(e(u
i−1,j
u
i,j
)),
γ(u
i,j
,e(u
i,j
u
i+1,j
)) = −γ(u
i,j
,e(u
i,j
u
i−1,j
)),
(3)
-Eþã/ÚL§,†31n"éu?¿1j´P
j
5`§§•˜^>e(u
m−1,j
u
m,j
)
/Ú•:









γ(u
m−1,j
,e(u
m−1,j
u
m−2,j
)) = γ(u
m−2,j
,e(u
m−1,j
u
m−2,j
))σ(e(u
m−1,j
u
m−2,j
)),
γ(u
m−1,j
,e(u
m−1,j
u
m,j
)) = −γ(u
m−1,j
,e(u
m−2,j
u
m−1,j
)),
γ(u
m,j
,e(u
m,j
u
m−1,j
)) = γ(u
m−1,j
,e(u
m−1,j
u
m,j
))σ(e(u
m−1,j
u
m,j
)),
(4)
dj?¿5•(P
n
2P
m
,σ)z˜incidence ÑŒ±^ØÓu±a?¿2 ‡ƒ‡ôÚ±b/
Ð"þã/Ú·‚´b= 2"
DOI:10.12677/aam.2022.113104976A^êÆ?Ð
ä·
qϕP
n
2P
m
?¿2 1Ú?¿2 ÑØ¬u˜:"¤±(P
n
2P
m
,σ)Œ±^4 ‡ôÚ±a
Ú±b/Ð"=γ´ÎÒã(P
n
2P
m
,σ)˜‡~4->/Ú§χ
0
(P
n
2P
m
,σ) = 4"
dBehr {üÎÒã>/Ú(ا·‚•éu?¿{üÎÒã(G,σ)§χ
0
(G,σ)
e.´∆(G,σ)"·‚3þ¡y²¥®²‰Ñ1«/Ú•{χ
0
(P
n
2P
m
,σ)=4§¤
±χ
0
(P
n
2P
m
,σ)=∆(P
n
2P
m
,σ)§=(P
n
2P
m
,σ)´1˜a"n>2…∆(T
m
)=2ž§T
m
=
P
m
§¤±ÎÒã(P
n
2T
m
,σ)•1˜aÎÒã"
3.½n3y²
y²éuÎÒ¦Èã(P
n
2T
m
,σ)5`§n>2…∆(T
m
)>2ž§·‚‰Ñù‡ÎÒã˜
‡~∆(P
n
2T
m
,σ)->/Úγ¿…y²ù‡.´;"
dP
n
2T
m
(•§n>2…∆(T
m
)>2ž§∆(P
n
2T
m
)=∆(T
m
)+2"땽n2/Ú
•{§aq/"·‚k‰(P
n
2T
m
,σ)z˜1?1/Ú"(P
n
2T
m
,σ)z˜1þ´:Ø´P
i
(i∈[m])§Ïdz‡P
i
þŒ±^2 «ôÚ±a/Ð"qÏ•(P
n
2T
m
,σ)z˜þ´:ØäT
j
(j∈[n])"
Ï•Šâ©z[2]¥·K2.2:XJÎÒã´˜‡•ŒÝ•∆äT§Kχ
0
(T,σ) = ∆"
Œ•éu?¿˜†äT
m
þ÷vχ
0
(T
m
,σ)=∆(T
m
)"qϕT
j
´üü:؃§¤±z
‡T
j
þŒ±^ØÓu±a∆(T
m
) «ôÚ/Ð"=χ
0
(P
n
2T
m
,σ) =∆(T
m
)+2 =∆(P
n
2T
m
)"¤
±§ÎÒã(P
n
2T
m
,σ)•1˜aÎÒã"
ÏL½n2§½n3y²§·‚Œ±µ´ÚÜÎÒ¦Èã(P
n
2T
m
,σ)>/Ú
êχ
0
(P
n
2T
m
,σ)÷vn>2…∆(T
m
) >1ž§Kχ
0
(P
n
2T
m
,σ) = ∆(P
n
2T
m
,σ)"
3ÎÒã(P
n
2P
m
,σ)¥§n>2§m=2½n=2§m>2ž§KÎÒã(P
n
2P
m
,σ)=
(P
n
2P
2
,σ)½(P
n
2P
m
,σ)=(P
2
2P
m
,σ)"3(P
n
2T
m
,σ)¥§n>2§∆(T
m
)=1ž§KÎÒ
ã(P
n
2T
m
,σ) = (P
n
2P
2
,σ)"
¯¢þn=mž§(P
n
2P
2
,σ)Ú(P
2
2P
m
,σ)´Ó˜‡{üÎÒã"éu(P
n
2P
2
,σ)5`§
n>2ž§Kχ
0
(P
n
2P
2
,σ)ŒU´∆(P
n
2P
2
,σ)+1§„ã1§•ŒU´∆(P
n
2P
2
,σ)§„ã2"ã
1§ã2´þ´(P
n
2P
2
,σ)fã"
Figure1.χ
0
(P
3
2P
2
,σ) = ∆(P
n
2P
2
,σ)+1
ã1.χ
0
(P
3
2P
2
,σ) = ∆(P
n
2P
2
,σ)+1
DOI:10.12677/aam.2022.113104977A^êÆ?Ð
ä·
Figure2.χ
0
(P
3
2P
2
,σ) = ∆(P
n
2P
2
,σ)
ã2.χ
0
(P
3
2P
2
,σ) = ∆(P
n
2P
2
,σ)
3ã1¥§u
2,2
'é2^K>e(u
2,1
u
2,2
)§e(u
2,3
u
2,2
)§1^>e(u
1,2
u
2,2
)§¿…2‡ú>
´>e(u
1,2
u
2,2
)§džu
2,2
'éù3^>–‡^3«ôÚ/Ð"
3ã1¥§-

































γ(u
1,2
,e(u
1,2
u
2,2
)) = 2,
γ(u
2,2
,e(u
1,2
u
2,2
)) = 2,
γ(u
2,2
,e(u
2,2
u
2,1
)) = −1,
γ(u
2,1
,e(u
2,2
u
2,1
)) = 1,
γ(u
2,2
,e(u
2,2
u
2,3
)) = 1,
γ(u
2,3
,e(u
2,2
u
2,3
)) = −1.
(5)
‡Žã1¤^ôÚ•§•U-

































γ(u
2,1
,e(u
2,1
u
1,1
)) = −1,
γ(u
1,1
,e(u
2,1
u
1,1
)) = 1,
γ(u
2,3
,e(u
2,3
u
1,3
)) = 1,
γ(u
1,3
,e(u
2,3
u
1,3
)) = −1,
γ(u
1,3
,e(u
1,3
u
1,2
)) = 1,
γ(u
1,2
,e(u
1,3
u
1,2
)) = −1.
(6)
dž§γ(u
1,1
,e(u
1,1
u
1,2
))§γ(u
1,2
,e(u
1,1
u
1,2
))•U^1o«ôÚâU/Ð"
¤±§ã1¥(P
3
2P
2
,σ)>Úêχ
0
(P
3
2P
2
,σ)´∆(P
n
2P
2
,σ)+1"
Ïd§ éu(P
n
2P
2
,σ)§k ˜Ü©ÎÒ¦Èã÷vχ
0
(P
n
2P
2
,σ)=∆(P
n
2P
2
,σ)+ 1´1˜a
§•k˜Ü©ÎÒ¦Èã÷vχ
0
(P
n
2P
2
,σ)=∆(P
n
2P
2
,σ)´1a§ù„I‡·‚?˜
ÚïÄ"
DOI:10.12677/aam.2022.113104978A^êÆ?Ð
ä·
ë•©z
[1]Harary,F.(1953)OntheNotionofBalanceofaSignedGraph.MichiganMathematicalJournal,
2,143-146.https://doi.org/10.1307/mmj/1028989917
[2]Zhang, L., Lu, Y., Lou, R., Ye, D. and Zhang, S.(2020) EdgeColoring SignedGraphs. Discrete
AppliedMathematics,282,234-242.https://doi.org/10.1016/j.dam.2019.12.004
[3]Vizing,V.(1964)OnanEstimateoftheChromaticClassofap-Graph.DiscretAnaliz,3,
23-30.
[4]Behr,R.(2020) EdgeColoringSigned Graphs.DiscreteMathematics, 343,ArticleID:111654.
https://doi.org/10.1016/j.disc.2019.111654
[5]Cartwright,D.andHarary,F.(1968)OntheColoringofSignedGraphs.ElementederMath-
ematik,23,85-89.
[6]Zaslavsky,T.(1991)OrientationofSignedGraphs.EuropeanJournalofCombinatorics,12,
361-375.https://doi.org/10.1016/S0195-6698(13)80118-7
[7]Zaslavsky,T.(1982)SignedGraphs.DiscreteAppliedMathematics,4,47-74.
https://doi.org/10.1016/0166-218X(82)90033-6
DOI:10.12677/aam.2022.113104979A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.