设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(3),434-440
PublishedOnlineMarch2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.123048
š‚5·ÜíN•§ŒÈ5¦)
\\\###
“°“‰ŒÆ¬x“‰ÆêÆX§“°Üw
ÂvFϵ2022c216F¶¹^Fϵ2022c318F¶uÙFϵ2022c325F
Á‡
©Ù̇ézÄ{nØ?1\ïħ‰Ñ(1+1)ÀÚ-¤’·Ü‡6íNÅ.§
‰ÑÙš‚ 5Å•§)Û)§¿?ØfƒpŠ^1•"ÀÚ-¤’·ÜíN¥‘ÔŸ
ÅóÀ§ •)‚5Úš‚5§± 93N5NX• ›^‡¥$^zÄ{?1Oާ
˜‡ÍÜKdV•§§?˜ÚïÄÚ?ØÙ•§ŒÈ5"
'…c
ÀÚ-¤’·ÜíN§f)§zÄ{
OntheIntegrabilityofNonlinearMixed
GasEquations
YangjieJia
DepartmentofMathematics,NationalitiesCollegeofQinghaiNormalUniversity,XiningQinghai
Received:Feb.16
th
,2022;accepted:Mar.18
th
,2022;published:Mar.25
th
,2022
Abstract
Inthispaper,thetheoryofreducedperturbationmethodiswellinvestigated.The
©ÙÚ^:\#.š‚5·ÜíN•§ŒÈ5¦)[J].nØêÆ,2022,12(3):434-440.
DOI:10.12677/pm.2022.123048
\#
solitarywavemodelof(1+1)Bose-Fermimixed superfluidgasisgiven,theanalytical
solutionofits nonlinearwaveequation isgiven,andtheinteractionbehaviorofsolitons
isdiscussed.AcoupledKdVequationisobtainedbycalculatingthetwo-dimensional
matterwavepulsesinBose-Fermimixturegas,includinglinearandnonlinear,and
byusingthereducedperturbationmethodundertheconstraintconditionsofunitary
system.Theintegrabilityoftheequationisfurtherstudiedanddiscussed.
Keywords
Bose-FermiGasMixture,SolitonSolution,ReductivePerturbationTechnique
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
CAc§-1e%EâuЦÀÚ-OÏd"và(BEC)±¢y"d<‚3¢Ú
nØþé§?1éõk¿ÂïÄ[1,2]"|^ÀÚ-OÏd"vàGross-Pitaevskii(GP)•
§éBECïÄ[3–5]"±9ÀÚ-¤’·ÜíNNBECÚf'éfBCSvà§3
éBCS-BEC«•p‰ŒþïÄ󊧿½Â˜ëþ"@31975c§WahlquistÚ
EstabrookÄu‡©/ªXÚ9o“êL«nØïá1+1‘š‚5üz•§òÿ(nا
‰Ñ˜‡XÚ¦)š‚5üz•§‚5̯Kk•{"TnØÌ‡´ò‡ïÄ(1+1)‘Œ
Èš‚5‡©•§Lˆ•˜|‡©/ª2-/ª§¦ù‡©/ª¤4nާ,Ú?³
½–³Ú†ƒƒéX‡©1-/ª§¿‡¦Ú\‡©1-/ª†5‡©/ª2-/ª
¤#4nާl¤õ‰ÑŒÈ•§LaxL«±9ŽžC†"‘Tn Ø2•A^uï
Ä(1+1)ŒÈš‚5üz•§[6,7]"•C<‚|^TnØé°Üc^ó•§[8]§pš‚5Å
½™•§[9],‡A*Ñ•§[10]?1\©ÛÚïÄ"
Cc5éuˆ«ÍÜKdV•§[11]ïÄ<‚ÊH'5§©Ì‡ïÄÀÚ¤’·
ÜíN¥‘ÔŸÅóÀ"•)‚5Úš‚53BECÚBCS9N5NX•›^‡¥¼
˜‡áÅ•§§,·‚ò$^zÄ{?1OŽ˜‡ÍÜKdV•§§?˜ÚïÄÚ?
ØÙ•§ŒÈ5"
2.Ä寕§
¹kŒþâfÀÚ-¤’·ÜíNXÚ§3§Ýé$žÿ§÷vXe‘ÃþjzÄåÆ
DOI:10.12677/pm.2022.123048435nØêÆ
\#
•§•[12]µ
(
i~
∂
∂t
Ψ
b
= [−
~
2
2m
b
∇
2
+U
b
+µ
b
(n
b
,a
b
)]Ψ
b
,
i~
∂
∂t
Ψ
p
= [−
~
2
2m
p
∇
2
+U
p
+µ
p
(n
p
,a
p
)]Ψ
p
,
(1)
Ù¥µ
b
(n
b
,a
b
) = c
b
0
n
r
b
0
b
(1+c
b
1
n
r
b
1
b
)L«´ÀÚfzƳ§µ
p
(n
p
,a
p
) = c
p
0
n
r
p
0
p
(1+c
p
1
n
r
p
1
p
)´
¤’fzƳ§U
b
= U
p
=
1
2
m[ω
2
⊥
(x
2
+y
2
)+ω
2
z
z
2
]L«³§Ψ
b
(r,t) =
p
n
b
(r,t)e
iφ
b
(r,t)
´ÀÚf
Sëþ§Ψ
p
(r,t) =
p
n
p
(r,t)e
iφ
p
(r,t)
´¤’fSëþ§n
j
(j= b,p)L«´lf—Ý"
òΨ
b
(r,t)=
p
n
b
(r,t)e
iφ
b
(r,t)
“\ª£1¤1˜‡•§§Ψ
p
(r,t)=
p
n
p
(r,t)e
iφ
p
(r,t)
“\
ª(2)1‡•§§z{n













∂n
b
∂t
+
~
m
b
∇·(n
b
,5φ
b
) = 0,
∂φ
b
∂t
+
~
2m
b
[(∇φ
b
)
2
−
1
√
n
b
∇
2
√
n
b
]+
1
~
[U
b
+µ
b
(n
b
,a
b
)] = 0,
∂n
p
∂t
+
~
m
p
∇·(n
p
,5φ
p
) = 0,
∂φ
p
∂t
+
~
2m
p
[(∇φ
p
)
2
−
1
√
n
p
∇
2
√
n
p
]+
1
~
[U
p
+µ
p
(n
p
,a
p
)] = 0,
(2)
bâf•›3äkG³U
b
=U
p
=
1
2
m[ω
2
⊥
(x
2
+y
2
)+ω
2
z
z
2
]²¥,ω
⊥
“Lx¶½y¶
Ç,ω
z
•z••³²ªÇ"••BCþÃþjz,5½ò•§|(2)‰XeC†





















x,y,z= a
z
(x
0
,y
0
,z
0
)
t= ω
−1
⊥
t
0
n
j
= n
j0
n
0
,(j= b,p)
a
⊥
= [
~
mω
⊥
]
1
2
n
j0
= N/a
3
⊥
µ
j
= ~ω
⊥
µ
0
j
,(j= b,p)
(3)
òùCþ‘\•§(2)¥,duG³ω
z
/ω
⊥
š~,Ïd(ω
z
/ω
⊥
)
2
Œ±Ñ",k:
U
b
= U
p
=
1
2
m[ω
2
⊥
(x
2
+y
2
)+ω
2
z
z
2
](ω
⊥
ω
z
)
¤±•§|(2)¥(1)ªÚ(3)ªC•µ
(
∂
0
n
0
b
∂
0
t
0
+[∇
0
·(n
0
b
∇
0
φ
0
b
)] = 0 ⇐⇒
∂n
b
∂t
+[∇·(n
b
∇φ
b
)] = 0
∂
0
n
0
p
∂
0
t
0
+[∇
0
·(n
0
p
∇
0
φ
0
p
)] = 0 ⇐⇒
∂n
p
∂t
+[∇·(n
p
∇θ
p
)] = 0
(4)
(5µ∇
0
=
1
a
z
∇),•§|(2)¥(2)ªÚ(4)ªduµ



∂
0
φ
0
b
∂
0
t
0
+
1
2
[(∇
0
φ
0
b
)
2
−
1
√
n
0
b
∇
02
p
n
0
b
]+
1
2
[(x
02
+y
02
)+(
ω
z
ω
⊥
)
2
z
2
]+
m
~
2
a
2
z
µ
b
= 0
∂
0
θ
0
p
∂
0
t
0
+
1
2
[(∇
0
φ
0
p
)
2
−
1
√
n
0
p
∇
02
p
n
0
p
]+
1
2
[(x
02
+y
02
)+(
ω
z
ω
⊥
)
2
z
2
]+
m
~
2
a
2
z
µ
p
= 0
(5)
Ù¥
(a
z
= [
~
mω
z
]
1
2
=⇒a
2
z
= [
~
mω
z
] =⇒
m
~
2
a
2
z
µ
j
=
1
~ω
z
µ
j
= µ
0
j
)(6)
DOI:10.12677/pm.2022.123048436nØêÆ
\#
(5)ªC•



∂φ
0
b
∂
0
t
0
+
1
2
[(∇
0
φ
0
b
)
2
−
1
√
n
0
b
∇
02
p
n
0
b
]+
1
2
[(x
02
+y
02
)+(
ω
z
ω
⊥
)
2
z
2
]+µ
0
b
= 0
∂θ
0
p
∂
0
t
0
+
1
2
[(∇
0
φ
0
p
)
2
−
1
√
n
0
p
∇
02
p
n
0
p
]+
1
2
[(x
02
+y
02
)+(
ω
z
ω
⊥
)
2
z
2
]+µ
0
p
= 0
(7)
?˜Úµ
(
∂θ
b
∂t
+
1
2
[(∇φ
b
)
2
−
1
√
n
b
∇
2
√
n
b
]+
1
2
[(x
2
+y
2
)+(
ω
z
ω
⊥
)
2
z
2
]+µ
b
= 0
∂φ
p
∂t
+
1
2
[(∇φ
p
)
2
−
1
√
n
p
∇
2
√
n
p
]+
1
2
[
ω
2
⊥
ω
2
z
(x
2
+y
2
)+z
2
]+µ
p
= 0
(8)
¤±•§|(2)=†•Xe/ªµ











∂n
b
∂t
+[∇·(n
b
5φ
b
)] = 0
∂φ
b
∂t
+
1
2
[(∇φ
b
)
2
−
1
√
n
b
∇
2
√
n
b
]+
1
2
(x
2
+y
2
)+
1
2
(
ω
z
ω
⊥
)
2
z
2
+µ
b
(n
b
,a
b
) = 0
∂n
p
∂t
+[∇·(n
p
5φ
p
)] = 0
∂φ
p
∂t
+
1
2
[(∇φ
p
)
2
−
1
√
n
p
∇
2
√
n
p
]+
1
2
(x
2
+y
2
)+
1
2
(
ω
z
ω
⊥
)
2
z
2
+µ
p
(n
p
,a
p
) = 0
(9)
-
(
√
n
j
= A
j
(x,y,z)G
j
(z),(j= b,p)
φ
j
= −ξt+ϕ
j
(x,y,z)
(10)
¿b½µ
−
1
2
d
2
G
j
dz
2
+
1
2
z
2
G
j
= νG
j
(11)
ν=
1
2
ž§G
j
= e
−
z
2
2
(Š)
ò(10)§(11)ª“\•§|(9)¥§=k











∂A
b
∂t
+
∂A
b
∂x
∂ϕ
b
∂x
+
∂A
b
∂y
∂ϕ
b
∂y
+
1
2
A
b
(
∂
2
ϕ
b
∂x
2
+
∂
2
ϕ
b
∂y
2
) = 0
−
1
2
(
∂
2
A
b
∂x
2
+
∂
2
A
b
∂y
2
)+(−ξ+
1
2
)A
b
+A
b
{
∂ϕ
b
∂t
+
1
2
[(
∂ϕ
b
∂x
)
2
+(
∂ϕ
b
∂y
)
2
]}+µ
b
A
b
= 0
∂A
p
∂t
+
∂A
p
∂x
∂ϕ
p
∂x
+
∂A
p
∂y
∂ϕ
p
∂y
+
1
2
A
p
(
∂
2
ϕ
p
∂x
2
+
∂
2
ϕ
p
∂y
2
) = 0
−
1
2
(
∂
2
A
p
∂x
2
+
∂
2
A
p
∂y
2
)+(−ξ+
1
2
)A
p
+A
p
{
∂ϕ
p
∂t
+
1
2
[(
∂ϕ
p
∂x
)
2
+(
∂ϕ
p
∂y
)
2
]}+µ
p
A
p
= 0
(12)
(ªí¥µω
⊥
ω
z
,íÑ
ω
2
z
ω
2
⊥
(x
2
+y
2
) →0)Šâ®•^‡µ
(
µ
j
(n
j
,a
j
) = c
j0
n
r
j0
j
(1+c
j1
n
r
j1
j
)
n
j
= A
2
j
G
2
j
,(j= b,p)
(13)
ò•§(13)“\•§|(12)¥1‡•§Ú1o‡•§§













−
1
2
(
∂
2
A
b
∂x
2
+
∂
2
A
b
∂y
2
)+(−ξ+
1
2
)A
b
+A
b
{
∂ϕ
b
∂t
+
1
2
[(
∂ϕ
b
∂x
)
2
+(
∂ϕ
b
∂y
)
2
]}
+A
b
c
b0
n
r
b0
b
+A
b
c
b0
n
r
b0
b
c
b1
n
r
b1
b
= 0
−
1
2
(
∂
2
A
p
∂x
2
+
∂
2
A
p
∂y
2
)+(−ξ+
1
2
)A
p
+A
p
{
∂ϕ
p
∂t
+
1
2
[(
∂ϕ
p
∂x
)
2
+(
∂ϕ
p
∂y
)
2
]}
+A
p
c
p0
n
r
p0
p
+A
p
c
p0
n
r
p0
p
c
p1
n
r
p1
p
= 0
(14)
DOI:10.12677/pm.2022.123048437nØêÆ
\#
?˜Úµ













−
1
2
(
∂
2
A
b
∂x
2
+
∂
2
A
b
∂y
2
)+(−ξ+
1
2
)A
b
+A
b
{
∂ϕ
b
∂t
+
1
2
[(
∂ϕ
b
∂x
)
2
+(
∂ϕ
b
∂y
)
2
]}
+c
b0
A
2r
b0
+1
b
G
2r
b0
b
+c
b0
c
b1
A
2r
b0
+2r
b1
+1
b
G
2r
b0
+2r
b1
b
= 0
−
1
2
(
∂
2
A
p
∂x
2
+
∂
2
A
p
∂y
2
)+(−ξ+
1
2
)A
p
+A
p
{
∂ϕ
p
∂t
+
1
2
[(
∂ϕ
p
∂x
)
2
+(
∂ϕ
p
∂y
)
2
]}
+c
p0
A
2r
p0
+1
p
G
2r
p0
p
+c
p0
c
p1
A
2r
p0
+2r
p1
+1
p
G
2r
p0
+2r
p1
p
= 0
(15)
qν=
1
2
ž§G
j
= e
−
z
2
2
(Š)§¤±þªdu













−
1
2
(
∂
2
A
b
∂x
2
+
∂
2
A
b
∂y
2
)+(−ξ+
1
2
)A
b
+A
b
{
∂ϕ
b
∂t
+
1
2
[(
∂ϕ
b
∂x
)
2
+(
∂ϕ
b
∂y
)
2
]}
+c
b0
A
2r
b0
+1
b
e
−r
b0
z
2
+c
b0
c
b1
A
2r
b0
+2r
b1
+1
b
e
−(r
b0
+r
b1
)z
2
= 0
−
1
2
(
∂
2
A
p
∂x
2
+
∂
2
A
p
∂y
2
)+(−ξ+
1
2
)A
p
+A
p
{
∂ϕ
p
∂t
+
1
2
[(
∂ϕ
p
∂x
)
2
+(
∂ϕ
p
∂y
)
2
]}
+c
p0
A
2r
p0
+1
p
e
−r
p0
z
2
+c
p0
c
p1
A
2r
p0
+2r
p1
+1
p
e
−(r
p0
+r
p1
)z
2
= 0
(16)
éþªü>Ó¦±e
−z
2
,¿ézÈ©(
R
∞
−∞
e
−z
2
dz=
√
π),k













−
1
2
(
∂
2
A
b
∂x
2
+
∂
2
A
b
∂y
2
)+(−ξ+
1
2
)A
b
+A
b
{
∂ϕ
b
∂t
+
1
2
[(
∂ϕ
b
∂x
)
2
+(
∂ϕ
b
∂y
)
2
]}
+
c
b0
√
r
b0
+1
A
2r
b0
+1
b
+
c
b0
c
b1
√
r
b0
+r
b1
+1
A
2r
b0
+2r
b1
+1
b
= 0
−
1
2
(
∂
2
A
p
∂x
2
+
∂
2
A
p
∂y
2
)+(−ξ+
1
2
)A
p
+A
p
{
∂ϕ
p
∂t
+
1
2
[(
∂ϕ
p
∂x
)
2
+(
∂ϕ
p
∂y
)
2
]}
+
c
p0
√
r
p0
+1
A
2r
p0
+1
p
+
c
p0
c
p1
√
r
p0
+r
p1
+1
A
2r
p0
+2r
p1
+1
p
= 0
(17)
¤±•§|£17¤ÏLOŽ;

























∂A
b
∂t
+
∂A
b
∂x
∂ϕ
b
∂x
+
∂A
b
∂y
∂ϕ
b
∂y
+
1
2
A
b
(
∂
2
ϕ
b
∂x
2
+
∂
2
ϕ
b
∂y
2
) = 0
−
1
2
(
∂
2
A
b
∂x
2
+
∂
2
A
b
∂y
2
)+(−ξ+
1
2
)A
b
+A
b
{
∂ϕ
b
∂t
+
1
2
[(
∂ϕ
b
∂x
)
2
+(
∂ϕ
b
∂y
)
2
]}
+
c
b0
√
r
b0
+1
A
2r
b0
+1
b
+
c
b0
c
b1
√
r
b0
+r
b1
+1
A
2r
b0
+2r
b1
+1
b
= 0
∂A
p
∂t
+
∂A
p
∂x
∂ϕ
p
∂x
+
∂A
p
∂y
∂ϕ
p
∂y
+
1
2
A
p
(
∂
2
ϕ
p
∂x
2
+
∂
2
ϕ
p
∂y
2
) = 0
−
1
2
(
∂
2
A
p
∂x
2
+
∂
2
A
p
∂y
2
)+(−ξ+
1
2
)A
p
+A
p
{
∂ϕ
p
∂t
+
1
2
[(
∂ϕ
p
∂x
)
2
+(
∂ϕ
p
∂y
)
2
]}
+
c
p0
√
r
p0
+1
A
2r
p0
+1
p
+
c
p0
c
p1
√
r
p0
+r
p1
+1
A
2r
p0
+2r
p1
+1
p
= 0
(18)
2-A
j
= u
j0
+ε
2
a
j0
+ε
4
a
j1
,ϕ
j
= εϕ
j0
+ε
3
ϕ
j1
,(j= b,p)
ξ= ε(z−c
j
t)(j= b,p)§τ= ε
3
t.
rþª“\•§|£18)¥§ÏLOŽn



∂a
b
0
∂τ
−
1
8c
b
∂
3
a
b
0
∂ξ
3
+
3c
b
2u
b
0
a
b
0
∂a
b
0
∂ξ
= 0,
∂a
p
0
∂τ
−
1
8c
p
∂
3
a
p
0
∂ξ
3
+
3c
p
2u
p
0
a
p
0
∂a
p
0
∂ξ
= 0.
(19)
l·‚?˜ÚÍÜKdV•§µ



∂a
b
0
∂τ
−
1
8c
b
∂
3
a
b
0
∂ξ
3
+
3c
b
2u
b
0
a
b
0
∂a
b
0
∂ξ
= 0,
∂a
p
0
∂τ
−
1
8c
p
∂
3
a
p
0
∂ξ
3
+
3c
p
2u
p
0
a
p
0
∂a
p
0
∂ξ
= 0.
(20)
DOI:10.12677/pm.2022.123048438nØêÆ
\#
3.̇(Ø
©|^š‚5¯KzÄ{ÄnاX-éš‚ 5Ä寕§?1©Û§éš‚
5¯K¦)•{?1?Ø¿í2[13–16]§¼#ÍÜKdV•§§ïÄ(J•¢SA^‰ƒ
nØ•â"éu$‘Ýš‚5XÚOŽ•{?؆ïħJÑ#¦)š‚5XÚ°()•
{§ï#áf•§"e5E˜‡{ük•{‰ÑŒí‰Æ¥AO´/³5Uí-‡
ŒÈ.¶fnØ3ºïÄ¥®äkÐÚA^§ÏLïÄš‚5Œí-åÅ.ŒÈ5
Ÿ§¿(Üꊕ{)Ú)Û•{)±9yk²•/³5Uí!íÿý!ý´JøŒ
Uë••Y§´Ø©âÑAÚ"
Ä7‘8
“°Žg,‰ÆÄ7(2021-ZJ-708)‘8"
ë•©z
[1]FleckJr.,J.A.,Morris,J.R.andFeit,M.D.(1976)Time-DependentPropagationofHigh
EnergyLaserBeamsthroughtheAtmosphere.AppliedPhysics,10,129-160.
https://doi.org/10.1007/BF00896333
[2]Chowdhury,A.R.andRoy,T.(1979)ProlongationStructureandInverseScatteringFormal-
ismforSupersymmetricSine-GordonEquationinOrdinarySpaceTimeVariable.Progressof
TheoreticalPhysics,62,1790-1791.https://doi.org/10.1143/PTP.62.1790
[3]Dodd,R.K.andFordy,A.P.(1983)TheProlongationStructuresofQuasi-PolynomialFlows.
ProceedingsoftheRoyalSocietyofLondon.A.MathematicalandPhysicalSciences,385,
389-429.https://doi.org/10.1098/rspa.1983.0020
[4]Yang,Y.,Geng,L.M.andCheng,J.P.(2021)CKPHierarchyandFreeBosons.Journalof
MathematicalPhysics,62,8-21.https://doi.org/10.1063/5.0057602
[5]Kalkanh,A. (1987)Prolongation StructureandPainlev´eProperty ofthe G¨urses-NutkuEqua-
tions.InternationalJournalofTheoreticalPhysics,26,1085-1092.
https://doi.org/10.1007/BF00669363
[6]Finley III, J.D. (1996) The Robinson-TrautmanType III Prolongation Structure Contains K
2
.
CommunicationsinMathematicalPhysics,178,375-390.
https://doi.org/10.1007/BF02099453
[7]Zhao, W.Z., Bai,Y.Q. andWu, K.(2006)GeneralizedInhomogeneousHeisenberg Ferromagnet
ModelandGeneralizedNonlinearSchr¨odingerEquation.PhysicsLettersA,3,52-64.
DOI:10.12677/pm.2022.123048439nØêÆ
\#
[8]Das,C.andChowdhury,A.(2001)OntheProlongationStructureandIntegrabilityofHNLS
Equation.Chaos,SolitonsandFractals,12,2081-2086.
https://doi.org/10.1016/S0960-0779(00)00171-5
[9]Alfinito, E., Grassi,V., Leo, R.A.,Profilo, G. andSoliani, G.(1998)Equations ofthe Reaction-
DiffusionTypewithaLoopAlgebraStructure.InverseProblems,14,1387-1401.
https://doi.org/10.1088/0266-5611/14/6/003
[10]Gilson,C.R.,Nimmo,J.andOhta,Y.(2012)QuasideterminantSolutionsofaNon-Abelian
Hirota-MiwaEquation.JournalofPhysicsA:MathematicalandTheoretical,39,5053-5065.
https://doi.org/10.1088/1751-8113/40/42/S07
[11]Ito,M.(1982)SymmetriesandConservationLawsofaCoupledNonlinearWaveEquation.
PhysicsLettersA,91,335-338.https://doi.org/10.1016/0375-9601(82)90426-1
[12]Cao,C.,Geng,X.G.andWu,Y.T.(1999)FromtheSpecial2+1TodaLatticetothe
Kadomtsev-PetviashviliEquation.JournalofPhysicsA:GeneralPhysics,32,8059-8078.
https://doi.org/10.1088/0305-4470/32/46/306
[13]Adhikari,S.K.andSalasnich,L(2008)SuperfluidBose-FermiMixturefromWeakCoupling
toUnitarity.PhysicalReviewA,78,ArticleID:043616.
https://doi.org/10.1103/PhysRevA.78.043616
[14]ob¯,d;3.š‚5©-‡©•§Jacobiý¼ê)[J].Ü“‰ŒÆÆ(g,‰
Ƈ),2007,43(4):41-45.
[15]0|A,¾U.‘k9‘š‚5*Ñ•§°()[J].X{êÆ†A^êÆ,2010,26(5):
725-727.
[16]½ÀR,Û“r.õ-:gd¡Å$Ä5ÆêŠ[[J].X{êÆ†A^êÆ,2020,1(2):
94-104.
DOI:10.12677/pm.2022.123048440nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.