设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(3),448-457
PublishedOnlineMarch2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.123050
£Ä‚¸eFisher-KPP•§É½1Å)
•35
ëëë
•ânóŒÆêƆÚOÆ§H•â
ÂvFϵ2022c218F¶¹^Fϵ2022c321F¶uÙFϵ2022c328F
Á‡
•ģøeFisher-KPP•§3ÙSO•ǼêšK^‡eɽ1Å)•35"|^ü
NS“(Üþe)•{E|§y²?¿ð½„Ý£Äeš~ɽ1Å•35"
'…c
£Ä‚¸§Fisher-KPP•§§üNS“
ExistenceofForcedTravelingWaves
forFisher-KPPEquationundera
ShiftingHabitat
LinlinZhao
SchoolofMathematicsandStatistics,ChangshaUniversityofScienceandTechnology,Changsha
Hunan
Received:Feb.18
th
,2022;accepted:Mar.21
st
,2022;published:Mar.28
th
,2022
Abstract
Inthispaper,weareconcernedwiththeexistenceofforcedtravelingwavesolutions
©ÙÚ^:ë.£Ä‚¸eFisher-KPP•§É½1Å)•35[J].nØêÆ,2022,12(3):448-457.
DOI:10.12677/pm.2022.123050
ë
forFisher-KPPequationinthehabitatshiftingundertheconditionthatitsintrin-
sicgrowthratefunctionisnonnegative.Usingthetechniqueofmonotoneiteration
combinedwiththeupperandlowersolutionmethod,theexistenceofnon-decreasing
forcedtravelingwavesunderarbitrarypositiveconstantshiftingspeedisproved.
Keywords
ShiftingHabitat,Fisher-KPPEquation,MonotoneIterative
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
3)«+ÄåÆïÄ¥,ÃX«+˜m(ÚêþCz!Ô«\‰±9;¾DÂ¯
KÑŒ±ÏLïáT‡A*Ñ•§.?1ïÄ[1–6].~X,UFisher[1]ÚKolmogorov 
<[2]mM5ó Š,Fisher-KPP ‡A*Ñ•§9Ùí2/ª•žm1•!1ÅÚìCD„Ý
ÄåÆ\ïÄ[7–10], ¿2•A^u˜m)Æ!D/¾ý“†››+•[3,5,6,11].
g,.¥)ÔÔ«Ñ E/Ï~´‘žmCz…3˜mþÉŸ[6].ØG!5Ú/nσ
,¥Cæ!ó’zLÝuÐÚå‚¸z•E¤ù«ž˜ÉŸ5.˜‡g,¯K´,íÿ
CzÚ‚¸z¬éØÓÔ««+±È5)ŸoK•ºCc5,Ø'uTÌK˜¢/‰
Æ•ïÄ,NõA^êÆÆö„ÏLïáêÆ.éÔ««+ÄåÆ?1˜½þïÄ.
~X,•ÉG«+—Ý3˜m¥©ÙXÛ‘žmüz,¿ýÿÔ«™5´ÄU`þdíÿC
z½‚¸zÚåÑE«•£Ä,©z[12–17]•Ä«+SO•Çr(t,x) •6užmtÚ˜
m ˜x,æ^r(t,x) = r(x−ct)ù˜AÏ/ª5£ã«+ÑE/£Ä.T/ª‡N‚¸±ð½
„Ýc>0•m£Ä.AO/,•&¢3íÿCzK•e Ô«3£ÄÑE/©ÙÚDÂ,Li 
<[14]ÏLòþã£ÄªÚ\²;Fisher-KPP•§ïáXe.
∂u(t,x)
∂t
= d
∂
2
u(t,x)
∂x
2
+u(t,x)[r(x−ct)−u(t,x)], t>0,x∈R,(1)
Ù¥u(t,x) L««+3žmt ˜x—ÝŒ,~êd>0 •«+*ÑXê,r(·)“LSO•Ç
¼ê,±„Ýc>0 Cz.ŠöbSO•Ǽêr(·)š~!ëY…÷vr(−∞)<0<r(+∞),
&?Ô««ýÚ±È)•^‡±93«+±È)• œ/e.(1)•mìCD„Ý.‘,
HuÚZou 3©z[18]¥y²é?‰c>0,•§(1) þ•3˜‡ë0 Úr(+∞) š~ɽ
1Åu(t,x) = ϕ(x−ct).ùp,ɽ1Å´•ÙÅ„c†‚¸£Ä„݃Ó.
DOI:10.12677/pm.2022.123050449nØêÆ
ë
I‡•Ñ´,Cc5˜ïÄ󊮲ò©z[14]¥(Jí2Ù§˜äk£Ä‚
¸•§..~X,Li <[19]ïÄ(1) ¥‘Å*ÑO†•šÛÜ*Ñ•§,Wang Ú
Zhao 3©z[20]„ïÄd•§É½1Å•˜5Ú-½5.Zhang <[21]ÚYuan<[22]„
lØÓÄÅÚÝïÄäk/Xr(t,x) = r(x−ct)O•ǼêLotka-Volterra.‡A*Ñ¿
XÚDÂÄåÆ.Wu <[23]ïÄ£Ä‚¸ešÛÜ*ÑLotka-Volterra .¿XÚD
ÂÄåÆ, Yang<[24]•Ä£Ä‚¸eLotka-Volterra.‡A*ÑÜŠXÚɽÅ•3
5Ú—ÜìC5.3þãù©z¥,¤9O•ǼêÑb ÷vr(−∞) <0 <r(+∞).d,
Hu<[25]rSO•¼ê^‡~f•:r(·)•š~!ëY¼ê…÷vr(−∞) ≤0 <r(+∞),/
ÏŒ+nØÚ°[©ÛE|ïÄ•§(1) ž˜±È5ÚDÂÄå Æ.•C,Hu <[26]„3
d^‡e?Ø£ÄÑE/ešÛÜ*ÑLotka-Volterra .ÜŠXÚɽ1Å•35.
ÉþãïÄóŠéu,·‚ò3©¥&?«+ÑE‚¸”‡z½«+)•„ˆÉíÿC
zK•fœ/,=•Ä•§(1) SO•Ǽêr(·)÷vXe^‡:
(A)¼êr(·)3Rþš~k.…ëY,¿÷vr(+∞) >r(−∞) ≥0.
3þã^‡e,er(−∞) >0•§(1)kü‡KPP.4••§…z‡•§þû½˜‡D„Ý.ù
ü«„݆‚¸£Ä„ÝcƒpŠ^ò‰•§(1)ž˜ÄåÆ©Û‘5(JÚE,5.Ïd,
©8=Ïé•§(1)Å„†‚¸£Ä„ÝcƒÓɽ1Å).
Äkò•§(1) ɽ1Å)PŠU(ξ),ξ:=x−ct.Ïd,•§(1) 1Å)Œ±=z•Xe
šg£~‡©•§
−cU
0
(ξ) = dU
00
(ξ)+U(ξ)[r(ξ)−U(ξ)](2)
).,,•§(1.2) éA4••§©O•
−cU
0
(ξ) = dU
00
(ξ)+U(ξ)[r(+∞)−U(ξ)],(3)
Ú
−cU
0
(ξ) = dU
00
(ξ)+U(ξ)[r(−∞)−U(ξ)].(4)
dur(+∞)>r(−∞) ≥0,@o 4••§(3) Ú(4) ©OkšK²ï:r(+∞) Úr(−∞).g,/,
·‚¬•Äëü‡šK²ï:ƒm1Å•35,=ïÄé?¿c>0 •§(2) ´Ä•3÷v>
.^‡
lim
ξ→−∞
U(ξ) = r(−∞),lim
ξ→+∞
U(ξ) = r(+∞)(5)
š~).·‚•ÄA^üNS“E|5y²•§(2) •3ëü‡šK²ï:ƒm).
·‚ïÄ(JòL²3‚¸z§Ý”ž(=Ô«SO•Çr(·)ðž),«+3?Û˜
‡«•SþU±È)•(U(−∞) = r(−∞) ≥0).
©Ù{Ü©SüXeµ312!¥‰ Ñ˜ý•£.kÏL(2) ˜ékSþe )E
Ñk8§2½Â˜‡TÈ©Žf§¿y²ÙüN5Ú3k8eØC5.313!‰ÑÌ
‡(Ø¿^üNS“•{\±y².
DOI:10.12677/pm.2022.123050450nØêÆ
ë
2.ý•£
Äk,·‚Ú\˜¼ê˜m.˜mC(R,R)dRþ¤kë Y¼ê|¤,C
+
L«d¤kšK
ëY¼ê|¤˜m,P
BC(R,R) =

u∈C(R,R)




sup
ξ∈R
|u(ξ)|<∞

,
é?¿u,v∈C(R,R),eu−v∈C
+
,KPu≥v½v≤u.
-α= 2r(+∞),K•§−dλ
2
−cλ+α= 0kü‡¢Š:
λ
−
=
−c−
√
c
2
+4dα
2d
<0,λ
+
=
−c+
√
c
2
+4dα
2d
>0.
½Â˜‡‡©Žf∆Ú§_∆
−1
©O•
∆h:= −dh
00
−ch
0
+αh,
(∆
−1
h)(ξ) :=
1
d(λ
+
−λ
−
)
"
Z
ξ
−∞
e
λ
−
(ξ−η)
h(η)dη+
Z
+∞
ξ
e
λ
+
(ξ−η)
h(η)dη
#
.
ØJyé?‰h∈BC(R,R) Ñk∆(∆
−1
h) = h.d,eh
0
,h
00
∈BC(R,R),K∆
−1
(∆h) = h.
½Â2.1[26]eU(ξ),U(ξ)∈BC(R,R)÷vU
0
,U
0
,U
00
,U
00
∈L
∞
(R,R),U≥U,U
00
(ξ)Ú
U
00
(ξ)3R\{ξ
j
}þëY(ξ
j
•˜k•4O:),U
0
(ξ
j
+)≤U
0
(ξ
j
−),U
0
(ξ
j
+)≥U
0
(ξ
j
−),…¦Ø
ª
−cU
0
(ξ) ≥dU
00
(ξ)+U(ξ)[r(ξ)−U(ξ)],(6)
−cU
0
(ξ) ≤dU
00
(ξ)+U(ξ)[r(ξ)−U(ξ)](7)
3R\{ξ
j
}þ¤á,K¡UÚU´(2)˜ékSþe).
‰½˜ékSþe),Œ±Ek8Γ:
Γ = {U∈BC(R,R)|U≤U≤U}.
w,,8ÜΓ•BC(R,R)¥š˜k.4à8.
é?¿U∈Γ, ½ÂXeŽf
H(U)(ξ) := αU(ξ)+U(ξ)[r(ξ)−U(ξ)].(8)
e5,·‚‰ÑŽfHü‡5Ÿ.
Ún2.1e¡(Øþ¤áµ
DOI:10.12677/pm.2022.123050451nØêÆ
ë
(i)H(Γ) •BC(R,R)¥k.8¶
(ii)ŽfH: Γ →BC(R,R)ëY.
y²UÚU´(2)˜ékSþe).P
D:= max{sup
ξ∈R
|U(ξ)|,sup
ξ∈R
|U(ξ)|}.(9)
˜•¡,é?¿U∈ΓÑk
|H(U)(ξ)|≤(α+r(ξ)+|U(ξ)|)|U(ξ)|≤(α+r(+∞)+D)D.
Ïd
|H(U)|≤(α+r(+∞)+D)D,
H(Γ)•BC(R,R)¥k.8.
,˜•¡,é?‰U
1
,U
2
∈Γ,·‚k
|H(U
1
)(ξ)−H(U
2
)(ξ)|≤(α+r(ξ))|U
1
(ξ)−U
2
(ξ)|+


U
2
1
(ξ)−U
2
2
(ξ)


≤(α+r(+∞)+2D)|U
1
(ξ)−U
2
(ξ)|,
=
|H(U
1
)−H(U
2
)|≤(α+r(+∞)+2D)|U
1
−U
2
|.
ù¿›XŽfH: Γ →BC(R,R) ëY.y..
e5,·‚½ÂNF(U) := ∆
−1
H(U),∀U∈Γ ⊂BC(R,R).·‚k?ØNF˜5Ÿ.
Ún2.2F´˜‡š~Žf.,,eU(ξ) ∈Γš~,KF(U)(ξ) 'uξ•š~.
y²
˜
U,
ˆ
U∈Γ …÷v
˜
U≥
ˆ
U,Ké?Ûξ∈Rk
H(
˜
U)(ξ)−H(
ˆ
U)(ξ) = (α+r(ξ)−
˜
U(ξ)−
ˆ
U(ξ))(
˜
U(ξ)−
ˆ
U(ξ)) ≥0.
l,é∀ξ∈R,kF(
˜
U)(ξ) ≥F(
ˆ
U)(ξ).=,F´˜‡š~Žf.
eU(ξ) ∈Γ´˜‡'uξš~¼ê,Ké∀ζ>0Ú∀s∈R,k
H(U)(s+ζ)−H(U)(s)
= (U(s+ζ)−U(s))[α+r(s+ζ)−U(s+ζ)+U(s)]+(r(s+ζ)−r(s))U(s) ≥0.
éu∀ξ∈R,5¿h∈B
µ
(R,R) ž,k(∆
−1
h(s+ζ))(ξ) = (∆
−1
h(s))(ξ+ζ),@o
F(U)(ξ+ζ) = [∆
−1
H(U)(s)](ξ+ζ) = [∆
−1
H(U)(s+ζ)](ξ)
≥[∆
−1
H(U)(s)](ξ) = F(U)(ξ).
DOI:10.12677/pm.2022.123050452nØêÆ
ë
y..
Ún2.3F(Γ) ⊂Γ.
y²dÚn2.1´•F(Γ) ⊂BC(R,R).Ïd,·‚•Iyé¤kU∈ΓÑk
U≤F(U) ≤U.
duU,U´˜ékSþe),(Ü©z[18]Ún2.1 ·‚k
F(U) = ∆
−1
H(U) ≥∆
−1
∆(U) ≥U,F(U) = ∆
−1
H(U) ≤∆
−1
∆U≤U.(10)
dÚn2.3•F´˜‡š~Žf.¤±é∀U∈Γk
F(U) ≤F(U) ≤F(U).(11)
(Ü(10)Ú(11)F(Γ) ⊂Γ.y..
•§(2)Œ•
∆U= H(U).(12)
Ïd,eNF3Γ ¥•3˜‡ØÄ:,=∃U∈Γ¦
U= F(U),
KTØÄ:7´(12) ).eTØÄ:„÷v>.^‡(5),K7´•§(1) ɽ1Å.ùÒ´·
‚ïÄ8I.
3.ɽ1Å)•35
½n3.1e(A) ¤á,Ké?¿c>0,•§(1) o•3˜‡÷v>.^‡(5)š~ɽ1
Å.
y²Äk•Äœ/(i):r(−∞) >0 .
U(ξ)=r(+∞) ÚU(ξ)=r(−∞),w,,U(ξ) ÚU(ξ) ÷v½Â2.1 ¤k^‡§=U(ξ)
ÚU(ξ) ´(2) ˜ékSþe).u´·‚˜‡k8:
Γ
1
:= {U∈BC(R,R)|U≤U≤U},
EXeS“S:
U
(1)
= F(U),U
(n+1)
= F(U
(n)
), ∀n≥1.
ÏU(ξ)∈Γ
1
´Rþš~¼ê,(ÜÚn2.2 ÚÚn2.3é¤kn≥1,U
(n)
(ξ)•´Rþ
š~¼ê…÷vØª
U(ξ) ≥U
(1)
(ξ) ≥U
(2)
(ξ) ≥···≥U
(n)
(ξ) ≥U
(n+1)
(ξ) ≥···≥U(ξ).
DOI:10.12677/pm.2022.123050453nØêÆ
ë
l,•3˜‡k .š~¼êU(ξ)¦lim
n→∞
U
(n)
(ξ)= U(ξ).éN´wÑ,é¤kn≥1,ξ∈R
k|H(U
(n)
)(ξ)|≤r(+∞)(r(+∞)+α).l|^Lebesgue’s››Âñ½n
U(ξ) =lim
n→∞
U
(n+1)
(ξ) =lim
n→∞
F(U
(n)
)(ξ)
=lim
n→∞
(∆
−1
H(U
(n)
)(ξ))
=
1
d(λ
+
−λ
−
)
"
Z
ξ
−∞
e
λ
−
(ξ−η)
H(U)(η)dη+
Z
+∞
ξ
e
λ
+
(ξ−η)
H(U)(η)dη
#
=F(U)(ξ).
=U(ξ) ∈Γ
1
´ŽfFØÄ:,•Ò´`U(ξ)´•§(2)).
e5y²U(ξ) ÷v>.^‡(5).ÏU(ξ)´Rþk.š~¼ê,PA
1
:=lim
ξ→−∞
U(ξ)Ú
B
1
:=lim
ξ→+∞
U(ξ).w,k
0 <r(−∞) ≤A
1
≤r(+∞),0 <r(−∞) ≤B
1
≤r(+∞).
d
lim
ξ→−∞
H(U)(ξ) = A
1
(α+r(−∞)−A
1
),
lim
ξ→+∞
H(U)(ξ) = B
1
(α+r(+∞)−B
1
),
|^L’Hˆopital{KŒ
A
1
=lim
ξ→−∞
U(ξ) =lim
ξ→−∞
(∆
−1
H(U)(ξ))
=lim
ξ→−∞
1
d(λ
+
−λ
−
)
"
Z
ξ
−∞
e
λ
−
(ξ−η)
H(U)(η)dη+
Z
+∞
ξ
e
λ
+
(ξ−η)
H(U)(η)dη
#
=lim
ξ→−∞
1
d(λ
+
−λ
−
)

H(U)(ξ)
−λ
−
+
H(U)(ξ)
λ
+

=A
1
+
A
1
[r(−∞)−A
1
]
α
.
u´A
1
= r(−∞).Ón,
B
1
=lim
ξ→+∞
U(ξ) =B
1
+
B
1
[r(+∞)−B
1
]
α
.
¤±B
1
= r(+∞).
e¡•Äœ/(ii): r(−∞)=0.P˜r(ξ) ÷v©[18]¥b(H),@o•3ϕ(ξ) ´©[18]¥•
§(1.2)).w,,ϕ(ξ) oØŒu(2) ).-V(ξ) = r(+∞) ÚV(ξ) = ϕ(ξ).Šâ½Â2.1,Ø
JyV(ξ) ÚV(ξ) ´(2) ˜ékSþe).?˜Ú,½ÂXek8
Γ
2
:= {V∈BC(R,R)|V≤V≤V},
DOI:10.12677/pm.2022.123050454nØêÆ
ë
aquœ/(i)y²Œ•µ•3V∈Γ
2
´ŽfFØÄ:.,ξ→−∞ž,Ó¦^L’Hˆopital
{K
lim
ξ→−∞
V(ξ) = 0.
ξ→+∞ž, kV(ξ) →r(+∞).dY%OK,
lim
ξ→+∞
V(ξ) = r(+∞).
y..
Ä7‘8
HŽg,‰ÆÄ7‘8(?Òµ2020JJ4093)]Ï"
ë•©z
[1]Fisher,R.(1937)TheWaveofAdvanceofAdvantageousGene.AnnalsofHumanGenetics,
7,355-369.https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
[2]Kolomgorov, A.,Petrovskii, I.and Piskunov,N.(1937) Studyof aDiffusion EquationThat Is
RelatedtotheGrowthofaQualityofMatter,andItsApplicationtoaBiologicalProblem.
MoscowUniversityMathematicsBulletin,1,1-26.
[3]Cantrell,R.andCosner,C.(2003)SpatialEcologyviaReaction-DiffusionEquations.John
WileyandSons,Chichester.https://doi.org/10.1002/0470871296
[4]Lam,K.andNi,W.(2012)UniquenessandCompleteDynamicsoftheLotka-VolterraCom-
petitionDiffusionSystem.SIAMJournalonAppliedMathematics,72,1695-1712.
https://doi.org/10.1137/120869481
[5]X‘².f!‡A*Ñ•§[J].êÆDÂ,2016,34(4):17-26.
[6]¢.˜m)Æ¥˜‡A*Ñ•§.[J].¥I‰Æ:êÆ,2015,45(10):1619-1634.
[7]Aronson,D.andWeinberger,H.(1978) MultidimensionalNonlinearDiffusionArisinginPop-
ulationGenetics.AdvancesinMathematics,30,33-76.
https://doi.org/10.1016/0001-8708(78)90130-5
[8]Weinberger,H.(1982)Long-TimeBehavior ofaClassof BiologicalModels.SIAMJournalon
MathematicalAnalysis,13,353-396.https://doi.org/10.1137/0513028
[9]Billingham,J.andNeedham,D.(1991)ANoteonthePropertiesofaFamilyofTravelling-
WaveSolutionsArisinginCubicAutocatalysis.DynamicStabilitySystems,6,33-49.
https://doi.org/10.1080/02681119108806105
DOI:10.12677/pm.2022.123050455nØêÆ
ë
[10]Hou,X.,Li,Y.andMeyer,K.(2010)TravelingWaveSolutionsforaReactionDiffusion
EquationwithDoubleDegenerateNonlinearities.Discrete and Continuous Dynamical Systems,
26,265-290.https://doi.org/10.3934/dcds.2010.26.265
[11]Skellam,J.(1951)RandomDispersalinTheoreticalPopulations.Biometrika,38,196-218.
https://doi.org/10.1093/biomet/38.1-2.196
[12]Berestycki,H.,Diekmann,O.,Nagelkerke,C.J.,etal.(2009)CanaSpeciesKeepPacewitha
ShiftingClimate?BulletinofMathematicalBiology,71,399-429.
https://doi.org/10.1007/s11538-008-9367-5
[13]Elith,J.,Kearney,M.andPhillips,S.(2010)TheArtofModellingRange-ShiftingSpecies.
MethodsinEcologyandEvolution,1,330-342.
https://doi.org/10.1111/j.2041-210X.2010.00036.x
[14]Li,B.,Bewick,S.,Jin,S.,etal.(2014)PersistenceandSpreadofaSpecieswithaShifting
HabitatEdge.SIAMJournalonAppliedMathematics,74,1397-1417.
https://doi.org/10.1137/130938463
[15]Li,B.,Bewick,S.,Barnard,M.andFagan,W.(2016)PersistenceandSpreadingSpeedsof
Integro-DifferenceEquationswithanExpandingorContractingHabitat.BulletinofMathe-
maticalBiology,78,1337-1379.https://doi.org/10.1007/s11538-016-0180-2
[16]Fang,J.,Lou,Y.andWu,J.(2016)CanPathogenSpread KeepPace withItsHostInvasion?
SIAMJournalonAppliedMathematics,76,1633-1657.https://doi.org/10.1137/15M1029564
[17]Berestycki,H.andFang,J.(2018)ForcedWavesoftheFisher-KPPEquationinaShifting
Environment.JournalofDifferentialEquations,264,2157-2183.
https://doi.org/10.1016/j.jde.2017.10.016
[18]Hu,H.andZou,X.(2017)ExistenceofanExtinctionWaveintheFisherEquationwitha
ShiftingHabitat.ProceedingsoftheAmericanMathematicalSociety,145,4763-4771.
https://doi.org/10.1090/proc/13687
[19]Li,W.,Wang,J.andZhao,X.(2018)SpatialDynamicsofaNonlocalDispersalPopulation
ModelinaShiftingEnvironment.JournalofNonlinearScience,28,1189-1219.
https://doi.org/10.1007/s00332-018-9445-2
[20]Wang,J.andZhao,X.(2019)UniquenessandGlobalStabilityofForcedWavesinaShifting
Environment.ProceedingsoftheAmericanMathematicalSociety,147,1467-1481.
https://doi.org/10.1090/proc/14235
[21]Zhang,Z.,Wang,W.andYang,J.(2017)PersistenceversusExtinctionforTwoCompeting
SpeciesunderaClimateChange.NonlinearAnalysis:ModellingandControl,22,285-302.
https://doi.org/10.15388/NA.2017.3.1
[22]Yuan,Y.,Wang,Y.andZou,X.(2019)SpatialDynamicsofaLotka-VolterraModelwitha
ShiftingHabitat.DiscreteandContinuousDynamicalSystems,SeriesB,24,5633-5671.
DOI:10.12677/pm.2022.123050456nØêÆ
ë
[23]Wu,C.,Wang,Y.andZou,X.(2019)Spatial-TemporalDynamicsofaLotka-VolterraCom-
petitionModelwithNonlocalDispersalunderShiftingEnvironment.JournalofDifferential
Equations,267,4890-4921.https://doi.org/10.1016/j.jde.2019.05.019
[24]Yang,Y.,Wu,C.andLi,Z.(2019)ForcedWavesandTheirAsymptoticsinaLotka-Volterra
CooperativeModelunderClimateChange. AppliedMathematicsandComputation,353,254-
264.https://doi.org/10.1016/j.amc.2019.01.058
[25]Hu,H.,Yi,T.andZou,X.(2020)OnSpatial-TemporalDynamicsofFisher-KPPEquation
withaShiftingEnvironment.Proceedingsof theAmericanMathematical Society,148, 213-221.
https://doi.org/10.1090/proc/14659
[26]Hu,H., Deng,L. andHuang,J. (2021)Traveling Wave ofaNonlocalDispersalLotka-Volterra
CooperationModelunderShiftingHabitat.JournalofMathematicalAnalysisandApplica-
tions,500,ArticleID:125100.https://doi.org/10.1016/j.jmaa.2021.125100
DOI:10.12677/pm.2022.123050457nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.