设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2022,11(3),1389-1399
PublishedOnlineMarch2022inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2022.113151
o½~Bi-WaveÛÉįKN
Galerkink•[˜—‡Âñ©Û
ÇÇÇôôô‹‹‹
1
§§§œœœÀÀÀ
2
1
&Eó§ŒÆ,àHx²
2
x²ŒÆ§êƆÚOÆ,àHx²
ÂvFϵ2022c228F¶¹^Fϵ2022c322F¶uÙFϵ2022c329F
Á‡
3©¥§·‚|^NGalerkink••{¦)[p§‡NdÅy–o½~Bi-
waveÛÉįK"Äk§©ÛÙ‚5¯KC©‚ªe)k.5¶Ùg§|^Brouwer Ø
Ä:½ny²š‚5Bi-wave¯K%C)•3•˜5¶?§ÄuBogner-Fox-Schmit ü
p°Ý5Ÿ§3Uþ¿ÂeØ•6uëêKg˜[˜—‡%CÚ‡ÂñØO¶•
§·‚ÏLƒAꊎ~ynØ©Û(5"
'…c
Bi-Wave¯K§Bogner-Fox-Schmit§)•3•˜5§[˜—‡%CÚ‡Âñ5
Quasi-UniformSuperconvergence
AnalysisofConformingGalerkin
FiniteElementMethodforthe
FourthOrderStationaryBi-Wave
SingularPerturbationProblem
YanmiWu
1
,DongyangShi
2
©ÙÚ^:Çô‹,œÀ.o½~Bi-WaveÛÉįKNGalerkink•[˜—‡Âñ©Û[J].A^êÆ
?Ð,2022,11(3):1389-1399.DOI:10.12677/aam.2022.113151
Çô‹§œÀ
1
InformationEngineeringUniversity,ZhengzhouHenan
2
SchoolofMathematicsandStatistics,ZhengzhouUniversity,ZhengzhouHenan
Received:Feb.28
th
,2022;accepted:Mar.22
nd
,2022;published:Mar.29
th
,2022
Abstract
In this paper, the conformingGalerkin finite element method is presented to solve the
fourthorderstationaryBi-wavesingularperturbationproblemsimulatinghightem-
peraturesuperconductordwavephenomenon.Firstly,theboundednessofthesolution
under thevariational scheme of itslinearproblemisanalyzed;Secondly, the existence
anduniquenessoftheapproximatesolutionforthenonlinearBi-waveproblemare
provedbyusingBrouwerfixedpointtheorem;Furthermore,basedonthehighac-
curacypropertyofBogner-Fox-Schmitelement,quasi-uniformsuperconvergenceand
supercloseerrorestimatesindependentofthenegativepoweroftheparameterinthe
energynormareobtained; Finally, thecorresponding numericalexamplesare provided
toverifythecorrectnessofthetheoreticalanalysis.
Keywords
Bi-WaveProblem,Bogner-Fox-SchmitElement,ExistenceandUniquenessofthe
Solution,Quasi-UniformSupercloseandSuperconvergence
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
3ïÄp§‡Ny–¢¥[1]§ïÄÆö®²kåy²>f3/Xo“ú;þ$
Äž§¢y d Åéé¡5[2,3]"•C§^5[p§‡5ŸGinzburg-Landau-type .
±9Ùˆ«í2/ªïáå5[4–6]"3Ginzburg-Landau-type.¥§kü‡IþSëêψ
s
Úψ
d
§Ùþ?“L‡Ö1—Ý"Ù¥ëêδ= −
1
β
§β†'Ç
ln(T
s0
/T)
ln(T
d0
/T)
k'§T
s0
ÚT
d0
´sÅÚ
d Å©þ.§Ý"AO/§[5] L²§T→T
d0
(T
s0
<T
d0
) ž§‡Ny– ò•´d Å
G¶[6] ••ѧβ→−∞ž§sÅ©þÅìž”§dÅ©þ¤•Ì‘"•Äβ→−∞ù«
DOI:10.12677/aam.2022.1131511390A^êÆ?Ð
Çô‹§œÀ
4•œ¹§[7] ŠâGinzburg-Landau-type .Xeo½~Bi-wave ÛÉįKµ
(
δθ
2
ψ−∆ψ+f(ψ) = g,X∈Ω,
ψ=
∂ψ
∂¯n
= 0,X∈∂Ω,
(1.1)
Ù¥X= (x,y),θ´VÅŽf§
θψ=
∂
2
ψ
∂x
2
−
∂
2
ψ
∂y
2
,θ
2
ψ=
∂
4
ψ
∂x
4
−2
∂
4
ψ
∂x
2
y
2
+
∂
4
ψ
∂y
4
,¯n= (n
1
,−n
2
),
∂ψ
∂¯n
= ∇ψ·¯n.
Ω⊂R
2
´äk©ã1w>.∂Ωk.«•§n=(n
1
,n
2
)L«∂Ωþ{•þ"Ù¥é
u‡NdÅy–§δýO¬é§…0<δ1"[8]‰Ñf(ψ)ü«š‚5a.µa
.(I): f(ψ)= λ
1
ψ
k
(λ
1
>0,k>0)¶a.(II):f(ψ)=λ
2
e
ψ
(λ
2
>0)"Œ„§f(ψ) ´˜‡üN
4O¼ê"
p§‡N3áó§¥kX4Ù-‡A^§Š•ïÄTáG-‡êÆ.ƒ˜
Bi-wave•§§'u§nØ©ÛÚêŠ[•¡ïÄ󊺺YYJÑ5"~X§[8] |
^Fá“©Û•{y²¯K(1.1)°()•35"[7]Ú[9]©O|^NGalerkink••
{ÚU?Morley .mäk••{§ƒA‰ê¿Âe• `ØO"[10] Ú[11] ©O
ÄuNÚšN·Ük••{§íÑT·Ü‚ªeØ•6uëêKg˜[˜
—‡Âñ(J"[12] Ú[13] æ^šNGalerkin k••{§©OE\vk•%C‚ªÚ
?\vk•%C‚ª§ þy²3Uþ‰ê¿Âe[˜—Âñ5Ÿ",§3yk©z
¥§„vk'u¯K(1.1)NGalerkin k••{[˜—‡%CÚ‡Âñ5ŸïÄ"
3©¥§·‚k‰Ñ¯K(1.1)‚5•§f)k.5"Äuù˜(ا·‚|^
Brouwer ØÄ:½ny²¯K(1.1) %C‚ªe)·½5§¿/ÏuBogner-Fox-Schmit ü
p°Ý5Ÿ§Ù3Uþ‰êeØ•6uëêKg˜[˜—‡%CÚ‡Âñ(ØO"
•§·‚‰Ñü‡êŠ¢5ynة۴Ä("
2.ý•£
Äk§·‚Ú?XeVgµ
V= {ω∈H
1
0
(Ω),θω∈L
2
(Ω),
∂ω
∂¯n
|
∂Ω
= 0}.
·‚k•Äe¡‚5Bi-wave•§µ
(
δθ
2
ψ−∆ψ= g,X∈Ω,
ψ=
∂ψ
∂¯n
= 0,X∈∂Ω,
(2.1)
¯K(2.1) f/ª•µ¦)ψ(X) ∈V§÷v
δ(θψ,θϕ)+(∇ψ,∇ϕ) = (g,ϕ),∀ϕ∈V.(2.2)
DOI:10.12677/aam.2022.1131511391A^êÆ?Ð
Çô‹§œÀ
3Vþ½Â˜‡Uþ:
kvk
V
=
p
δ(θv,θv)+(∇v,∇v).
••By²š‚5Bi-wave ¯K)•3•˜5§·‚I‡k‰Ñ‚5¯K(2.1) )k.
5[7]"
½n2.1.bu
0
∈V§k
kψk
V
≤Ckgk
0
,(2.3)
√
δk∇θψk
0
+k∆ψk
0
≤Ckgk
0
.(2.4)
Ù¥§3ùp9YÜ©¥§C´˜‡†hÃ'…†δKg˜Ã'~ê§…3ØÓ
˜“LŠŒUØÓ"
3.Bogner-Fox-SchmitüÚ%C‚ª)·½5
bT
h
´Ωþ˜‡KÝ/¿©§‚º€•h"éu?¿K∈T
h
§©O½Â§o‡º
:Úo^>•a
i
Úl
i
= a
i
a
i+1
i= 1 ∼4(mod4)"K½ÂBogner-Fox-Schmitk•˜mV
h0
•µ
V
h0
= {ω
h
∈H
2
(Ω);ω
h
|
K
∈Q
3
(K),∀K∈Γ
h
,ω
h
|
∂Ω
=
∂ω
h
∂n
|
∂Ω
= 0},
Ù¥Q
3
´Vngõ‘ª˜m"
3V
h0
þ½ÂƒAŠŽfI
h
|
K
= I
K
§÷v
ψ(a
i
) = I
h
ψ(a
i
),ψ
x
(a
i
) = I
h
ψ
x
(a
i
),
ψ
y
(a
i
) = I
h
ψ
y
(a
i
),ψ
xy
(a
i
) = I
h
ψ
xy
(a
i
),
i= 1,2,3,4.
•Y[˜—‡ÂñØ©Û§·‚‰ÑXep°Ý(Ø[14]"eϕ∈H
6
(Ω)§k
Z
Ω
∂
2
(ϕ−I
h
ϕ)
∂x
2
∂
2
v
h
∂x
2
dX=
Z
Ω
∂
2
(ϕ−I
h
ϕ)
∂y
2
∂
2
v
h
∂y
2
dX= O(h
4
)kϕk
6
kv
h
k
2
,∀v
h
∈V
h0
.(3.1)
¯K(1.1) C©/ª•µ¦)ψ∈V§÷v
δ(θψ,θν)+(∇ψ,∇ν)+(f(ψ),ν) = (g,ν),∀ν∈V.(3.2)
¯K(3.2) %C‚ª•µ¦)ψ
h
∈V
h0
§÷v
(
δ(θψ
h
,θν
h
)+(∇ψ
h
,∇ν
h
)+(f(ψ
h
),ν
h
) = (g,ν
h
),∀ν
h
∈V
h0
,
ψ
h
= I
h
ψ
0
.
(3.3)
DOI:10.12677/aam.2022.1131511392A^êÆ?Ð
Çô‹§œÀ
e5·‚ò|^Brouwer ØÄ:½n5©Û¯K(3.3) )•3•˜5[15]"
½n3.1.¯K(3.3)k•˜)§…éua.(I)k=
2n+1
2m+1
(m,n∈N)§÷v
kψ
h
k
V
≤Ckgk
0
.(3.4)
y².Äk§·‚y²¯K(3.3))•35"¯¢þ§d(3.2)Ú(3.3)§·‚k
δ(θ(ψ−ψ
h
),θν
h
)+(∇(ψ−ψ
h
),∇ν
h
)+(f(ψ)−f(ψ
h
),ν
h
) = 0,∀ν
h
∈V
h0
.(3.5)
|^VÐm§Œ•
f(ψ
h
) = f(ψ)+f
0
(ψ)(ψ
h
−ψ)+
1
2
f
00
(µ)(ψ−ψ
h
)
2
,
Ù¥µ= ψ+(ψ
h
−ψ),0 ≤≤1"
R
f
(ψ−ψ
h
) =
1
2
f
00
(µ)(ψ−ψ
h
)
2
,éuν
h
∈V
h0
,·‚Œ±ò(3.5)-#¤µ
δ(θ(ψ−ψ
h
),θν
h
)+(∇(ψ−ψ
h
),∇ν
h
)+(f
0
(ψ)(ψ−ψ
h
),ν
h
)−(R
f
(ψ−ψ
h
),ν
h
) = 0.(3.6)
•ïÄ(3.6)§·‚•Äe¡éó¯Kµ¦)
˜
ψ
h
∈V
h0
,÷v
δ(θ(ψ−
˜
ψ
h
),θν
h
)+(∇(ψ−
˜
ψ
h
),∇ν
h
)+(f
0
(ψ)(ψ−
˜
ψ
h
),ν
h
) = 0.(3.7)
-ψ−
˜
ψ
h
= (ψ−I
h
ψ)+(I
h
ψ−
˜
ψ
h
) := η
1
+ξ
1
,·‚ν
h
= ξ
1
∈V
h0
§Œ
kξ
1
k
2
W
+(f
0
(ψ)(I
h
ψ−
˜
ψ
h
),ξ
1
) = −δ(θη
1
,θξ
1
)+(∇η
1
,∇ξ
1
)−(f
0
(ψ)(ψ−I
h
ψ),ξ
1
).
5¿f
0
(ψ) = λ
1
kψ
k−1
≥0(λ
1
>0,k>0)½öf
0
(ψ) = λ
2
e
ψ
>0(λ
2
>0),k
(f
0
(ψ)(I
h
ψ−
˜
ψ
h
),I
h
ψ−
˜
ψ
h
) ≥0.
(Ü(2.3)-(2.4) ª§k
kξ
1
k
2
V
≤Cδh
4
kψk
6
kξ
1
k
2
+Ch
3
kψk
4
k∇ξ
1
k
0
+Ch
4
kψk
4
kξ
1
k
0
.
|^_ØªÚFriedrichs Øª§Œ
kξ
1
k
2
V
≤Cδh
3
kψk
6
k∇ξ
1
k
0
+Ch
3
|ψ|
4
k∇ξ
1
k
0
+Ch
4
kψk
4
kξ
1
k
0
,
?§k
kξ
1
k
V
≤Ch
3
(
√
δkψk
6
+kψk
4
).
DOI:10.12677/aam.2022.1131511393A^êÆ?Ð
Çô‹§œÀ
Ïd§ψ∈H
6
(Ω)§·‚k
kψ−
˜
ψ
h
k
V
≤C
0
(ψ)(
√
δ+1)h
3
,(3.8)
Ù¥§C
0
(ψ) ´˜‡†h ÚδÃ'§•6uψ~ê"
éuα
h
∈V
h0
§·‚½ÂNS
h
: V
h0
→V
h0
…S
h
(α
h
) = ψ
l
§÷v
δ(θ(ψ−ψ
l
),θν
h
)+(∇(ψ−ψ
l
),∇ν
h
)+(f
0
(ψ)(ψ−ψ
l
),ν
h
)−(R
f
(ψ−α
h
),ν
h
) = 0.(3.9)
-ψ−ψ
l
= (ψ−
˜
ψ
h
)+(
˜
ψ
h
−ψ
l
) := η
2
+ξ
2
"(Ü(3.7)§·‚ν
h
= ξ
2
∈V
h0
§Œ
kξ
2
k
2
V
+(f
0
(ψ)(
˜
ψ
h
−ψ
l
),ξ
2
) = (R
f
(ψ−α
h
),ξ
2
).
e¡§·‚I‡y²NS
h
k˜‡½:§=S
h
ò˜‡O
˜γ
(
˜
ψ
h
)N§g§…
O
γ
1
(
˜
ψ
h
) = {α
h
∈V
h0
: kα
h
−
˜
ψ
h
k
V
≤˜γ}.(3.10)
d(3.8)§Œ•
kψ−α
h
k
0,4
≤C(kψ−
˜
ψ
h
k
V
+k
˜
ψ
h
−α
h
k
V
) ≤(C
0
(ψ)(
√
δ+1)h
3
+ ˜γ).(3.11)
|^(3.11)§·‚k
|(R
f
(ψ−α
h
),ξ
2
)|
≤k
1
2
f
00
(ψ+(α
h
−ψ))k
0,4
kψ−α
h
k
2
0,4
kξ
2
k
0,4
≤(C
0
(ψ)(
√
δ+1)h
3
+ ˜γ)˜γ
2
kξ
2
k
V
.
aq/§Šâ
(f
0
(ψ)(
˜
ψ
h
−ψ
l
),
˜
ψ
h
−ψ
l
) ≥0,
k
kξ
2
k
V
≤(C
0
(ψ)(
√
δ+1)h
3
+ ˜γ)˜γ
2
.
?§Œ
kα
h
−
˜
ψ
h
k
V
≤kψ
l
−
˜
ψ
h
k
V
≤C
1
(ψ)((
√
δ+1)h
3
+ ˜γ)˜γ
2
.
Ù¥§C
1
(ψ) ´˜‡†h ÚδÃ'§•6uC
0
(ψ) ~ê"
Ïd§-h≤(C
1
(ψ))
−2
§À˜γ= C
1
(ψ)h§k
kα
h
−
˜
ψ
h
k
V
≤˜γ.
DOI:10.12677/aam.2022.1131511394A^êÆ?Ð
Çô‹§œÀ
=§éu¿©‚º€h,S
h
ò±
˜
ψ
h
•¥%§˜γ= O(h) >0•Œ»Ng¥"
e5§·‚òÏLy²S
h
´O
˜γ
(
˜
ψ
h
)¥˜‡Ø N5y²¯K(3.3) )•˜5"¯
¢þ§-ψ
1
Úψ
2
´¯K(3.3) ü‡ØÓ)§k
kψ
i
−
˜
ψ
h
k
V
≤C
2
(ψ)((
√
δ+1)h
3
+ ˜γ)˜γ
2
,i= 1,2,
Ù¥C
2
(ψ) ´˜‡†h ÚδÃ'§•6uψ
1
Úψ
2
~ê"
éu?¿ν
h
∈V
h0
Úα
1
,α
2
∈O
γ
1
(
˜
ψ
h
),·‚k
δ(θ(ψ
1
−ψ
2
),θν
h
)+(∇(ψ
1
−ψ
2
),∇ν
h
)+(f
0
(ψ)(ψ
1
−ψ
2
),ν
h
)−(R
f
(ψ−α
1
)−R
f
(ψ−α
2
),ν
h
) = 0.
aqƒcO§Œ
kψ
1
−ψ
2
k
V
≤C
2
(ψ)((
√
δ+1)h
3
+ ˜γ)˜γ
2
kα
1
−α
2
k
δ,h
.
Àh≤(C
2
(ψ))
−2
Ú˜γ= C
2
(ψ)h§k
kS
h
(α
1
)−S
h
(α
2
)k
V
≤((
√
δ+1)h
2
+1)hkα
1
−α
2
k
V
.
Ïd§éu¿©h,S
h
´O
˜γ
(
˜
ψ
h
)þØ N"
,˜•¡§·‚3¯K(3.3) ¥ν
h
= ψ
h
∈V
h0
§k
kψ
h
k
2
V
+(f(ψ
h
),ψ
h
) ≤kgk
0
kψ
h
k
0
.
5¿a.(I) : f(ψ) = λ
1
ψ
k
(λ
1
>0)§k=
2n+1
2m+1
(m,n∈N) ž§Œ•
(f(ψ
h
),ψ
h
) ≥0,
?k
kψ
h
k
V
≤kgk
0
.
y..
4.[˜—‡%CÚ‡ÂñØO
y3·‚í[˜—‡%CÚ‡ÂñØO"Äk§·‚òeØ©•µ
ψ−ψ
h
= (ψ−I
h
ψ)+(I
h
ψ−ψ
h
) ,η
3
+ξ
3
.
½n4.1.-ψÚψ
h
©O´¯K(3.2) Ú¯K(3.3) )"bψ∈H
6
(Ω)§·‚k
kI
h
ψ−ψ
h
k
V
≤Ch
3
(
√
δkψk
6
+kψk
4
).(4.1)
DOI:10.12677/aam.2022.1131511395A^êÆ?Ð
Çô‹§œÀ
y².(Ü(3.2)Ú(3.3)§Œe¡Ø•§µ
δ(θξ
3
,θν
h
)+(∇ξ
3
,∇ν
h
)+(f(I
h
ψ)−f(ψ
h
),ν
h
) = −δ(θη
3
,θν
h
)−(∇η
3
,∇ν
h
)−(f(ψ)−f(ψ
h
),ν
h
).
ν
h
= ξ
3
∈V
h0
§|^(3.1)§·‚k
kξ
3
k
2
V
+(f(I
h
ψ)−f(ψ
h
),ξ
3
) ≤Cδh
4
kψk
6
kξ
3
k
2
+Ch
3
kψk
4
k∇ξ
3
k
0
+Ch
4
kψk
4
kξ
3
k
0
.
5¿
(f(I
h
ψ)−f(ψ
h
),ξ
3
) ≥0,
(Ü_ØªÚFriedrichs Øª,Œ•
kξ
3
k
2
V
≤Cδh
3
kψk
6
k∇ξ
3
k
0
+Ch
3
kψk
4
k∇ξ
3
k
0
+Ch
4
kψk
4
kξ
3
k
0
.
Ïd§k
kξ
3
k
V
≤Ch
3
(
√
δkψk
6
+kψk
4
).
y."
·‚|^©z[16] ¥Š?nŽf§‰Ñ[˜—N‡ÂñØO"
½n4.2.3½n(4.1)^‡e,·‚k
kψ−I
2h
ψ
h
k
V
≤Ch
3
(
√
δkψk
6
+kψk
4
)(4.2)
5.ꊢ
3!¥§·‚3«•Ω = (0,1)×(0,1) þ‰Ñe¡ü‡êŠŽ~"
Table1.Numericalresultsofψforδ=10∼1.0
L1.δ=10∼1.0ž§ψêŠ(J
δ= 10δ= 1.0
n×nkψ−ψ
h
k
V
ÂñkI
h
ψ−ψ
h
k
V
Âñkψ−ψ
h
k
V
ÂñkI
h
ψ−ψ
h
k
V
Âñ
4×44.0076e−02–8.5735e−01–4.0135e−02-8.5655e−01–
8×88.2861e−032.27401.7137e−012.26938.3250e−031.99131.7136e−012.3215
16×161.9219e−032.10822.1862e−022.97061.9247e−032.11282.1862e−022.9705
32×324.7210e−042.02532.6581e−033.03994.7227e−042.02702.6581e−033.0399
DOI:10.12677/aam.2022.1131511396A^êÆ?Ð
Çô‹§œÀ
Ž~1.·‚ý)•ψ(x,y) = sin
2
(πx)sin
2
(πy)§Ù¥¼ê‘gŒdTý)OŽ"
·‚3L1 ∼3¥©OÑØÓëêδ= 10
−4
∼10 ØOŠÚÂñ§Œ±w§
h→0 ž§kψ−ψ
h
k
V
´±O(h
2
)•`„ÇÂñ§kψ
h
−I
h
ψk
V
´±O(h
3
)„ÇÂñ§ù†·
‚nة۴ƒÎÜ"
Ž~2.·‚ÏL¼êg= 1.0 5©Û¯K(1.1)"
•Ä°()ψ´™•§ÀJδ= 10§1§10
−2
Ú10
−6
ž§·‚©O±›3¿©
1
16
×
1
16
e
êŠ)ψ
h
ã”Xã1¤«"X¤Ï"§‘XδŠC5§ù)ã”5”[7]
¥ƒAÑt¯K)ã”"
Table2.Numericalresultsofψforδ=10
−1
∼10
−2
L2.δ=10
−1
∼10
−2
ž§ψêŠ(J
δ= 10
−1
δ= 10
−2
n×nkψ−ψ
h
k
V
ÂñkI
h
ψ−ψ
h
k
V
Âñkψ−ψ
h
k
V
ÂñkI
h
ψ−ψ
h
k
V
Âñ
4×44.1256e−02–8.5648e−01–4.5366e−02-8.5649e−01–
8×88.7351e−032.23971.7136e−012.32141.2035e−021.91441.7136e−012.3214
16×161.9582e−032.15732.1862e−022.97052.5140e−032.25922.1862e−022.9705
32×324.7430e−042.04562.6581e−033.03995.2190e−042.26812.6581e−033.0399
Table3.Numericalresultsofψforδ=10
−3
∼δ=10
−4
L3.δ=10
−3
∼δ=10
−4
ž§ψêŠ(J
δ= 10
−3
δ= 10
−4
n×nkψ−ψ
h
k
V
ÂñkI
h
ψ−ψ
h
k
V
Âñkψ−ψ
h
k
V
ÂñkI
h
ψ−ψ
h
k
V
Âñ
4×44.9008e−02–8.5650e−01–6.4473e−03-8.5651e−01–
8×81.8471e−021.40781.7136e−012.32151.3481e−032.25781.7136e−012.3215
16×166.1603e−031.58412.1862e−022.97052.9308e−042.20152.1862e−022.9705
32×321.4266e−032.11042.6581e−033.03995.9365e−052.30362.6581e−033.0399
Figure1.Thegraphicsofψ
h
when
1
16
×
1
16
att=0.1withδ=10,1.0,10
−2
and10
−6
,respectively
ã1.δ=10§1§10
−2
§10
−6
Ú¿©
1
16
×
1
16
žêŠ)ψ
h
ã”
DOI:10.12677/aam.2022.1131511397A^êÆ?Ð
Çô‹§œÀ
6.(Ø
©¥§·‚|^NGalerkink••{¦)[p§‡NdÅy–o½~Bi-wave
ÛÉįK"ÄuBrouwerØÄ:½n‰Ñš‚5Bi-wave¯KêŠ)•3•˜5y²§
¿(ÜBogner-Fox-Schmit üp°Ý5Ÿ§3Uþ¿Âe[˜—‡%CÚ‡Âñ(J"
•·‚‰Ñꊢy²ynØO(5"Ù¥§½n(4.2) ¥(4.2) ª´é©z[9] ¥
3Uþ‰ê¿ÂeÂñ•O(h
2
) ØOUõ§ùL²·‚Œ±^ •Oޤ¼ƒÓ
%C°Ý"XÛò‘8ïÄ?˜Úò†ÛÉÄëêÃ'ØO=˜—
Âñ5ù˜´÷(J§ò´·‚8óŠ¥-:ïÄ••"
ë•©z
[1]Joynt, R.(1990)Upward CurvatureofH
c2
in High-T
c
Superconductors:Possible Evidencefor
s+dPairing.PhysicalReviewB,41,4271-4277.https://doi.org/10.1103/PhysRevB.41.4271
[2]Ren,Y., Xu,J.H.andTing, C.S.(1996)Ginzburg-LandauEquationsforMixeds+dSymmetry
Superconductors.PhysicalReviewB,53,2249-2252.
https://doi.org/10.1103/PhysRevB.53.2249
[3]Feder,D.L.andKallin,C.(1997)MicroscopicDerivationoftheGinzburg-LandauEquations
forad-WaveSuperconductor.PhysicalReviewB,55,559-574.
https://doi.org/10.1103/PhysRevB.55.559
[4]Dai,M.C.andYang,T.J.(1999)TheAnomalousHallEffectforaMixeds-Waveandd-Wave
SymmetrySuperconductor.SolidStateCommunications,110,425-430.
https://doi.org/10.1016/S0038-1098(99)00092-7
[5]Xu,J.H.,Ren,Y.andTing,C.S.(1996)StructuresofSingleVortexandVortexLatticeina
d-WaveSuperconductor.PhysicalReviewB,53,2991-2993.
https://doi.org/10.1103/PhysRevB.53.R2991
[6]Du, Q. (1999) Studies of Ginzburg-Landau Model for d-WaveSuperconductors. SIAMJournal
onAppliedMathematics,59,1225-1250.https://doi.org/10.1137/S0036139997329902
[7]Feng,X.B.andNeilan,M.(2010)FiniteElementMethodsforaBi-WaveEquationModeling
d-WaveSuperconductors.JournalofComputationalMathematics,28,331-353.
https://doi.org/10.4208/jcm.2009.10-m1011
[8]Fushchych,W.I.andRoman,O.V.(1996)SymmetryReductionandSomeExactSolutionsof
NonlinearBi-WaveEquations.ReportsonMathematicalPhysics,37,267-281.
https://doi.org/10.1016/0034-4877(96)89767-9
[9]Feng, X.B.andNeilan,M.(2010) DiscontinuousFiniteElement Methods for aBi-Wave Equa-
tionModelingd-WaveSuperconductors.MathematicsofComputation,80,1303-1333.
https://doi.org/10.1090/S0025-5718-2010-02436-6
DOI:10.12677/aam.2022.1131511398A^êÆ?Ð
Çô‹§œÀ
[10]Shi, D.Y. and Wu, Y.M. (2018) Uniform Superconvergence Analysis of Ciarlet-RaviartScheme
forBi-WaveSingularPerturbationProblem.MathematicalMethodsintheAppliedSciences,
41,7906-7914.https://doi.org/10.1002/mma.5254
[11]Shi,D.Y.andWu,Y.M.(2020)UniformlySuperconvergentAnalysisofanEfficientTwo-
GridMethodforNonlinearBi-WaveSingularPerturbationProblem.AppliedMathematics
andComputation,367,ArticleID:124772.https://doi.org/10.1016/j.amc.2019.124772
[12]Wu,Y.M.andShi,D.Y.(2021)Quasi-UniformConvergenceAnalysisofaModifiedPenal-
tyFiniteElementMethodforNonlinearSingularlyPerturbedBi-WaveProblem.Numerical
MethodsforPartialDifferentialEquations, 37, 1766-1780. https://doi.org/10.1002/num.22607
[13]Shi,D.Y.andWu,Y.M.(2021)Quasi-UniformConvergenceAnalysisofRectangularMorley
ElementfortheSingularlyPerturbedBi-WaveEquation.AppliedNumericalMathematics,
161,169-177.https://doi.org/10.1016/j.apnum.2020.11.002
[14]+,îww.pk•E†©Û[M].½:àŒÆÑ‡,1996.
[15]Browder,F.E.andFinn,R.(1965)ExistenceandUniquenessTheoremsfor SolutionsofNon-
linearBoundaryValue Problems.ProceedingsofSymposiainAppliedMathematics, 17,24-49.
https://doi.org/10.1090/psapm/017/0197933
[16]Lin,J.F.andLuo,Q.(2004)SuperconvergencefortheBogner-Fox-SchmitElement.Compu-
tationalMathematics,26,47-50.
https://doi.org/10.3321/j.issn:0254-7791.2004.01.006
DOI:10.12677/aam.2022.1131511399A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.