﻿ 制动盘热机耦合分析安全余量方案设计 Schematic Design of Safety Margin during Disc Thermal-Mechanical Coupling Analysis

Modeling and Simulation
Vol.05 No.04(2016), Article ID:18992,9 pages
10.12677/MOS.2016.54019

Schematic Design of Safety Margin during Disc Thermal-Mechanical Coupling Analysis

Zewang Yuan1, Chun Tian1, Zhenqiang Liu2, Guorui Zhai2, Zhonghai Wang2

1Institute of Rail Transit, Tongji University, Shanghai

2CRRC Changchun Railway Vehicles Co., LTD., Changchun Jilin

Received: Oct. 30th, 2016; accepted: Nov. 19th, 2016; published: Nov. 22nd, 2016

Copyright © 2016 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

An innovative idea of taking consideration of safety margin during disc thermal-mechanical coupling analysis was proposed. One high speed train at 200 km/h as research model was taken for 4 different working conditions about safety margin in simulation. It aimed to analyze simulation results of temperature field and thermal stress field of braking disc after twice urgent braking. The outcomes obtained showed that the calculated safety factor would be the biggest under “deceleration” condition, while the “acceleration” condition results in the smallest factor. Two other suppositions of “addition of axle load” and “reduction of allowable disc area” are mediate.

Keywords:Brake Disc, Thermal-Mechanical Coupling, Safety Margin, Schematic Design, Calculating Safety Factor

1同济大学铁道与城市轨道交通研究院，上海

2中车长春轨道客车股份有限公司，吉林 长春

1. 引言

2. 方案设计

(1)

(2)

3. 模型建立

3.1. 有限元建模

3.2. 材料参数

3.3. 热流密度

(3)

Table 1. Basic values of vehicle and operating parameters

Table 2. Variable parameters refer to different simulation schemes

Figure 1. Simulation analysis model of 1/9 one-side disc

Table 3. Material parameters of friction pair

Table 4. Reference performance parameters of 25Cr2MoVA disc

(4)

(5)

(6)

(7)

3.4. 对流换热系数 [8] [9]

(8)

(a)方案一 (b)方案二(c)方案三 (d)方案四

Figure 2. Curve: heat flux varies with time

(9)

(10)

(11)

3.5. 热应力方程

marc求解热应力场时不必再重新建立有限元模型，可以通过软件中的热机耦合模块，将已求解的节

(a)方案一 (b)方案二(c)方案三 (d)方案四

Figure 3. Curve: convective heat transfer coefficient varies with time of different schemes

(12)

4. 结果分析

(13)

(14)

Table 5. Maximum temperature nephogram and maximum thermal stress nephogram of different schemes

Figure 4. Curve: temperature varies time of maximum temperature node of different schemes

Figure 5. Curve: thermal stress varies time of maximum temperature node of different schemes

Table 6. Calculating safety factors of temperature and thermal stress of different schemes

5. 结论及建议

(1) 在模拟制动盘温度场和应力场的过程中，对于使用条件比较苛刻的情况可以考虑增加仿真时的最高车速，对于使用条件比较宽松的情况可以考虑增加仿真时的减速度；

(2) 在模拟制动盘温度场和应力场的过程中，增加轴重或者降低材料许用范围来考虑安全余量的方案能够保证仿真时间与实际运行时间一致。

“十二五”国家科技支撑计划项目资助(2015BAG13B01-11)；国家自然科学基金项目资助(U1534205)。

Schematic Design of Safety Margin during Disc Thermal-Mechanical Coupling Analysis[J]. 建模与仿真, 2016, 05(04): 143-151. http://dx.doi.org/10.12677/MOS.2016.54019

1. 1. Gao, C.H. and Lin, X.Z. (2002) Transient Temperature Field Analysis of a Brake in a Non-Axisymmetric Three- Dimensional Model. Journal of Materials Processing Technology, 129, 513-517.http://dx.doi.org/10.1016/S0924-0136(02)00622-2

2. 2. 李继山, 林祜亭, 李和平. 高速列车合金锻钢制动盘温度场仿真分析[J]. 铁道学报, 2006, 28(4): 45-48.

3. 3. 杨世铭. 传热学[M]. 北京: 高等教育出版社, 2010: 41-49.

4. 4. 丁群, 谢基龙. 基于三维模型的制动盘温度场和应力场分析[J]. 铁道学报, 2002, 24(6): 34-38.

5. 5. 哈尔滨锅炉厂有限责任公司. 锅炉压力容器金属材料下[M]. 北京: 化学工业出版社, 2008: 25-28.

6. 6. 孙超. 摩擦块排布对制动盘温度场及热应力场的影响[D]: [硕士学位论文]. 大连: 大连交通大学, 2012.

7. 7. 冯超, 孙丹丹, 陈火红. 全新Marc实例教程与常见问题解析[M]. 北京: 中国水利水电出版社, 2012: 324-325.

8. 8. 陈礼. 流体力学与热工基础(第二版) [M]. 北京: 清华大学出版社, 2012: 146-149.

9. 9. 战洪仁. 工程传热学基础[M]. 北京: 中国石化出版社, 2014: 91-96.

10. 10. 赵秋萍, 李春雷. 化工原理实验[M]. 成都: 西南交通大学出版社, 2014: 201-203.

11. 11. Hwang, P. and Wu, X. (2010) Investigation of Temperature and Thermal Stress in Ventilated Disc Brake Based on 3D Thermo-Mechanical Coupling Model. Journal of Mechanical Science and Technology, 24, 81-84.http://dx.doi.org/10.1007/s12206-009-1116-7