﻿ 金属溶液雾化器中气体流场的计算模拟与分析 Simulation and Analysis of Gas Flow Field in Metallic Solution Atomizer

International Journal of Fluid Dynamics
Vol.05 No.02(2017), Article ID:21063,7 pages
10.12677/IJFD.2017.52009

Simulation and Analysis of Gas Flow Field in Metallic Solution Atomizer

Yifan Ma, Zhaoming Zhang

College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing Jiangsu

Received: Jun. 2nd, 2017; accepted: Jun. 18th, 2017; published: Jun. 21st, 2017

ABSTRACT

Based on a vertical loop slot atomizer, Catia was used to establish the solid model. The grid was divided by ICEM. Fluent was used to simulate the flow field. The flow field characteristics of the gas flowing through the atomizer and the characteristics of the jet spraying out from the atomization nozzle of the atomizer were studied. It was found that there were vortices in the flow inside the atomizer. After ejecting from the atomizer nozzle, the jet appeared in the shape of a hollow double cone and there was a rotation. Along the ejecting direction, the flow rate of the jet decreased and the width of the jet increased. Through the calculation and analysis of the flow field of the atomi- zer, it provides the basis for improving the atomization performance of the atomizer.

Keywords:Metallic Solution, Atomizer, Jet, Numerical Simulation

1. 引言

2. 计算模型和方法

Figure 1. Perspective of atomizer structure

Figure 2. Sectional drawing of section A

Figure 3. The grid of section A

96,700 Pa，计算域侧面为壁面边界条件。用ICEM软件划分三维非结构网格，网格数量为2,087,361，雾化器内部网格加密，为了研究雾化器喷嘴处的射流特性，因此进一步加密雾化器喷嘴附近的网格。

(1)

(2)

3. 数值计算结果与分析

3.1. 内部管路流场

Figure 4. The internal airflow stream at the cross-section of the atomizer

3.2. 喷嘴外流场

Figure 5. The airflow stream and pressure at section A

Figure 6. The morphological diagram of the hollow double cone

Figure 7. Streamlines of the necking

4. 结论

1) 气流在雾化器内部的流动存在漩涡，使气流的动能损失，可以通过加工平缓过渡或倒角的方法更充分地利用气流的动能。

2) 气流从雾化器环缝喷嘴喷出后，呈空心的对顶气锥形态，且存在从下往上看逆时针的旋度。

3) 射流流速沿喷射方向逐渐减小，形成向周围扩张的流动场。

Simulation and Analysis of Gas Flow Field in Metallic Solution Atomizer[J]. 流体动力学, 2017, 05(02): 76-82. http://dx.doi.org/10.12677/IJFD.2017.52009

1. 1. 刘文胜, 彭芬, 马运柱, 等. 气雾化法制备金属粉末的研究进展[J]. 材料导报, 2009, 23(3): 53-57.

2. 2. 王建军. 中国雾化制粉技术现状简介[J]. 粉末冶金工业, 2016, 26(5): 1-4.

3. 3. 于朝清, 徐永红, 章应, 等. 金属雾化制粉技术现状[J]. 电工材料, 2010(2): 9-12.

4. 4. 梁荣, 党新安, 赵小娟, 等. 微细金属粉末雾化喷嘴的设计进展[J]. 有色金属工程, 2008, 60(1): 36-40.

5. 5. 李清泉, 欧阳通, 麻润海, 等. 气雾化微细金属粉末的生产工艺研究[J]. 粉末冶金技术, 1996, 14(3): 181-188.

6. 6. 陈仕奇, 黄伯云. 金属粉末气体雾化制备技术的研究现状与进展[J]. 粉末冶金材料科学与工程, 2003, 22(3): 297-302.

7. 7. 刘福平. 旋涡环缝式雾化器设计参数的研究[J]. 粉末冶金技术, 2011, 29(5): 339-343.

8. 8. 刘福平, 杨凯珍, 刘凤美. 环孔雾化器出口气体射流结构参数的研究[J]. 粉末冶金技术, 2009, 27(4): 255-258.

9. 9. 李富成. 流体力学及流体机械[M]. 北京: 冶金工业出版社, 1980.

10. 10. Chen, S., Zhou, N. and Yin, Z. (1996) Fluid Kinetics Principle and Design Criteria of Atomizer. Transactions of Nonfer-rous Metals Society of China, 3, 108-112.

11. 11. 陈世柱. 气雾喷粉管路及喷嘴设计原则[J]. 轻金属, 1998(4): 56-59.

12. 12. 沈军, 蒋祖龄. 气体雾化过程的增压与吸动现象[J]. 粉末冶金技术, 1994(1): 15-17.

13. 13. Si, C.R., Zhang, X.J., Wang, J.B., et al. (2014) Design and Evaluation of a Laval-Type Supersonic Atomizer for Low- Pressure Gas Atomization of Molten Metals. International Journal of Minerals Metallurgy and Materials, 21, 627-635. https://doi.org/10.1007/s12613-014-0951-4

14. 14. Chen, G., Yang, X., Bin, S.U., et al. (2014) Criterion of Gas and Solid Du-al-Phase Flow Atomization Crash in Molten Metal. The Chinese Journal of Nonferrous Metals, 24, 208-216.

15. 15. Yang, L., Yang, G. and Zhou, Y. (1995) Theoretical Discussion on Unsteady Flow of Fluid during Metal Atomization. Acta Metallurgica Sinica, 8, 65-71.