﻿ 水下钻孔爆破冲击波传播规律的数值模拟研究 The Numerical Simulation Research on Shock Wave Propagation of Underwater Drilling Blasting

Mine Engineering
Vol.03 No.04(2015), Article ID:16273,9 pages
10.12677/ME.2015.34028

The Numerical Simulation Research on Shock Wave Propagation of Underwater Drilling Blasting

Xingbo Xie, Mingshou Zhong*, Ge Song, Ying Liu, Tao Guo

College of Field Engineering, PLA University of Science and Technology, Nanjing Jiangsu

Email: znbxie@126.com, *zhongms7@126.com

Received: Oct. 11th, 2015; accepted: Oct. 27th, 2015; published: Oct. 30th, 2015

ABSTRACT

According to engineering practice, the numerical simulation of the propagation law of underwater deep hole blasting shock wave was made to study the propagation characteristic of underwater blasting shock wave. The results showed that, using water medium as blasting hole stemming could play a certain role, and the shock wave pressure peak of underwater blasting with center detonation was maximum in the direction of the rock and water interface at a certain angle.

Keywords:Shock Wave, Underwater Explosive, Numerical Simulation, Fluid-Solid Coupling

Email: znbxie@126.com, *zhongms7@126.com

1. 引言

2. LS-DYNA程序简介

LS-DYNA程序是一个通用显式非线性动力分析程序，可以求解各种二维、三维非线性结构的高速碰撞、爆炸和金属成型等接触非线性、冲击荷载非线性和材料非线性问题。DYNA程序系列最初是1976年在美国Lawrence Livermore National Lab由J.O. Hallquist 主持开发完成的。LS-DYNA具有几何非线性、材料非线性、摩擦和接触分离状态非线性等程序，以Lagrange算法为主，兼有ALE、Euler和SPH算法，主要进行结构非线性动力分析，同时可以进行热分析、静力分析。是目前使用最为广泛的有限元显示非线性动力分析软件[5] 。

3. 水下深孔爆破的数值计算模型

3.1. 材料模型

LS-DYNA材料库中提供了多种材料模型可对炸药、金属、土壤、流体、岩石、混凝土等材料进行描述。炸药及爆轰产物的材料模型采用关键字为MAT_HIGH_EXPLOSIVE_BURN的高能燃烧模型，状态方程采用JWL方程[6] ，其形式为：

(1)

(2)

(3)

3.2. 计算模型

Table 1. Parameters for 2# rock explosive

Table 2. Parameters for HJC model

4. 水下深孔爆破的数值模拟结果

4.1. 数值模拟结果

Figure 1. The strength mode

Figure 2. Calculation model

4.2. 水中冲击波传播规律分析

(a) 1000 us (b) 1600 us (c) 2000 us
(d) 2200 us (e) 2600 us (f) 2800 us
(g) 3100 us (h) 3300 us

Figure 3. The stress nephogram of underwater deep hole blasting numerical simulation in different times

Figure 4. The schematic of shockwave measuring points

(a) 测点A (b) 测点B (c) 测点C (d) 测点D (e)测点E

Figure 5. Time history curve of pressure on each test point

Figure 6. The schematic of shockwave measuring points

(a) 左侧测点 (b) 中间测点 (c) 右侧测点

Figure 7. Time history curve of pressure on blasting hole

(a) 左侧测点 (b) 中间测点 (c) 右侧测点

Figure 8. Time history curve of pressure 100 cm from blasting hole

5. 结语

The Numerical Simulation Research on Shock Wave Propagation of Underwater Drilling Blasting[J]. 矿山工程, 2015, 03(04): 207-215. http://dx.doi.org/10.12677/ME.2015.34028

1. 1. Temkin, S. (2003) Review of the propagation of pressure pulses produced by small underwater explosive charges. AD-A194642.

2. 2. P. 库尔, 著, 罗耀杰, 译 (1960) 水下爆炸. 国防工业出版社, 北京.

3. 3. Kamegai, M., Klein, L.S. and Rosenkilde, C.E. (2009) Computer simulation studies on free surface reflection of underwater shock wave. UCRL-96960.

4. 4. Liu, M.B., Liu, G.R., Lam, K.Y. and Zong, Z. (2013) Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Computational Mechanics, 30, 106-118.

5. 5. 白金泽 (2005) LS-DYNA3D理论基础与实例分析. 科学出版社, 北京.

6. 6. 章冠人 (1991) 凝聚炸药起爆动力学. 国防工业出版社, 北京.

7. 7. 方秦, 孔祥振, 吴昊, 等 (2014) 岩石Holmquist-Johnson-Cook 模型参数的确定方法. 工程力学, 3, 197-204.

8. 8. 时党勇, 李裕春, 张胜民 (2005) 基于ANSYS/LS-DYNA8.1进行显式动力分析. 清华大学出版社, 北京.