设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(4),653-664
PublishedOnlineApril2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.124075
÷/Žfœ/ež¢uЕ§±Ï)•35
‰‰‰ééé
Ü“‰ŒÆ§êƆÚOÆ§[‹=²
ÂvFϵ2022c316F¶¹^Fϵ2022c418F¶uÙFϵ2022c425F
Á‡
©?ØBanach˜mX¥ž¢uЕ§
u
0
(t)+Au(t) = f(t,u(t),u(t−τ
1
),···,u(t−τ
n
)),t∈R,
±Ï)•35§Ù¥A:D(A)⊂X→X•÷/Žf§−A)¤X¥•ê-½)ÛŒ
+T(t)(t≥0),f:R×X
n+1
→XëY§'ut±ω•±Ï§τ
1
,···,τ
n
>0"·‚A^ØÄ:½n§
¼•§ω-±Ïmild)•35(J"
'…c
ž¢uЕ§§ØÄ:½n§ω-±Ïmild)§•35
ExistenceofPeriodicSolutionsforDelayed
EvolutionEquationwithSectorOperator
QilinWei
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Mar.16
th
,2022;accepted:Apr.18
th
,2022;published:Apr.25
th
,2022
©ÙÚ^:‰é.÷/Žfœ/ež¢uЕ§±Ï)•35[J].nØêÆ,2022,12(4):653-664.
DOI:10.12677/pm.2022.124075
‰é
Abstract
Thispaperdeals withtheexistence ofperiodicsolutionsfordelayedevolutionequation
inaBanachspaceX,
u
0
(t)+Au(t) = f(t,u(t),u(t−τ
1
),···,u(t−τ
n
)),t∈R,
whereA: D(A) ⊂X→Xisasectoroperatorand−Ageneratesaexponentialstability
analytic semigroup T(t)(t≥0)on X, f: R×X
n+1
→Xis a continuous functionmapping
anditisω-periodicint,τ
1
,···,τ
n
>0.Existenceresultsofω-periodicmildsolutions
areobtainedbyusingthefixedpointtheorem.
Keywords
DelayedEvolutionEquation,FixedPointTheorem,ω-PeriodicMildSolutions,
Existence
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
ž¢uЕ§, q¡ž¢üz•§½ž¢?z•§,´•™•¼ê¹k'užmCþtê(
ê)‡©•§,Xž¢9•§!ž¢Å•§!ž¢>•§!ž¢Schr¨odinger•§!ž¢Ô
.•§!ž¢‡A*Ñ•§,±9 dùa•§ÏL·•ªÍÜå5•§|,Ñáuž¢uÐ
•§‰Æ.Ïd,ž¢uЕ§äk›©´LïÄSN92•A^dŠ,„©z[1,2].éu
Ü©ž¢ ‡©•§,·‚~/Ïu Žf Œ+•{ò,‡Banach˜mX¥÷/ŽfeÄ–ž¢
uЕ§5?n,??ØÙ)•35!•˜5.U÷/ŽfeÄ–ž¢uЕ§˜„/
X
u
0
(t)+Au(t) = f(t,u(t),u(t−τ
1
),···,u(t−τ
n
)),t∈R,(1)
DOI:10.12677/pm.2022.124075654nØêÆ
‰é
Ù¥A:D(A)⊂X→X•X¥÷/Žf,−A)¤X¥•ê-½)ÛŒ+T(t)(t≥0),
f:R×X
n+1
→X•š‚5N,τ
i
>0(i=1,···,n)•~ê.3ù ‡©•§¥,žm±Ï
)•35Úå<‚'5,®NõÆöïÄ,„©z[3].©bf(t,x
0
,x
1
,···,x
n
)'ut
±ω•±Ï,3˜„Banach˜mX¥ïÄÄ–uЕ§(1)ω-±Ïmild)•35.
騹ž¢Ä–uЕ§±Ï¯K,Ù)•35®k\ïÄ.阄Banach˜m
X¥Œ‚5uЕ§
u
0
(t)+Au(t) = f(t,u(t)),t≥0,(2)
©z[4]¥,Ú3A•÷/Žfœ/e,ïá•§(2)ω-±Ï;)•3þe)½n.Šö|
^ŽfŒ+AÚüNS“•{,¼ω-±Ï;)•35Ú•˜5½n,¿3Øb½þ
e)•3^‡e,•§(2)ω-±Ï;)•3•˜5ÚìC5.
¹ž¢Ä–uÐuЕ§
u
0
(t)+Au(t) = f(t,u(t),u(t−τ)),t∈R,(3)
Ù±Ï)•35•˜ŠöïÄ,„©z[5–9].3©z[5]¥,J.Liu3˜„Banach˜mX¥
dЊ¯Kmild)k.5Ú•ªk.5¼•§(3)ω-±Ïmild)•35.©z[6]ïÄ
A•Hilbert˜m½Žfœ/õž¢uЕ§(1)±Ï¯K,ÙA ^)ÛŒ+n؆˜‡¹ž
¢È©Øª¼±Ï)•35†ì?-½5.©z[7,8]?ØX•kSBanach˜m,
T(t)(t≥0) •C
0
-Œ+œ/, ž¢uЕ§(3) ω-±Ïmild )•35.©z[7]ŠöA^üN
S“•{¼•†•Œ±Ïmild)•35.©z[8]$^ŽfŒ+nØ9Leray-Schauder
ØÄ:½n•§(3)±Ïmild)•3•˜5†ìC-½5.©z[9]ÏLé)Žf ±
Ïòÿ,|^ƒ'ØÄ:½n,¼ž¢uЕ§(3)ω-±Ïmild)•35(J.
ØÓuþã©z?ØAÏœ¹,©3˜„Banach˜mXþïÄ÷/Žfœ/eõž¢uÐ
•§±Ï¯K(1).$^SchauderØÄ:½n,¼š‚5‘f÷v˜g O•^‡žõž¢uÐ
•§(1)•35(J.$^BanachØ Nn÷/Žf œ/eõž¢uЕ§(1)±Ï)
•˜5,ž± 3kSBanach˜mþ•›,¦ÙA^•\2•.
©1!‰ÑØ©¤IÎÒ9Ún,1n!‰Ñ•3•˜5½n9Ùy²,1o!‰Ñ
A^~f,1Ê!o(©9Ð".
2.ý•£
X•Banach˜m,A:D(A)⊂X→X•÷/Žf,−A)¤X¥•ê-½)ÛŒ
DOI:10.12677/pm.2022.124075655nØêÆ
‰é
+T(t)(t≥0).A
α
(α≥0)•ŽfA©ê˜,X
α
= (D(A
α
),k·k
α
),=X
α
•A
α
½Â•D(A
α
)U
㔉êk·k
α
= kA
α
k¤Banach˜m.•3~êM≥1,M
α
≥1,δ>0¦
kT(t)k≤Me
−δt
,t≥0,(4)
kA
α
T(t)k≤M
α
t
−α
e
−δt
,t>0.
E•,˜‡Banach˜m,Ù‰ê½Â•k·k
E
,…•30 <α<1¦
X
α
→E→X,
•3~êC>0,k
kxk
E
≤Ckxk
α
,x∈X
α
.
PC
ω
(R,X),C
ω
(R,E),C
ω
(R,X
α
)©O´N±ω•±ÏX,E,X
α
ŠëY¼êU‰êkuk
C
=
max
t∈[0,ω]
ku(t)k,kuk
C
E
=max
t∈[0,ω]
ku(t)k
E
,kuk
C
α
=max
t∈[0,ω]
ku(t)k
α
¤Banach˜m,´„C
ω
(R,X
α
) →
C
ω
(R,E).
h∈C
ω
(R,X),•ÄX¥‚5uЕ§
u
0
(t)+Au(t) = h(t),t∈R,(5)
ω-±Ï)•35.bŒ+T(t)(t≥0)•ê-½,=÷vª(4),dGelfandÌŒ»úª9(4)ª
r(T(ω)) =lim
n→∞
n
p
kT
n
(ω)k≤lim
n→∞
n
√
Me
−δ
= e
−δ
<1.
Ïd,1•ŽfT(ω)KŠ,lI−T(ω)kk._Žf(I−T(ω))
−1
,…
(I−T(ω))
−1
=
∞
X
n=0
T
n
(ω) =
∞
X
n=0
T(nω),(6)
••B,±eP
ρ= kI−T(ω))
−1
k.
h∈C
1
ω
(R,X)ž,dÙ•(J[10],´y•§(5)•3•˜ω-±Ï)
u(t) = (I−T(ω))
−1
Z
t
t−ω
T(t−s)h(s)ds:= (Ph)(t),t∈R,(7)
…T)u∈C
1
ω
(R,X) ∩C
ω
(R,X
1
).阄h∈C
ω
(R,X),d(7)ª(½u=Ph∈C
ω
(R,X),
uؘ½Œ‡,´•§(5)˜«ω-±Ï2Â),¡•ω-±Ïmild)[11].U(7)ª,‚5•
§(5)ω-±Ï)ŽfP: C
ω
(R,X) →C
ω
(R,X)•‚5k.Žf.
DOI:10.12677/pm.2022.124075656nØêÆ
‰é
Ó/,é÷/ŽfuЕ§(1),aqu‚5•§(5),eu∈C
ω
(R,X)÷vÈ©•§
u(t) = (I−T(ω))
−1
Z
t
t−ω
T(t−s)f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))ds,t∈R.(8)
K¡u••§(1)ω-±Ïmild).f:R×X
n+1
→X•C
1
-Nž,Umild)K5[[10],
Chapter3,Theorem1.5],•§(1)ω-±Ïmild)u∈C
1
ω
(R,X)∩C
ω
(R,X
1
)´;).
ÚÚÚnnn1([12]Arzela-Ascoli)8ÜD⊂C(J,X)ƒé;¿©7‡^‡´:D´ÝëY,¿…
é∀t∈J,8ÜD(t)´X¥ƒé;8.
ÚÚÚnnn2([13]BanachØ Nn)X•Ýþ˜m,Q•XþØ N .KQ3X¥k
…•k˜‡ØÄ:.
ÚÚÚnnn3([14]SchauderØÄ:½n)X•Banach˜m,D•X¥k.à48.eQ: D→D
ëY,KQ3D¥–•3˜‡ØÄ:.
3.̇(J
½½½nnn1A:D(A)⊂X→X•X¥÷/Žf,−A)¤X¥•ê-½)ÛŒ+
T(t)(t≥0).f: R×X
n+1
→X'ut±ω•±Ï,÷vLipschitz^‡.…÷ve^‡
(A1)•3~êC
i
>0 (i= 0,1,···,n),¦é?¿x
i
,y
i
∈E(i= 1,···,n),k
kf(t,x
0
,···,x
n
)−f(t,y
0
,···,y
n
)k
α
≤
n
X
i=0
C
i
kx
i
−y
i
k
E
,t∈R,
(A2)CM
α
ρ·
P
n
i=0
C
i
·
ω
1−α
1−α
<1,
K÷/Žfež¢uЕ§(1)•3•˜ω-±Ïmild).
½½½nnn1yyy²²²·‚3C
ω
(R,X)¥½ÂŽfQ
Qu= (P◦F)u,
Ù¥P•(7)ª¤½Â‚5uЕ§±Ï¯K)Žf,F: C
ω
(R,E) →C
ω
(R,X)•Xe½ÂŽ
f
F(u)(t) = f(t,u(t),u(t−τ
1
),···,u(t−τ
n
)),t∈R,u∈C
ω
(R,E).
l
Qu(t) = (I−T(ω))
−1
Z
t
t−ω
T(t−s)f(t,u(t),u(t−τ
1
),···,u(t−τ
n
))ds,t∈R,u∈C
ω
(R,E).
(9)
DOI:10.12677/pm.2022.124075657nØêÆ
‰é
´yQ:C
ω
(R,E)→C
ω
(R,X
α
)→C
ω
(R,E).U(7)ª,Œ•÷/Žfež¢uЕ§(1)ω±
Ïmild)duŽfQØÄ:.
db(A1)9(9)ª•,é∀u,v∈C
ω
(R,X)9t∈R,k
kQu(t)−Qv(t)k
E
≤CkQu(t)−Qv(t)k
α
=Ck(I−T(ω))
−1
Z
t
t−ω
T(t−s)(f(t,u(t),u(t−τ
1
),···,u(t−τ
n
))
−f(t,u(t),u(t−τ
1
),···,u(t−τ
n
)))dsk
α
≤Cρ
Z
t
t−ω
kA
α
T(t−s)k·k(f(t,u(t),u(t−τ
1
),···,u(t−τ
n
))
−f(t,u(t),u(t−τ
1
),···,u(t−τ
n
)))dsk
≤CM
α
ρ
Z
t
t−ω
(t−s)
−α
(C
0
ku(s)−v(s)k
E
+C
1
ku(s−τ
1
)−v(s−τ
1
)k
E
+···+C
1
ku(s−τ
n
)−v(s−τ
n
)k
E
)ds
≤CM
α
ρ·
n
X
i=0
C
i
·
Z
t
t−ω
(t−s)
−α
ds·ku−vk
C
E
=CM
α
ρ·
n
X
i=0
C
i
·
ω
1−α
1−α
·ku−vk
C
E
,
d^‡(A2)Œ
kQu−Qvk
C
E
≤CM
α
ρ·
n
X
i=0
C
i
·
ω
1−α
1−α
·ku−vk
C
E
<ku−vk
C
E
.
ù`²Q:C
ω
(R,E)→C
ω
(R,E)•Ø N.dBanachØ Nn•,ŽfQ3C
ω
(R,E)¥•
3•˜ØÄ:u,TØÄ:•ž¢uЕ§(1)ω-±Ïmild).
½½½nnn2A:D(A)⊂X→X•X¥÷/Žf,−A)¤X¥•ê-½)ÛŒ
+T(t)(t≥0)´;Œ+.e^‡(A2)9
(A3)f:R×E
n+1
→X,é∀t∈R,f(t,·,·,···,·,·):E
n+1
→XëY;é∀x
i
∈E,(i=
0,1,···,n),f(·,x
0
,x
1
,···,x
n
) : R→XrŒÿ,
(A4)•3~êC
i
≥0(i= 0,1,···,n)9M≥0,¦é∀t∈R9x
i
∈E(i= 0,1,···,n),k
kf(t,x
0
,x
1
,···,x
n
)k≤
n
X
i=0
C
i
kx
i
k
E
+M,
é∀R>09x
i
∈E(i= 0,1,···,n),XJkx
i
k
E
≤R,k
kf(t,x
0
,x
1
,···,x
n
)k≤R
n
X
i=0
C
i
+M:= h
R
(t),t∈R,
DOI:10.12677/pm.2022.124075658nØêÆ
‰é
…
liminf
r→∞
1
R
Z
t
t−ω
h
R
(s)
(t−s)
α
ds=
n
X
i=0
C
i
ω
1−α
1−α
>0
¤á,K÷/Žfež¢uЕ§(1)–•3˜‡ω-±Ïmild).
½½½nnn2yyy²²²ŽfQ´½n1y²¥¤½ÂŽf,e¡©oÚy².
1˜Ú,QD
R
⊂D
R
.
é∀R>0,
D
R
= {u∈C
ω
(R,E)|ku(t)k
E
≤R,t∈R},
K∃R>0,¦QD
R
⊂D
R
.ÄK,é∀R>0,t∈R,∃u
R
∈D
R
,¦R<kQu
R
(t)k
E
,k
R<kQu
R
(t)k
E
≤Ck(I−T(ω))
−1
k·
Z
t
t−ω
kA
α
T(t−s)k·kf(s,u
R
(s),u
R
(s−τ
1
),···,u
R
(s−τ
n
))kds
≤CM
α
ρ·
Z
t
t−ω
R
P
n
i=0
C
i
+M
(t−s)
α
ds
=CM
α
ρ·
Z
t
t−ω
h
R
(s)
(t−s)
α
ds,
þªüàÓ¦
1
R
,k
1 ≤CM
α
ρ·
Z
t
t−ω
h
R
(s)
(t−s)
α
·
1
R
≤CM
α
ρ
n
X
i=0
C
i
·
ω
1−α
1−α
,
†b^‡(A2)gñ!∃R>0,¦QD
R
⊂D
R
.
1Ú,Q: D
R
→D
R
ëY.
{u
n
}∈D
R
,÷vlim
n→∞
u
n
= u∈D
R
.db(A3)¥f(t,x
0
,···,x
n
)'ux
i
(i=0,···,n)ë
Y5•
f(t,u
n
(t),u
n
(t−τ
1
),···,u
n
(t−τ
n
)) →f(t,u(t),u(t−τ
1
),···,u(t−τ
n
)),(n→∞),

kf(t,u
n
(t),u
n
(t−τ
1
),···,u
n
(t−τ
n
))−f(t,u(t),u(t−τ
1
),···,u(t−τ
n
))k≤2h
R
(t),t∈R,
¼ê
2h
R
(s)
(t−s)
α
LebesgueŒÈ,dLebesgue››Âñ½nŒ•
DOI:10.12677/pm.2022.124075659nØêÆ
‰é
kQu
n
(t)−Qu(t)k
E
≤CkQu
n
(t)−Qu(t)k
α
≤Ck(I−T(ω))
−1
k·
Z
t
t−ω
kA
α
T(t−s)k·kf(t,u
n
(t),u
n
(t−τ
1
),···,u
n
(t−τ
n
))
−f(t,u(t),u(t−τ
1
),···,u(t−τ
n
))kds
≤CM
α
ρ·
Z
t
t−ω
1
(t−s)
α
·kf(t,u
n
(t),u
n
(t−τ
1
),···,u
n
(t−τ
n
))
−f(t,u(t),u(t−τ
1
),···,u(t−τ
n
))kds
≤CM
α
ρ·
Z
t
t−ω
2h
R
(s)
(t−s)
α
ds
→0,(n→∞).
Ïd,Q: D
R
→D
R
ëY.
1nÚ,H(t) = {Qu(t)|u∈D
R
}ëY.
é∀0 ≤t
1
<t
2
≤ω9∀u∈D
R
,k
Qu(t
2
)−Qu(t
1
) = (I−T(ω))
−1
Z
t
2
t
2
−ω
T(t
2
−s)f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))ds
−(I−T(ω))
−1
Z
t
1
t
1
−ω
T(t
1
−s)f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))ds
= (I−T(ω))
−1
Z
t
1
t
2
−ω
(T(t
2
−s)−T(t
1
−s))f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))ds
−(I−T(ω))
−1
Z
t
2
−ω
t
1
−ω
T(t
1
−s)f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))ds
+(I−T(ω))
−1
Z
t
2
t
1
T(t
2
−s)f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))ds
:= I
1
+I
2
+I
3
,
l
kQu(t
2
)−Qu(t
1
)k
E
≤kI
1
k
E
+kI
2
k
E
+kI
3
k
E
.
•Iyt
2
−t
1
→0ž,kI
i
k→0(i= 1,2,3)=Œ.drëYŒ+5Ÿ,k
kI
1
k
E
≤CkI
1
k
α
≤Ck(I−T(ω))
−1
k·
Z
t
1
t
2
−ω
k(T(t
2
−s)−T(t
1
−s))·f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))k
α
ds
≤CMρ·
Z
t
1
t
2
−ω
k(T(t
2
−t
1
)−I)·f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))k
α
ds
→0,(t
2
−t
1
→0),
DOI:10.12677/pm.2022.124075660nØêÆ
‰é
kI
2
k
E
≤CkI
2
k
α
≤Ck(I−T(ω))
−1
k·
Z
t
2
−ω
t
1
−ω
kA
α
T(t
1
−s)·f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))k
α
ds
≤CM
α
ρ·
Z
t
2
−ω
t
1
−ω
h
R
(s)
(t
1
−s)
α
ds
→0,(t
2
−t
1
→0),
kI
3
k
E
≤CkI
3
k
α
≤Ck(I−T(ω))
−1
k·
Z
t
2
t
1
kA
α
T(t
2
−s)·f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))k
α
ds
≤CM
α
ρ·
Z
t
2
t
1
h
R
(s)
(t
2
−s)
α
ds
→0,(t
2
−t
1
→0).
=kQu(t
2
)−Qu(t
1
)k
E
→0(t
2
−t
1
→0),†u∈D
R
ÀÃ',H(t)ÝëY.
1oÚ,2yH(t) = {Qu(t)|u∈D
R
}Ď;.
é∀t∈R,u∈D
R
,0 <δ<ω.
-
(Q
δ
u)(t)=(I−T(ω))
−1
Z
t−δ
t−ω
T(t−s)f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))ds
=T(δ)(I−T(ω))
−1
Z
t−δ
t−ω
T(t−s−δ)f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))ds,
lk
k(Q
δ
u)(t)k
α
≤k(I−T(ω))
−1
k
Z
t−δ
t−ω
kT(t−s)f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))k
α
ds
≤ρ
Z
t−δ
t−ω
kA
α
T(t−s)k·kf(s,u(s),u(s−τ
1
),···,u(s−τ
n
))k
α
ds
≤M
α
ρ
Z
t−δ
t−ω
h
R
(s)
(t−s)
α
ds:= T<∞,
dŽfT
α
(δ)´X
α
¥;ŽfŒ•,é∀t∈R,(Q
δ
D
R
)(t)3X
α
¥ƒé;.
DOI:10.12677/pm.2022.124075661nØêÆ
‰é
é∀u∈D
R
,t∈R,k
kQu(t)−Q
δ
u(t)k
α
=k(I−T(ω))
−1
Z
t
t−ω
T(t−s)f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))ds
−(I−T(ω))
−1
Z
t−δ
t−ω
T(t−s)f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))dsk
α
=k(I−T(ω))
−1
(
Z
t
t−ω
T(t−s)f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))ds
−
Z
t−δ
t−ω
T(t−s)f(s,u(s),u(s−τ
1
),···,u(s−τ
n
)))dsk
α
≤k(I−T(ω))
−1
k
Z
t
t−δ
kA
α
T(t−s)f(s,u(s),u(s−τ
1
),···,u(s−τ
n
))kds
≤M
α
ρ
Z
t
t−δ
h
R
(s)
(t−s)
α
ds.
lŒ•,H(t)3E¥ƒé;.
nþ¤ã,dArzela-Ascoli½nŒ•,8ÜH3C
ω
(R,E)¥ƒé;,Q:D
R
→D
R
•ëYŽ
f.dëYŽfSchauderØÄ:½n•,Q3D
R
¥–•3˜‡ØÄ:,TØÄ:= •÷/Ž
fež¢uЕ§(1)ω-±Ïmild).
4.A^
~~~÷/Žfœ/ež¢Ô. ‡©•§žm±Ï).
Ω⊂R
N
k.«•,Ù>.∂Ω¿©1w,g∈C
1
(Ω×R
n+1
),g(x,t,ξ
0
,ξ
1
,···,ξ
n
)'ut±ω•
±Ï,τ>0•~ê,•Äõž¢Ô.>НK



∂u
∂t
−∆u= g(x,t,u(x,t),u(x,t−τ
1
),···,u(x,t−τ
n
)),(x,t) ∈Ω×R
u|
∂Ω
= 0,
(10)
žmω-±Ï)•3,k
½½½nnn3ee^‡¤á
(A5)•3M
i
≥0,M≥0(i= 0,1,···,n),g∈C
1
(Ω×R
n+1
),g(x,t,ξ
0
,ξ
1
,···,ξ
n
) 'ut±ω
•±Ï.eg÷v^‡:
|g(x,t,ξ
0
,ξ
1
,···,ξ
n
)|≤
n
X
i=0
M
i
+M,(11)
(A6)CM
α
k(I−T(ω))
−1
k<
1−α
ω
1−α
·
P
n
i=0
M
i
,
DOI:10.12677/pm.2022.124075662nØêÆ
‰é
K÷/Žfœ/ež¢Ô.•§žm±Ï¯K(10)–•3˜‡žmω-±Ïmild).
yyy²²²X= L
p
(Ω)(p>N),ŠX¥ŽfA:
D(A) = W
2,p
(Ω)∩W
1,p
0
(Ω),Au= −∆u.(12)
U[10,Chapter 7,Theorem3.6],−A+λ
1
I)¤X¥Ø )ÛŒ+S
p
(t)(t≥0),Ù¥λ
1
•LaplaceŽ
f−∆3>.^‡u|
∂Ω
=0e1˜AŠ.dS
p
(t)(t≥0)Ø 5,−A)¤Œ+T
p
(t)=
e
−λ
1
t
S
p
(t)÷v•ê-½^‡.UT
p
(t))Û5†Aý)ª;5,T
p
(t)•´X¥;Œ+.½
š‚5Nf: R×X
n+1
→X:
f(t,v
0
,v
1
,···,v
n
) = g(·,t,v
0
(·),v
1
(·),···,v
n
(·)),(13)
Kd(12)ª´„,f:R×X
n+1
→XëY,…÷v^‡(A2).ù,÷/Žfœ/ež¢Ô.
>НK(10)z•X¥÷/Žfež¢uЕ§(1).U½n2,éA•§(10)•3žmω-±
Ïmild)u∈C
ω
(R,X)(3Œ+T
p
(t)¿Âe).
5.o(
3C
0
-Œ+cJe,·‚$^)ÛŽfŒ+nØ!ëYŽfƒ'ØÄ:½nïÄš‚
5‘f÷v˜gO•^‡ž,ž¢uЕ§ω-±Ïmild)•35†•˜5,¿‰ÑA^~
f.Cc5,鹞¢‘uЕ§±Ï)ïĤJ´a,¹ž¢‘óÀuЕ§±Ï)ïÄ
,¹ž¢‘óÀuЕ§±Ï)ïÄkX2•A^µÚy¢¿Â.
ë•©z
[1]Hale,J.andLunel,S.(1993)IntroductiontoFunctionalDifferentialEquations.Springer-
Verlag,Berlin.https://doi.org/10.1007/978-1-4612-4342-71
[2]Wu,J.(1996)TheoryandApplicationofPartialFunctionalDifferentialEquations.Springer-
Verlag,NewYork.
[3]Vejvoda,O.(1982)PartialDifferentialEquations:Time-PeriodicSolutions.MartinusNijhoff
Publishers,Boston.https://doi.org/10.1007/978-94-009-7672-6
[4]Ú.÷/ŽfuЕ§±Ï)9ìC5[D]:[a¬Æ Ø©].=²:Ü“‰ŒÆ,2008.
[5]Liu, J.(1998) Boundedand Periodic Solutionsof FiniteDelay Evolution Equations.Nonlinear
Analysis,34,101-111.https://doi.org/10.1016/S0362-546X(97)00606-8
DOI:10.12677/pm.2022.124075663nØêÆ
‰é
[6]Li,Y.(2011)ExistenceandAsymptotic Stability ofPeriodicSolutionfor Evolution Equations
withDelays.JournalofFunctionalAnalysis,261,1309-1324.
https://doi.org/10.1016/j.jfa.2011.05.001
[7]Li, Q. (2018)Monotone Iterative Technique forDelayed Evolution EquationPeriodic Problems
inBanachSpaces.PureandAppliedMathematicsQuarterly,14,393-417.
https://doi.org/10.4310/PAMQ.2018.v14.n2.a4
[8]Li,Q.andLi,Y.(2021)PositivePeriodicSolutionsforAbstractEvolutionEquationswith
Delay.Positivity,25,379-397.https://doi.org/10.1007/s11117-020-00768-4
[9]or.ž¢uЕ§±Ïmild)•35[J].ìÜŒÆÆ(g,‰Æ‡),2018,41(2):287-294.
[10]Pazy,A.(1983)SemigroupsofLinearOperatorsandApplicationstoPartialDifferentialE-
quations.Springer-Verlag,Berlin.
[11]o[Œ.ÑÝÔ.C©>НK±Ï)[J].A^êÆ,1994,7(3):287-293.
[12]HŒ.š‚5©Û¥ŒS•{[M].LH:ìÀ‰ÆEâч,2000.
[13]g1,îm.¢C¼ê†A^•¼©ÛÄ:[M].þ°:þ°‰ÆEâч,1987.
[14]HŒ.š‚5•¼©Û[M].13‡.®:p˜Ñ‡,2015.
DOI:10.12677/pm.2022.124075664nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.