设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2022,11(5),2500-2506
PublishedOnlineMay2022inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2022.115264
äk~êݘÇ -Ó .
½5©Û
ÆÆÆZZZ
ìÀà’ŒÆ&E‰Æ†ó§Æ§ìÀS
ÂvFϵ2022c411F¶¹^Fϵ2022c56F¶uÙFϵ2022c517F
Á‡
©ïÄ äk~êݘÇ -Ó .½55Ÿ§ ÏL‚5Cq‰Ñ²ï:-½¿
©^‡§¿^Dulac¼êÑÃ4•‚(Ø"ÏLE‚•¸.‚‰Ñ4•‚•3^‡"•
^êŠ[y(Ø(5"
'…c
²ï:§•35§•˜5§4•‚
QualitativeAnalysisofa
Prey-PredatorModelwith
aConstantInvestmentRate
ofPreySpecies
XueleiWang
CollegeofInformationScienceandEngineering,ShandongAgriculturalUniversity,Tai’an
Shandong
Received:Apr.11
th
,2022;accepted:May6
th
,2022;published:May17
th
,2022
©ÙÚ^:ÆZ. äk~êݘÇ -Ó .½5©Û[J].A^êÆ?Ð,2022,11(5):2500-2506.
DOI:10.12677/aam.2022.115264
ÆZ
Abstract
Inthispaper,thequalitativepropertiesofthepredator-preymodelwithconstant
investmentratearestudied.Thesufficientconditionsforthestabilityofequilibrium
pointsareobtainedbylinearizationmethod;andtheconclusionfornolimitcycle
isprovedbyDulacfunction;byconstructingboundarylines,theconditionforthe
existenceofalimitcycleisgained.Finally,numericalsimulationisusedtoverifythe
correctnessoftheconclusion.
Keywords
EquilibriumPoint,Existence,Uniqueness,LimitCycle
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
éu äk~êݘÇ -Ó XÚïÄ,@ÏóŠk[1,2],©z[1]•[?Ø
.
(
˙x= bx
2
(1−
x
k
)−βxy+h,
˙y= −cy+dxy.
²ï:9 4•‚•35Ú5.¿é•˜„.©|•3^‡.©z[2]éÓ ö
kݘÇXÚ?1½5©Û.©z[3–5]©O?ØØÓ.e äk~êݘÇÛ5Ÿ.
Ù¥©z[3]•Ä «+äk~êݘDžk—Ý›‘holling-IV.Ó XÚ
(
˙x= x(g(x)−
y
β+x
2
)+h,
˙y= y(−a−by+
cx
β+x
2
).
½51•.©z[6–8]?Øü«+©Ok~ݘÇÚ~¼Ç -Ó XÚ½55Ÿ.þã
óЧ.mà¼êŒÑ´´²¡)Û½z{´)ÛXÚ§©ïÄ.z{±
Ø´²¡)Û.?Ø(J3u.z{ÚpÛ:a.©Û,XÚÑy"¢Ü½"A
Šž,Ù-½5ØUd‚5CqXÚ-½5Ñ.I‡?˜Ú‰C†ä.
DOI:10.12677/aam.2022.1152642501A^êÆ?Ð
ÆZ
©•ÄäkõU‡A… äk~êݘÇ -Ó .





˙x= x(a−bx
1
2
)−ycx
1
2
+h,
˙y= y(−d+cex
1
2
).
(1)
Ù¥a,b,c,d,e,hÑ´Œu0~ê.
æC†¯x= x
1
2
,¯y=
c
a
y,τ=
a
2
t(••Bå„§·‚Eæ^ÎÒx,y,t),.(1)Œz•





˙x= x(1−
b
a
x)−y+
h
ax
,
˙y=¯ry(x−¯m),
(2)
Ù¥¯r=
2ce
a
,¯m=
d
ce
.
•~ ëê§2-˜x=
b
a
x,˜y=
b
a
y,C†§·‚E,^ÎÒx,yL«˜x,˜y..(2)Œ±{z•
XedXÚ





˙x= x(1−x)−y+
I
x
= P(x,y),
˙y= ry(x−m) = Q(x,y),
(3)
Ù¥I=
bh
a
3
,r=
a¯r
b
,m=
b¯m
a
.
•Ä¢S)¿Â,=3R
+
2
= {(x,y)|x>0,y>0}S?Ø,¿PR
∗
2
= {(x,y)|x>0,y≥0}.
©©¤n‡Ü©µ1˜Ü©^‚5Cq•{?زï:9Ù5¶1Ü©^ƒ²¡©Û{
‰Ñ4•‚•35ÚØ•35^‡¶1nÜ©êŠ[,y(Ø(5.
2.²ï:9Ù5
)•§|





P(x,y) = 0,
Q(x,y) = 0,
(4)
dQ(x,y)= 0,y= 0½x= m.ry=0“\P(x,y)=0,x
2
(x−1)= I,x
2
(x−1)= I
•k˜‡Š,•k,Kk>1.rx= m“\P(x,y)=0,y=m(1−m)+
I
m
,P•y
∗
.PX
Ú(3)²ï:•E
1
(k,0),E
2
(m,y
∗
).
lP(x,y)¥)Ñy,P•F(x):F(x)=x(1−x)+
I
x
,F
0
(x)=
x
2
−2x
3
−I
x
2
H
1
(x)
x
2
.dH
0
1
(x)=
−6x(x−
1
3
),x=
1
3
•H
1
(x)•˜7:.H
1
(
1
3
) =
1
27
−I,©ÛŒ•:
I>
1
27
ž,F(x)î‚üN4~.
I=
1
27
ž,F(x) üN4~;0<I<
1
27
ž,F(x) kü‡7:,P•m
1
,m
2
,Kk0<m
1
<
1
3
<m
2
.3«m(0,m
1
)S,F(x) î‚üN4~§3«m(m
1
,m
2
)S,F(x) î‚üN4O§3«m
(m
2
+∞)S,F(x)üN4~.ÛÜ4ŠF(m
1
) >0,lim
x→0
+
F(x) = +∞,lim
x→+∞
F(x) = −∞.
nþŒ•§0 <m<kž,E
2
(m,y
∗
)´•˜²ï:.XÚ(3)JacobiÝ•
DOI:10.12677/aam.2022.1152642502A^êÆ?Ð
ÆZ
J=



1−2x−
I
x
2
−1
ryr(x−m)



.(5)
½n1(i)m>kž,E
1
(k,0)´-½(:¶0 <m<kž,E
1
(k,0)´Q:,m= kž,
E
1
(k,0)´Q(:.
(ii)0 <m<kž,E
2
(m,y
∗
)´•˜²ï:.
œ/1I≥
1
27
ž,E
2
(m,y
∗
)´-½:½(:.
œ/230<I<
1
27
^‡e§em
2
(1 −2m)<I,KE
2
(m,y
∗
)´-½:½(:.e
m
2
(1−2m) = I,KE
2
(m,y
∗
)´¥%.em
2
(1−2m) >I,KE
2
(m,y
∗
)´Ø-½:½(:.
y²(i)k©Û²ï:E
1
(k,0)Û:a.9-½5
•Äk
2
(k−1) = I,E
1
(k,0) éAJacobiÝ
J
E
1
(k,0)
=



1−2k−
I
k
2
−1
0r(k−m)



=



2−3k−1
0r(k−m)



m>k ž,JacobiÝkü‡KAŠ,¤±E
1
(k,0)´-½(:¶0<m<kž,Jacobi
Ýkü‡ÉÒAŠ,ÏdE
1
(k,0)´Q:.
m= kž,k˜‡KAŠ,k˜‡"AŠ,rXÚ(3)²ï:E
1
(k,0) ²£‹I:?,
XÚ



˙x= (2−3k)x−y+(−1+
I
k
3
)x
2
+p
3
(x,y),
˙y= rxy,
(6)
Ù¥p
3
(x,y)´gêØ$ung)Û¼ê.æ^šòz‚5O†





x= ξ+η,
y= (2−3k)ξ,
2-dτ= −(3k−2)dt,ÒŒ±rXÚ(7)=z¤©z[9]½n7.1/ª













˙
ξ= −
r
3k−2
ξ
2
−
r
3k−2
ξη= ψ(ξ,η),
˙η= η+
1
3k−2
(1−
I
k
3
+r)ξ
2
+
1
3k−2
(2−
2I
k
3
+r)ξη
+
1
3k−2
(1−
I
k
3
+r)η
2
+p
3
(ξ,η) = Φ(ξ,η),
(7)
•lΦ(ξ,η) ¥)Ñη,-η=b
2
ξ
2
+b
3
ξ
3
+···,'Óg‘Xê§b
2
=−
1
3k−2
(r+
1
k
),“\
ψ(ξ,η),)m= 2,a
m
= −
r
3k−2
<0,d½n7.1œ/(iii)•,E
1
(k,0)´Q(:.
(ii)©Û²ï:E
2
(m,y
∗
)Û:a.9-½5
DOI:10.12677/aam.2022.1152642503A^êÆ?Ð
ÆZ
5¿y
∗
= m(1−m)+
I
m
,ÙéAJacobiÝ•
J
E
1
(k,0)
=
1−2m−
I
m
2
−1
ry
∗
0
!
=
1−2m−
I
m
2
−1
r[m(1−m)+
I
m
]0
!
ÙAŠ•λ
1
,λ
2
,Kλ
1
+λ
2
= 1−2m−
I
m
2
= F
0
(m),λ
1
·λ
2
= r[m(1−m)+
I
m
] >0.
œ/1d½n1c¡©ÛŒ•§I≥
1
27
ž§ðkF
0
(m)<0,•kü‡K¢AЧ½
ü‡¢Üu"ÝEЧcö=´-½(:§öÒ´-½:.
œ/20 <I<
1
27
…F
0
(m) >0ž,=m
2
(1−2m) >Iž,kü‡¢AЧ½ü‡¢
ÜŒu"ÝEЧcö=´Ø-½(:§öÒ´Ø-½:.
0<I<
1
27
…F
0
(m)<0 ž,=m
2
(1−2m)<Iž,kü‡K¢AЧ½ü‡¢Ü
u"ÝEЧc ö=´-½(:§öÒ´-½:.0<I<
1
27
…F
0
(m)=0ž,=
m
2
(1−2m) = Iž,ü‡¢Ü•"ÝEŠ,éAÛ:a.•¥%.
3.4•‚•35
½n2(i)m>kž,XÚ(3)31˜••SÃ4•‚,E
1
(k,0)´-½…´Û-½.
(ii)30 <m<k^‡e,I≥
1
27
ž,XÚ(3) 31˜••SÃ4 •‚,E
2
(m,y
∗
)´-½
…´Û-½.
y²(i)m>kž,XÚ(3)31˜••SÃ²ï:,
dy
dt
|
x=0
= −rym<0,¤±ly
¶?Ñu;‚´•e,y¶´Ãƒ‚ã,… Ùþòï:.x¶´;‚§¤±31˜–•SÃ
ÛÉ4;Ú4;‚.²¡þ;‚w4 •8•U´²ï:!4;‚!ÛÉ4;‚.ÏdlR
∗
2
SÑu;‚w4•8•U´Û:.d½n1œ/(i)•,E
1
(k,0)´R
∗
2
S•˜²ï:,…´-
½,¤±´Û-½.
(ii)EDulac¼êB(x,y) = y
−1
,KD
∂(BP)
∂x
+
∂(BQ)
∂Y
=
1
y
F
0
(x) ≤0, …=3x=
1
3
ž,D= 0,
dBendixson-DulacO{[10]•§31˜–•S§Ã4•‚.(ܽn1•,E
2
(m,y
∗
)´-½,
Ïd´Û-½.
kŒݘÇ,…Ó «+g ,kÇu,˜‡êŠž,ü«+•Ï-½3E
2
(m,y
∗
)
NC,vk±Ïy–.
½n330 <m<k^‡e,0 <I<
1
27
…m
2
(1−2m) >Iž,XÚ(3) 31˜••S
•3-½4•‚.
y²E
2
(m,y
∗
)´Ø-½:½(:,ŒŠ‚•¸.‚.
e¡E‚•¸.‚.
α=max
m≤x≤k
{F(x)},x=ε
0
,Ù¥ε
0
´¿©ê§'XŒ•0.0001§x¶,†
‚x= k,-‚L
1
:˙x= α−y,˙y= ry(x−m);‚§Ð©:•A(k,α),ª:•B(m,β)˜ã,Ù
¥β•;‚††‚x=m:p‹I¶-‚L
2
:y=β,PL
2
†x=ε
0
:•C(ε
0
,β).‚
•¸.‚=•OE
1
ABCO.
DOI:10.12677/aam.2022.1152642504A^êÆ?Ð
ÆZ
Ï
dx
dt
|
x=ε
0
>0,
dy
dt
|
x=ε
0
= −ry(ε
0
−m)<0,¤±lx= ε
0
?Ñu;‚ ´•me?\‚•
¶x¶´;‚;Ï
dx
dt
|
x=k
= −y<0,
dy
dt
|
x=k
= ry(k−m)>0,g†‚x=kÑu;‚,´lm
e•?\«•;Ï˙x|
(3)
<˙x|
L
1
<0,˙y|
(3)
=˙x|
L
1
>0.lL
1
Ñu;‚´lme•?\† þ•
¶Ï˙y|
L
2
<0,ÏdgL
2
Ñu;‚´gþe?\‚•.dpoincare-Bendixson½n•,3‚
•SÜk-½4•‚.
4.êŠ[
·‚©Oé½n2Ú½n3¥ëêäNêŠ,ÏLmatlab^‡5u(Ø(5.
ã1(a):m>kœ/§I= 4,r= 1,m= 3,²OŽk= 2,éAR
∗
2
²ï:•kE
1
(2,0)§
džE
1
(2,0)´Û-½(:.Ã4•‚.éA½n2¥œ/(i).
ã1(b):30<m<k^‡e§0<I<
1
27
…m
2
(1 −2m)>Iœ/§I=0.02,r=
1,m= 0.25,éA²ï:E
1
(1.0193,0) ´Q:§E
2
(0.25,0.2675) ´Ø-½:½(:.•34
•‚.éA½n3¥œ/.
Figure1.Trajectorywithdifferentparametervalues
ã1.ØÓëêŠe;‚
lã1(a)Œ±wÑ,Ó ög,kÇŒu˜‡êŠž,•ª¬«ý. •ª-½3ê
ŠkNC.ù†.)ÔÆ¿Â˜—.
lã1(b)Œ±wÑ,Ó ög,kÇÚ ݘÇ3˜‡Ün‰ŒSž(=½n3¥
^‡÷v), †Ó öêþ-½34•‚¿©•S§)±Ï.
5.(Ø
ïÄäkݘ½Â¼ -Ó ö.é)XÚoÚ±YuÐäk-‡nØdŠÚ
¢S•¿Â.Ïd©é äk~êݘÇü«+.?1©Û,A^‚5z•{,?زï
DOI:10.12677/aam.2022.1152642505A^êÆ?Ð
ÆZ
:a.9Ù-½5,éu"AŠœ/,æ^?êÐmr²ï:£‹I:?1?Ø,¿æ^
·C†©ÛÙa..éu4•‚,©æ^E‚•¸.‚•ªäÙ•35,4•‚•3
^‡•Ò´ü«+XÚ)±Ï^‡.ÏL·ÀëêÚ˜Ð©^‡,$^Matlab±›
ƒA;‚ã§?˜Úy(Ø(5.
ë•©z
[1]º§u,•=š. «+äk~êݘÇÓ - .©|¯K[J].êÆ,“,1994(4):
541-548.
[2]oDJ, æè. ˜aÓ ökݘÇXÚ½5©Û[J]. ÜSÏŒÆÆ, 1995(8):117-122.
[3]˜ï. äk~êݘÇHolling-IVaÓ XÚ½5©Û[J].ò>ŒÆÆ(g,‰Æ
‡),2018,44(3):213-216+228.
[4]˜ï. ä~ݘÇÓ - .½5©Û[J].wgŒÆÆ(g,‰Æ‡),2019,
40(2):97-101.
[5]˜ï.ä~êݘÇÓ ö- .½5©Û[J].ò>ŒÆÆ(g,‰Æ‡),2017,
43(4):339-343.
[6]ù?û,Ü‹,´CC.˜a äkݘÇÚÓ öäkÓ¼Çšg£Ó XÚÛ©
Û[J].êÆ¢‚†@£,2016,46(7):288-292.
[7]ܹ,p©#,±s.ü«+©Ok~ݘÇÚ~¼ÇHolling-IVaÓ XÚ[J].3Œ Æ
Æ(nƇ),2011,49(1):11-15.
[8]Si,C.B.(2015)TheExistenceofThreeLimitCyclesforLotka-VolterraSystemswithTwo
SpeciesBoth HavingaConstantHarvestRateorInvestmentRate.ProceedingsoftheInstitu-
tionofMechanicalEngineers,PartD:JournalofAutomobileEngineering,226,410-418.
[9]Ü¥,¶Ó;,‘©E,ÂU.‡©•§½5nØ[M].®:‰ÆÑ‡,1985:130-136.
[10]ê•,±Âó.~‡©•§½5†-½5•{[M].®:‰ÆÑ‡,2001:158-160.
DOI:10.12677/aam.2022.1152642506A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.