设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(5),687-693
PublishedOnlineMay2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.125079
/ªnÝ‚þ{Ln|
ùùù[[[WWW§§§¡¡¡ÿÿÿ
∗
Ü“‰ŒÆêƆÚOÆ§[‹=²
ÂvFϵ2022c411F¶¹^Fϵ2022c512F¶uÙFϵ2022c520F
Á‡
©ïÄ/ªnÝ‚þ{Ln|¯K.T=
A0
UB
!
´/ªnÝ‚,Ù¥A
ÚB´‚,U´†B-mA-V.©|^A-þ()¢D{Ln|(C
1
,C
2
,C
3
)ÚB-
þ()¢D{Ln|(D
1
,D
2
,D
3
)E/ªnÝ‚Tþ()¢D{L
n|(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
).
'…c
/ªnÝ‚§{Lé§{Ln|
CotorsionTriplesoverFormalTriangular
MatrixRings
JialeCao,XiaoyanYang
∗
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Apr.11
th
,2022;accepted:May12
th
,2022;published:May20
th
,2022
Abstract
Thispaperconsidercotorsiontriplesoverformaltriangularmatrixrings.LetT=
∗ÏÕŠö"
©ÙÚ^:ù[W,¡ÿ./ªnÝ‚þ{Ln|[J].nØêÆ,2022,12(5):687-693.
DOI:10.12677/pm.2022.125079
ù[W§¡ÿ
A0
UB
!
beformaltriangularmatrixring,whereAandBaretworingsandUisa
(B,A)-bimodule.Inthispaper,weuseacomplete(resp.perfect)hereditarycotorsion
triple(C
1
,C
2
,C
3
)overAandacomplete(resp.perfect)hereditarycotorsiontriple
(D
1
,D
2
,D
3
)overBtoconstructacomplete(resp.perfect)hereditarycotorsiontriple
(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)overT.
Keywords
FormalTriangularMatrixRing,CotorsionPair,CotorsionTriple
Copyright
c
2022byauthor(s)andHansPublishersInc.
ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
{LnØdSalce3Abel+‰ÆÚCqnØïÄ¥JÑ,d{LnØ2•ï
Ä,Ù¥{Lé53ƒéÓN“ êïÄ¥å5–'-‡Š^.Estrada3©z[1]¥|
^quiverL«•{ïÄ{LéÚ{Ln|ƒméX,3ù‰L§¥,¦‚uyAbel‰
Æ¥˜‡#A,•3¢D{Ln|ž,3Abel‰Æ¥ÒkvÝÚSé–.
2019c,Ren3©z[2]¥‰Ñ{Ln|ƒ'A^,¿d˜‡{Ln|©Op˜‡
ÝÚS.(,Óžùü«.(ƒmƒAd'X.
/ªnÝ‚´˜a-‡š†‚,Cc5,NõÆöé/ªnÝ‚?1ïÄ.
C
1
ÚC
2
´ü‡†A-a,D
1
ÚD
2
´ü‡†B-a.2020c,Mao3©z[3]¥ïÄ/ªn
Ý‚þ{Lé,y²(1)eé?¿i≥1,kTor
A
i
(U,C
1
)=0…Tor
A
i
(U,
⊥
C
2
)=0,K(C
1
,C
2
)
Ú(D
1
,D
2
)´{Lé…=(B
C
1
D
1
,U
C
2
D
2
)´{Lé.(2)eé?¿i≥1,kExt
i
B
(U,D
⊥
1
)=0…
Ext
i
B
(U,D
2
)=0,K(C
1
,C
2
)Ú(D
1
,D
2
)´{Lé…=(U
C
1
D
1
,J
C
2
D
2
)´{Lé.Óž|^A-ÚB
-þAÏý•äaÚýCXa‰ÑT-þAÏý•äaÚýCXa,¿…‰Ñ(B
C
1
D
1
,U
C
2
D
2
)
Ú(U
C
1
D
1
,J
C
2
D
2
)•T-þ¢D{Lé¿‡^‡.2021c,XuÚHu3©z[4]¥|^Mao3
nÝ‚þEü‡{Lé(B
C
1
D
1
,U
C
2
D
2
)Ú(U
C
1
D
1
,J
C
2
D
2
)E/ªnÝ‚þ{Ln|
(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
).
ÉþãïÄéu,©?˜ÚïÄ{Ln|(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)5Ÿ.Äk3Ún1¥
|^A-þ{Ln|(C
1
,C
2
,C
3
)ÚB-þ{Ln|(D
1
,D
2
,D
3
)E/ªnÝ‚T
DOI:10.12677/pm.2022.125079688nØêÆ
ù[W§¡ÿ
þ{Ln|(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
);Ùg3½n3¥•Ä{Ln|(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)¢D
5,3íØ4¥•Ä{Ln|(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)¢D5;•2‰Ñk'{Ln|
(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)A‡íØ.
2.ý•£
T=
A0
UB
!
´/ªnÝ‚,A,B´‚…U´(B,A)-V.?¿†T-þŒ^n
|M=
M
1
M
2
!
ϕ
M
5L«,Ù¥M
1
´†A-,M
2
´†B-,ϕ
M
:U⊗
A
M
1
→M
2
´B-Ó.?
¿ü‡†T-M=
M
1
M
2
!
ϕ
M
ÚN=
N
1
N
2
!
ϕ
N
ƒm•
f
1
f
2
!
,Ù¥f
1
:M
1
→N
1
´A-
Ó,f
2
:M
2
→N
2
´B-Ó¿…÷vXe†ã:
U⊗
A
M
1
ϕ
M

1⊗f
1
//
U⊗
A
N
1
ϕ
N

M
2
f
2
//
N
2
‰½T-M=
M
1
M
2
!
ϕ
M
,k
g
ϕ
M
:M
1
→Hom
B
(U,M
2
),Ù¥
g
ϕ
M
(x)(u)=ϕ
M
(u⊗x),x∈M
1
,
u∈U.
½Â1[3]C´˜‡†A-a…D´˜‡†B-a.½ÂXen‡†T-a:
U
C
D
={
M
1
M
2
!
ϕ
M
:M
1
∈C,M
2
∈D}.
B
C
D
={
M
1
M
2
!
ϕ
M
:M
1
∈C,M
2
/im(ϕ
M
)∈D,ϕ
M
´ü}.
J
C
D
={
M
1
M
2
!
g
ϕ
M
:ker(
g
ϕ
M
)∈C,M
2
∈D,
g
ϕ
M
´÷}.
½Â2[5]A´˜‡kvÝÚSé–Abel‰Æ,¡(X,Y)•A¥{Lé,XJ
÷vX=
⊥
Y…Y=X
⊥
,Ù¥
⊥
Y={X|Ext
1
A
(X,Y)=0,∀Y∈Y}…X
⊥
={Y|Ext
1
A
(X,Y)=
0,∀X∈X}.
¡{Lé(X,Y)´,e÷ve¡ü‡^‡¥˜‡^‡:
1)é?¿R-M,•3Ü0
//
M
//
B
//
A
//
0,Ù¥A∈X,B∈Y.
2)é?¿R-M,•3Ü0
//
B
0
//
A
0
//
M
//
0,Ù¥A
0
∈X,B
0
∈Y.
DOI:10.12677/pm.2022.125079689nØêÆ
ù[W§¡ÿ
¡{Lé(X,Y)´¢D,eé?¿i ≥1,Ext
i
A
(X,Y)=0,Ù¥X∈X,Y∈Y.
du,e0
//
X
3
//
X
2
//
X
1
//
0´Ü,X
2
,X
1
∈X,KX
3
∈X;½du,e
0
//
Y
1
//
Y
2
//
Y
3
//
0´Ü,Y
1
,Y
2
∈Y,KY
3
∈Y.
¡{Lé(X,Y)´,eX´CXa…Y´•äa.
½Â3[2][6]¡Abel‰ÆA¥n|(X,Z,Y)•{Ln|,XJ(X,Z)Ú(Z,Y)Ñ•{
Lé.¡{Ln|(X,Z,Y)´(¢D),XJ(X,Z)Ú(Z,Y)´ü‡(¢D){Lé.
¡A÷f‰ÆC´thick,eC'u†Úµ4…÷v:éA¥?¿Ü
0
//
A
//
B
//
C
//
0,
eA,B,C¥kü‡3C¥,K1n‡•3C¥.
½Â4[3]R´‚…C´˜‡†R-a.
1)¡C´Œ),eC'u*ܵ4,'u÷Óص4…C•¹¤kÝ†R-.
2)¡C´{Œ),eC'u*ܵ4,'uüÓ{ص4…C•¹¤kS†R-.
½Â5[5]R•‚,‰½aX,é†R-M,k±en‡^‡:
1)•3φ:M→X,Ù¥X∈X:
2)é?¿X
0
∈X,?¿φ
0
:M→X
0
Ñ•3f:X→X
0
,¦φ
0
=fφ;
3)XJf:X→X,¦φ=fφ,Kf•gÓ.
1)2)÷vž,¡φ:M→X•MX-ý•ä;3)•÷vž,¡φ:M→X•MX-
•ä.éó/,Œ½ÂX-ýCXÚX-CX.
¡üα:M→X,Ù¥X∈X•MAÏX-ý•ä,eé?¿X
0
∈X,k
Ext
1
R
(coker(α),X
0
)=0.éó/,Œ½ÂAÏX-ýCX.
3.̇(J
Ún1C
1
,C
2
,C
3
´n‡†A-a,D
1
,D
2
,D
3
´n‡†B- a.bé?¿i≥1,k
Tor
A
i
(U,C
1
)=0=Tor
A
i
(U,
⊥
C
2
)…Ext
i
B
(U,D
2
⊥
)=0=Ext
i
B
(U,D
3
).K(C
1
,C
2
,C
3
)Ú(D
1
,D
2
,D
3
)
´{Ln|…=(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)´T-þ{Ln|.
y²:‡y²(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)•T-þ{Ln|,•Iy(B
C
1
D
1
,U
C
2
D
2
)Ú(U
C
2
D
2
,J
C
3
D
3
)•T
-þü‡{Lé.Ï•(C
1
,C
2
,C
3
)´A-þ{Ln|,(D
1
,D
2
,D
3
)´B-þ{Ln
|,¤±(C
1
,C
2
)Ú(C
2
,C
3
)•A-þ{Lé,(D
1
,D
2
)Ú(D
2
,D
3
)•B-þ{Lé.d[3][½
DOI:10.12677/pm.2022.125079690nØêÆ
ù[W§¡ÿ
n4.4(1)]9b•,(B
C
1
D
1
,U
C
2
D
2
)•T-þ{Lé.2d[3][½n4.4(2)]9b•,(U
C
2
D
2
,J
C
3
D
3
)•T-
þ{Lé.Ïd(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)•T-þ{Ln|.
‡ƒ,e(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)•T-þ{Ln|,K(B
C
1
D
1
,U
C
2
D
2
)Ú(U
C
2
D
2
,J
C
3
D
3
)•T-þü‡
{Lé.2d[3][½n4.4]9b•,(C
1
,C
2
),(D
1
,D
2
)Ú(C
2
,C
3
),(D
2
,D
3
)©O•A-ÚB-þ
{Lé,=(C
1
,C
2
,C
3
)•A-þ{Ln|…(D
1
,D
2
,D
3
)•B-þ{Ln|.
Ún2[3]C´˜‡†A-a…D´˜‡†B-a.
1)bU
C
D
´{Œ)a…é?¿i≥1,kTor
A
i
(U,
⊥
C)=0.eCÚD´AÏý•äa,K
U
C
D
´˜‡AÏý•äa.eU⊗
A
⊥
C⊆
⊥
D,K_·K¤á.
2)bU
C
D
´Œ)a…é?¿i≥1,kExt
i
B
(U,D
⊥
)=0.eCÚD´AÏýCXa,KU
C
D
´˜‡AÏýCXa.eHom
B
(U,D
⊥
)⊆C
⊥
,K_·K¤á.
e¡´©̇(J.
½n3C
1
,C
2
,C
3
´n‡†A-a,D
1
,D
2
,D
3
´n‡†B-a.bé?¿i≥1,k
Tor
A
i
(U,C
1
)=0=Ext
i
B
(U,D
3
).e(C
1
,C
2
,C
3
)´A-þ¢D{Ln|,(D
1
,D
2
,D
3
)´
B-þ¢D{Ln|,K(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)´T-þ¢D{Ln|._·K¤á
^‡•é?¿i≥1,Tor
A
i
(U,C
1
)=Tor
A
i
(U,
⊥
C
2
)=0=Ext
i
B
(U,D
⊥
2
)=Ext
i
B
(U,D
3
)=0…
U⊗
A
⊥
C
2
⊆
⊥
D
2
,Hom
B
(U,D
⊥
2
)⊆C
⊥
2
.
y²:dÚn1•,(B
C
1
D
1
,U
C
2
D
2
)Ú(U
C
2
D
2
,J
C
3
D
3
)•T-þ{Lé.Ï•(C
1
,C
2
,C
3
)´A-þ
¢D{Ln|…Tor
A
i
(U,C
1
)=0=Tor
A
i
(U,
⊥
C
2
),¤±dÚn2(1)•,U
C
2
D
2
´AÏý•
äa,¤±(B
C
1
D
1
,U
C
2
D
2
)´{Lé.qÏ•(D
1
,D
2
,D
3
)´B-þ¢D{Ln|…
Ext
i
B
(U,D
⊥
2
)=0=Ext
i
B
(U,D
3
),¤±dÚn2(2)•,U
C
2
D
2
´AÏýCXa,¤±(U
C
2
D
2
,J
C
3
D
3
)´
{Lé.=(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)´T-þ{Ln|.Ï•C
2
,D
2
´{Œ),¤±U
C
2
D
2
´{Œ).u´(B
C
1
D
1
,U
C
2
D
2
)´T-þ¢D{Lé;Ï•C
2
,D
2
´Œ),¤±U
C
2
D
2
´Œ).u
´(U
C
2
D
2
,J
C
3
D
3
)´T-þ¢D{Lé.Ïd(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)´T-þ¢D{Ln|.
‡ƒ,e(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)´T-þ¢D{Ln|,K(B
C
1
D
1
,U
C
2
D
2
)Ú(U
C
2
D
2
,J
C
3
D
3
)´T
-þ¢D{Lé.d^‡ÚÚn1Œ,(C
1
,C
2
,C
3
)•A-þ{Ln|…(D
1
,D
2
,D
3
)
•B-þ{Ln|.qÏ•U⊗
A
⊥
C
2
⊆
⊥
D
2
…Hom
B
(U,D
⊥
2
)⊆C
⊥
2
,¤±dÚn2Ú[3][½
n5.6],Œ(C
1
,C
2
,C
3
)´A-þ¢D{Ln|,(D
1
,D
2
,D
3
)´B-þ¢D{Ln
|.
aqu½n3Œ•ÄT-þ¢D{Ln|(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
).
íØ4C
1
,C
2
,C
3
´n‡†A-a,D
1
,D
2
,D
3
´n‡†B-a.bé?¿i≥1,k
Tor
A
i
(U,C
1
)=0=Tor
A
i
(U,
⊥
C
2
)…Ext
i
B
(U,D
2
⊥
)=0=Ext
i
B
(U,D
3
).e(C
1
,C
2
,C
3
)´A-þ
¢D{Ln|,(D
1
,D
2
,D
3
)´B-þ¢D{Ln|…C
1
,C
2
ÚD
1
,D
2
'u
•4•µ4,K(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)´T-þ¢D{Ln|.
y²:aqu½n3y²Œ,(B
C
1
D
1
,U
C
2
D
2
)Ú(U
C
2
D
2
,J
C
3
D
3
)´T-þü‡¢D{Lé.Ï•
C
1
ÚD
1
'u•4•µ4,¤±d[3][íØ5.8(1)]•,(B
C
1
D
1
,U
C
2
D
2
)´T-þ¢D{Lé.Ï
DOI:10.12677/pm.2022.125079691nØêÆ
ù[W§¡ÿ
•C
2
ÚD
2
'u•4•µ4,¤±d[3][íØ5.8(2)]•,(U
C
2
D
2
,J
C
3
D
3
)´T-þ¢D{Lé.
u´(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)´T-þ¢D{Ln|.
©ïÄé–þ•‚,•Ä–“ê(,J‰ÑäN•ý~f,•`²©
•{k5,Œ‰ÑT-þ{Ln|(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)A‡íØ.
eUC½n3b^‡,Œ‰ÑXeíØ:
íØ5C
1
,C
2
,C
3
´n‡†A-a,D
1
,D
2
,D
3
´n‡†B-a.bU
A
´²",
B
U´Ý
…U⊗
A
⊥
C
2
⊆
⊥
D
2
,Hom
B
(U,D
⊥
2
)⊆C
⊥
2
.K(C
1
,C
2
,C
3
)Ú(D
1
,D
2
,D
3
)´¢D{Ln
|…=(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)´T-þ¢D{Ln|.
bR´‚,eT•AÏ/ªnÝ‚
R0
RR
!
,Œ‰ÑXeíØ:
íØ6bR´‚…T=
R0
RR
!
,K(C
1
,C
2
,C
3
)´R-þ¢D{Ln|…=
(B
C
1
C
1
,U
C
2
C
2
,J
C
3
C
3
)´T-þ¢D{Ln|.
íØ7bR´‚…T=
R0
RR
!
,C
1
,C
2
,C
3
´n‡†R-a.eC
1
ÚC
2
'u•4•µ4
…(C
1
,C
2
,C
3
)´R-þ¢D{Ln|,K(B
C
1
C
1
,U
C
2
C
2
,J
C
3
C
3
)´T-þ¢D{Ln
|.
íØ8e(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)´T-þ{Ln|,KU
C
2
D
2
´thick…=(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)
´T-þ¢D{Ln|.
y²:e(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)´T-þ{Ln|,K(B
C
1
D
1
,U
C
2
D
2
)Ú(U
C
2
D
2
,J
C
3
D
3
)´T-þ
{Lé.Ïd,U
C
2
D
2
´thick…=(B
C
1
D
1
,U
C
2
D
2
)Ú(U
C
2
D
2
,J
C
3
D
3
)´¢D{Lé…=
(B
C
1
D
1
,U
C
2
D
2
,J
C
3
D
3
)´T-þ¢D{Ln|.
Ä7‘8
I[g,‰ÆÄ7]Ï‘8(11761060)"
ë•©z
[1]Enochs,E.E.,Estrada,S.,GarciaRozas,J.R.andIacob,A.(2007)GorensteinQuivers.Archiv
derMathematik,88,199-206.https://doi.org/10.1007/s00013-006-1921-5
[2]Ren,W.(2019)ApplicationsofCotorsionTriples.CommunicationsinAlgebra,47,2341-2356.
[3]Mao,L.X.(2020)CotorsionPairsandApproximationClassesoverFormalTriangularMatrix
Rings.JournalofPureandAppliedAlgebra,224,ArticleID:106271.
https://doi.org/10.1016/j.jpaa.2019.106271
DOI:10.12677/pm.2022.125079692nØêÆ
ù[W§¡ÿ
[4]Fu,X.R.andHu,Y.G.(2021)TheRecollementsofAbelianCategories:CotorsionDimensions
andCotorsionTriples.BulletinoftheIranianMathematicalSociety,48,963-977.
[5]Beligiannis,A.andReiten,I.(2007)HomologicalandHomotopicalAspectsofTorsionTheo-
ries.DepartmentofMathematics,UniversityofIoannina,Ioannina.
[6]Estrada,S.,Perez,M.A.andZhu,H.Y.(2020)BalancePairs,CotorsionTripletsandQuiver.
ProceedingsoftheEdinburghMathematicalSociety,63,67-90.
https://doi.org/10.1017/S0013091519000270
DOI:10.12677/pm.2022.125079693nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.