设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2022,12(5),826-837
PublishedOnlineMay2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.125093
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
W
L
Ç
ÜÜÜ
AAA
§§§
ÛÛÛ
]]]
∗
§§§
ÜÜÜ
ŸŸŸ
§§§
ooo
ÔÔÔ
>>>
#
õ
“
‰
Œ
Æ
ê
Æ
‰
ÆÆ
§
#
õ
¿
°
7
à
Â
v
F
Ï
µ
2022
c
4
18
F
¶
¹
^
F
Ï
µ
2022
c
5
19
F
¶
u
Ù
F
Ï
µ
2022
c
5
27
F
Á
‡
(
M
1
,F
1
)
Ú
(
M
2
,F
2
)
´
ü
‡
¥
d
V
6
/
,
D
Œ
Å
d
ÄÈ
¥
d
V
Ý
þ
´
3
¦
È
6
/
M
=
M
1
×
M
2
þ
D
ƒ
¥
d
V
Ý
þ
F
=
p
f
(
K,H
)
,
Ù
¥
K
=
F
2
1
,
H
=
F
2
2
,
…
f
´
È
¼
ê
.
©
Ì
‡
ï
Ä
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
(
M,F
)
W
L
Ç
Ú
²
þ
W
L
Ç
,
|
^
Ü
þ
©
Û
{
,
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
(
M,F
)
W
L
Ç
ž
”
7
‡
^
‡
;
3
(
M
1
,F
1
)
Ú
(
M
2
,F
2
)
²
þ
W
L
Ç
ž
”
^
‡
e
,
‰
Ñ
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
(
M,F
)
²
þ
W
L
Ç
ž
”
¿
©
^
‡
,
l
‰
Ñ
˜
«
•
x
ä
k
A
Ï
5
Ÿ
¥
d
V
6
/
k
•{
.
'
…
c
¥
d
V
6
/
§
D
Œ
Å
d
ÄÈ
§
W
L
Ç
§
²
þ
W
L
Ç
CartanTorsionofMinkowskian
ProductFinslerManifold
NaZhang,YongHe
∗
,HuiZhang,ShuwenLi
CollegeofMathematicalSciences,XinjiangNormalUniversity,UrumqiXinjiang
Received:Apr.18
th
,2022;accepted:May19
th
,2022;published:May27
th
,2022
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
Ü
A
,
Û
]
.
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
W
L
Ç
[J].
n
Ø
ê
Æ
,2022,12(5):826-837.
DOI:10.12677/pm.2022.125093
Ü
A
Abstract
Let
(
M
1
,F
1
)
and
(
M
2
,F
2
)
be twoFinslermanifolds, Minkowskianproduct Finsler metric
istheFinslermetric
F
=
p
f
(
K,H
)
endowedontheproductmanifold
M
=
M
1
×
M
2
,
where
K
=
F
2
1
,
H
=
F
2
2
,and
f
isproductfunction.Inthispaper,westudyCartan
torsionandmeanCartantorsion ofMinkowskianproduct Finslermanifold
(
M,F
)
.By
usingtensoranalysis,weobtainthenecessaryconditionthatMinkowskianproduct
Finslermanifold
(
M,F
)
hasvanishingCartantorsion.Also,wegive thesufficient con-
ditionthatMinkowskianproductFinslermanifold
(
M,F
)
hasvanishingmeanCartan
torsionundertheconditionsofFinslermanifolds
(
M
1
,F
1
)
and
(
M
2
,F
2
)
havevanishing
meanCartantorsion.ThenaneffectivemethodforcharacteriseFinslermanifolds
withspecialpropertyisgiven.
Keywords
FinslerManifold, MinkowskianProduct,CartanTorsion,MeanCartanTorsion
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
¥
d
V
A
Û
3
g
,
Æ
‰
+
•A^
2
•
,
c
Ù
3
Ô
n
Æ
!
)
Ô
Æ
!
ó
§
E
â
!
&
E
A
Û
!
›
›
Ø
Ú2
Â
ƒ
é
Ø
•
¡
[1][2]. 1918
c
, Finsler
3
¦
Æ
¬
Ø
©
¥
Ä
g
‰
Ñ
/
¥
d
V
A
Û
0
ù
˜
¶
¡
,
¿
½
Â
W
L
Ç
[3]. 1934
c
, Cartan[4]
Ú
\
W
é
ä
¿
y
²
W
L
Ç
C
U
ï
þ
6
/
þ
¥
d
V
Ý
þ
†
i
ù
Ý
þ
l
§
Ý
.
e
C
= 0,
K
¥
d
V
Ý
þ
´
i
ù
Ý
þ
,
Ï
d
W
L
Ç
¡
•
¥
d
V
A
Û
¥
š
i
ù
A
Û
þ
.
W
L
Ç
÷
X
ÿ
/
‚
C
z
Ç
¡
•
Landsberg
-
Ç
.1950
c
, Ehresmann
ï
Ä
A
Ï
œ
/
e
W
é
ä
[5].1972
c
,Matsumoto
|
^
W
L
Ç
•
x
˜
a
A
Ï
¥
d
V
6
/
,
¡
ƒ
•
C
-
Œ
¥
d
V
6
/
[6],
‘
¦
y
²
W
é
ä
•
˜
5
[7]. 1989
c
,Fukui
‰
Ñ
ä
k
W
é
ä
E
¥
d
V
6
/
´
i
ù6
/
7
‡
^
‡
[8]. 1998
c
,
!
§
¬
[9]
y
²
ä
k
Ã
.
W
L
Ç
¥
d
V
6
/
Ø
U
å
i
\
?
Û
D
Œ
Å
d
Ä
˜
m
¥
,
¦
„
y
²
ä
kk
.
W
L
Ç
R
-
g
¥
d
V
6
/
˜
½
DOI:10.12677/pm.2022.125093827
n
Ø
ê
Æ
Ü
A
´
Landsberg
6
/
[10].2010
c
,
#
•
[11]
í
2
©
[10]
(
J
,
=
y
²
ä
kk
.
W
L
Ç
R
-
g
¥
d
V
6
/
˜
½
´
6
/
.
²
þ
W
L
Ç
•
´
¥
d
V
A
Û
¥
˜
a
›
©
-
‡
š
i
ù
A
Û
þ
.
²
þ
W
L
Ç
´
W
L
Ç
,
,
§
÷
X
ÿ
/
‚
C
z
Ç
¡
•
²
þ
Landsberg
-
Ç
. 1953
c
, Deicke[12]
J
Ñ
Í
¶
Deicke
½
n
,
=
˜
‡
½
¥
d
V
6
/
´
i
ù6
/
…
=
T
¥
d
V
6
/
²
þ
W
L
Ç
ž
”
.
d
,
ï
Ä
A
Ï
¥
d
V
6
/
W
L
Ç
Ú
²
þ
W
L
Ç
¤
•
N
õ
Æ
ö
'
5
9
:
¯
K
[13–18].
1982
c
,Okada[19]
J
Ñ
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
V
g
,
¿
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
þ
ÿ
/
‚
†
Ù
©
þ
6
/
þ
ÿ
/
‚
ƒ
m
'
X
.
g
,
¯
K
´
X
Û
•
x
D
Œ
Å
d
Ä
¥
d
V
6
/
W
L
Ç
Ú
²
þ
W
L
Ç
,
±
9
&
Ä
D
Œ
Å
d
Ä
¥
d
V
6
/
´
Ä
ä
k
ž
”
W
L
Ç
Ú
²
þ
W
L
Ç
.
é
þ
ã
¯
K
,
©
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
W
L
Ç
ž
”
7
‡
^
‡
,
¿
3
ü
‡
©
þ
6
/
²
þ
W
L
Ç
ž
”
^
‡
e
,
‰
Ñ
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
²
þ
W
L
Ç
ž
”
¿
©
^
‡
.
2.
ý
•
£
M
´
˜
‡
n
‘
1
w
6
/
,
T
x
M
L
«
x
∈
M
ƒ
˜
m
,
TM
=
S
x
∈
M
T
x
M
L
«
M
ƒ
m
,
M
þ
Û
Ü
‹
I
•
x
i
= (
x
1
,...,x
n
),
T
x
M
þ
Û
Ü
‹
I
•
(
x
i
,y
i
) = (
x
1
,...,x
n
,y
1
,...,y
n
).
½
Â
1.
[20]
6
/
M
þ
¥
d
V
Ý
þ
´
˜
¼
ê
F
:
TM
→
R
+
,
÷
v
1)
G
=
F
2
3
˜
M
=
TM
\{
0
}
þ
´
1
w
¼
ê
;
2)
é
u
?
¿
(
x,y
)
∈
˜
M
,
F
(
x,y
)
>
0;
3)
é
u
?
¿
(
x,y
)
∈
˜
M
,
λ
∈
R
,
k
F
(
x,λy
) =
|
λ
|
F
(
x,y
);
4)
ç
l
Ý
(
G
αβ
) = (
∂
2
G
∂y
α
∂y
β
)
3
˜
M
þ
´
½
Ý
.
(
G
γα
)
L
«
(
G
αβ
)
_
Ý
,
=
G
γα
G
αβ
=
δ
γ
β
.
½
Â
2.
[21]
(
M,F
)
´
˜
‡
¥
d
V
6
/
,F
W
L
Ç
C
:
T
x
M
×
T
x
M
×
T
x
M
→
R
•
C
=
C
αβγ
dx
α
⊗
dx
β
⊗
dx
γ
,
(2.1)
Ù
¥
C
αβγ
=
1
4
G
y
α
y
β
y
γ
=
1
4
∂G
αβ
∂y
γ
.
(2.2)
½
Â
3.
[21]
(
M,F
)
´
˜
‡
¥
d
V
6
/
,F
²
þ
W
L
Ç
I
:
T
x
M
→
R
•
I
=
I
α
(
x,y
)
dx
α
,
(2.3)
Ù
¥
I
α
=
1
2
G
βγ
∂G
αβ
∂y
γ
= 2
G
βγ
C
αβγ
.
(2.4)
DOI:10.12677/pm.2022.125093828
n
Ø
ê
Æ
Ü
A
(
M
1
,F
1
)
Ú
(
M
2
,F
2
)
´
ü
‡
¥
d
V
6
/
,
‘
ê
©
O
•
m
Ú
n
,
K
M
=
M
1
×
M
2
´
˜
‡
m
+
n
‘
¦
È
6
/
.
P
M
1
,
M
2
Ú
M
Û
Ü
‹
I
©
O
•
(
x
1
,...,x
m
),(
x
m
+1
,...,x
m
+
n
),
(
x
1
,...,x
m
,x
m
+1
,...,x
m
+
n
);
M
1
,
M
2
Ú
M
ƒ
m
©
O
´
TM
1
,
TM
2
Ú
TM
,
§
‚
Û
Ü
‹
I
©
O
•
(
x
1
,...,x
m
,y
1
,...,y
m
),(
x
m
+1
,...,x
m
+
n
,y
m
+1
,...,y
m
+
n
),(
x
1
,...,x
m
+
n
,y
1
,...,y
m
+
n
).
TM
1
,
TM
2
,
TM
ƒ
m
÷
v
TM
∼
=
TM
1
⊕
TM
2
.
½
Â
4.
[19]
f
: [0
,
+
∞
)
×
[0
,
+
∞
)
→
[0
,
+
∞
)
´
˜
‡
ë
Y
¼
ê
,
e
f
÷
v
1)
f
(
s,t
) = 0
…
=
(
s,t
) = (0
,
0);
2)
é
?
¿
λ
∈
[0
,
+
∞
),
k
f
(
λs,λt
) =
λf
(
s,t
);
3)
f
3
(0
,
+
∞
)
×
(0
,
+
∞
)
þ
´
1
w
¼
ê
;
4)
é
?
¿
(
s,t
)
∈
(0
,
+
∞
)
×
(0
,
+
∞
),
k
∂f
∂s
6
= 0,
∂f
∂t
6
= 0;
5)
é
?
¿
(
s,t
)
∈
(0
,
+
∞
)
×
(0
,
+
∞
),
k
∂f
∂s
∂f
∂t
−
2
f
∂
2
f
∂s∂t
6
= 0,
K
¡
f
•
È
¼
ê
.
·
K
1.
[22]
f
´
È
¼
ê
,
K
é
?
¿
K
6
= 0
,H
6
= 0,
k
f
HK
K
+
f
HH
H
= 0
,
(2.5)
f
K
K
+
f
H
H
=
f,
(2.6)
f
KK
K
+
f
KH
H
= 0
,
(2.7)
f
KKK
K
+
f
KKH
H
=
−
f
KK
,
(2.8)
f
KHK
K
+
f
KHH
H
=
−
f
KH
,
(2.9)
f
HHK
K
+
f
HHH
H
=
−
f
HH
.
(2.10)
Ù
¥
f
K
Ú
f
H
©
OL
«
f
é
K
Ú
H
ê
,
X
f
H
=
∂f
∂H
,
f
KH
=
∂
2
f
∂K∂H
.
½
Â
5.
[19]
(
M
1
,F
1
)
Ú
(
M
2
,F
2
)
´
ü
‡
¥
d
V
6
/
,
-
K
=
F
2
1
,
H
=
F
2
2
,
F
1
Ú
F
2
'
u
f
D
Œ
Å
d
ÄÈ
Ý
þ
´
3
¦
È
6
/
M
=
M
1
×
M
2
þ
D
ƒ
X
e
/
ª
Ý
þ
F
:
TM
→
R
+
F
(
x,y
) =
p
f
(
K
(
x
i
,y
i
)
,H
(
x
i
0
,y
i
0
))
,
(2.11)
Ù
¥
f
´
È
¼
ê
.
w
,
(
M,F
)
•
´
˜
‡
¥
d
V
6
/
,
¡
(
M,F
)
•
(
M
1
,F
1
)
Ú
(
M
2
,F
2
)
'
u
f
D
Œ
Å
d
ÄÈ
6
/
,
~
{
¡
(
M,F
)
•
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
.
©
¥
,
α,β,γ
F
1
i
1
Š
‰
Υ
1
m
+
n
;
i,j,k
.
¶
i
1
Š
‰
Œ
•
1
m
;
i
0
,j
0
,k
0
‘
§
.
¶
i
1
Š
‰
Υ
m
+1
m
+
n
.
'
u
(
M
1
,F
1
)
½
(
M
2
,F
2
)
A
Û
þ
,
·
‚
©
O
3
Ù
þ
•
V
\
•
I
1
½
2
±
«
«
O
,
X
1
C
ijk
Ú
2
C
i
0
j
0
k
0
©
OL
«
¥
d
V
6
/
(
M
1
,F
1
)
Ú
(
M
2
,F
2
)
W
L
Ç
X
ê
.
(
M,F
)
´
¥
d
V
6
/
(
M
1
,F
1
)
Ú
(
M
2
,F
2
)
D
Œ
Å
d
ÄÈ
,
K
F
Ä
Ü
þ
Ý
•
G
= (
G
αβ
) = (
∂
2
G
∂y
α
∂y
β
) =
G
ij
G
ij
0
G
i
0
j
G
i
0
j
0
!
,
DOI:10.12677/pm.2022.125093829
n
Ø
ê
Æ
Ü
A
Ù
¥
G
ij
=
f
K
K
ij
+
f
KK
K
i
K
j
,
(2.12)
G
ij
0
=
f
KH
K
i
H
j
0
,
(2.13)
G
i
0
j
=
f
HK
H
i
0
K
j
=
f
KH
H
i
0
K
j
,
(2.14)
G
i
0
j
0
=
f
H
H
i
0
j
0
+
f
HH
H
i
0
H
j
0
.
(2.15)
K
i
,H
i
0
©
OL
«
K
,
H
é
y
i
,
y
i
0
ê
,
X
K
i
=
∂K
∂y
i
,
H
i
0
j
0
=
∂
2
H
∂y
i
0
∂y
j
0
.(
G
αβ
)
_
Ý
(
G
βα
)
•
(
G
βα
) =
G
ji
G
ji
0
G
j
0
i
G
j
0
i
0
!
,
Ù
¥
G
ji
=
1
f
K
(
K
ji
−
f
H
f
KK
∆
y
j
y
i
)
,
(2.16)
G
ji
0
=
−
1
∆
f
KH
y
j
y
i
0
,
(2.17)
G
j
0
i
=
−
1
∆
f
KH
y
j
0
y
i
,
(2.18)
G
j
0
i
0
=
1
f
H
(
H
j
0
i
0
−
f
K
f
HH
∆
y
j
0
y
i
0
)
,
(2.19)
…
∆ =
f
K
f
H
−
2
ff
KH
.
(2.20)
3.
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
W
L
Ç
Š
â
W
L
Ç
Ú
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
½
Â
,
!
ò
í
Ñ
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
(
M,F
)
W
L
Ç
X
ê
L
ˆ
ª
,
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
(
M,F
)
W
L
Ç
ž
”ž
,
˜
‡
‡
©•
§
|
,
=
‰
Ñ
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
(
M,F
)
W
L
Ç
ž
”
7
‡
^
‡
.
·
K
2.
(
M,F
)
´
¥
d
V
6
/
(
M
1
,F
1
)
Ú
(
M
2
,F
2
)
D
Œ
Å
d
ÄÈ
,
K
(
M,F
)
W
L
Ç
X
ê
C
αβγ
•
C
ijk
=
f
K
1
C
ijk
+
1
4
(
f
KKK
K
i
K
j
K
k
+
f
KK
K
ij
K
k
+
f
KK
K
ik
K
j
+
f
KK
K
jk
K
i
)
,
(3.1)
C
i
0
jk
=
1
4
(
f
HKK
H
i
0
K
j
K
k
+
f
HK
H
i
0
K
jk
)
,
(3.2)
DOI:10.12677/pm.2022.125093830
n
Ø
ê
Æ
Ü
A
C
ij
0
k
=
1
4
(
f
KHK
K
i
H
j
0
K
k
+
f
KH
K
ik
H
j
0
)
,
(3.3)
C
ijk
0
=
1
4
(
f
KKH
K
i
K
j
H
k
0
+
f
KH
K
ij
H
k
0
)
,
(3.4)
C
i
0
j
0
k
=
1
4
(
f
HHK
H
i
0
H
j
0
K
k
+
f
HK
H
i
0
j
0
K
k
)
,
(3.5)
C
i
0
jk
0
=
1
4
(
f
HKH
H
i
0
K
j
H
k
0
+
f
HK
H
i
0
k
0
K
j
)
,
(3.6)
C
ij
0
k
0
=
1
4
(
f
KHH
K
i
H
j
0
H
k
0
+
f
KH
K
i
H
j
0
k
0
)
,
(3.7)
C
i
0
j
0
k
0
=
f
H
2
C
i
0
j
0
k
0
+
1
4
(
f
HHH
H
i
0
H
j
0
H
k
0
+
f
HH
H
i
0
j
0
H
k
0
+
f
HH
H
i
0
k
0
H
j
0
+
f
HH
H
j
0
k
0
H
i
0
)
.
(3.8)
y
²
.
-
(2.2)
¥
α
=
i,β
=
j,γ
=
k
,
¿
ò
(2.12)
“
\
,
²
†
O
Ž
Œ
C
ijk
=
1
4
∂G
ij
∂y
k
=
1
4
(
f
KKK
K
i
K
j
K
k
+
f
KK
K
ik
K
j
+
f
KK
K
i
K
jk
+
f
KK
K
k
K
ij
+
f
K
K
ijk
)
.
(3.9)
3
6
/
(
M
1
,F
1
)
þ
A^
½
Â
2,
¿
5
¿
K
=
F
2
1
,
K
k
K
ijk
= 4
1
C
ijk
.
(3.10)
ò
(3.10)
“
\
(3.9),
Œ
C
ijk
=
f
K
1
C
ijk
+
1
4
(
f
KKK
K
i
K
j
K
k
+
f
KK
K
ij
K
k
+
f
KK
K
ik
K
j
+
f
KK
K
jk
K
i
)
.
=
(3.1)
¤
á
.
Ó
n
Œ
y
(3.2)-(3.8)
¤
á
.
y
.
.
½
n
1.
(
M,F
)
´
¥
d
V
6
/
(
M
1
,F
1
)
Ú
(
M
2
,F
2
)
D
Œ
Å
d
ÄÈ
.
e
(
M,F
)
W
L
Ç
C
ž
”
,
K
e
•
§
|
¤
á
2
f
KKK
K
+3
f
KK
= 0
,
(3.11)
2
f
HHH
H
+3
f
HH
= 0
,
(3.12)
f
KHK
K
−
f
KHH
H
= 0
.
(3.13)
y
²
.
d
(2.1)
Œ
•
,(
M,F
)
W
L
Ç
ž
”
…
=
C
ijk
=
C
i
0
jk
=
C
ij
0
k
=
C
ijk
0
=
C
i
0
j
0
k
=
C
i
0
jk
0
=
C
ij
0
k
0
=
C
i
0
j
0
k
0
= 0
.
(3.14)
DOI:10.12677/pm.2022.125093831
n
Ø
ê
Æ
Ü
A
Š
â
(3.1),(3.14)
¥
C
ijk
= 0
d
u
f
K
1
C
ijk
+
1
4
(
f
KKK
K
i
K
j
K
k
+
f
KK
K
ij
K
k
+
f
KK
K
ik
K
j
+
f
KK
K
jk
K
i
) = 0
.
(3.15)
(3.15)
ü
>
Ó
ž
†
y
i
y
j
y
k
¿
,
¿
5
¿
y
k
1
C
ijk
= 0,
Œ
y
i
y
j
y
k
(
f
KKK
K
i
K
j
K
k
+
f
KK
K
ij
K
k
+
f
KK
K
ik
K
j
+
f
KK
K
jk
K
i
) = 0
.
(3.16)
du
K
=
F
2
1
'
u
y
ä
k
g
à
g
5
,
Š
â
î
.
½
n
k
K
ij
y
i
=
K
j
,
(3.17)
K
i
y
i
= 2
K.
(3.18)
ò
(3.17)
Ú
(3.18)
“
\
(3.16),
¿
5
¿
K
6
= 0,
K
k
2
f
KKK
K
+3
f
KK
= 0
.
Ó
n
Š
â
(3.8)
Ú
(3.14)
¥
C
i
0
j
0
k
0
= 0,
Œ
±
í
2
f
HHH
H
+3
f
HH
= 0
.
Š
â
(3.2),(3.14)
¥
C
i
0
jk
= 0
d
u
f
HKK
H
i
0
K
j
K
k
+
f
HK
H
i
0
K
jk
= 0
.
(3.19)
(3.19)
ü
>
Ó
ž
†
y
i
0
y
j
y
k
¿
,
¿
A^
(3.17)
Ú
(3.18),
Œ
2
f
HKK
K
+
f
KH
= 0
.
(3.20)
r
(2.9)
“
\
(3.20),
k
f
KHK
K
−
f
KHH
H
= 0
.
Ó
n
d
(3.14)
¥
Ù
§
ª
½
Œ
í
Ñ
(3.13)
¤
á
.
y
.
.
4.
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
²
þ
W
L
Ç
Š
â
²
þ
W
L
Ç
Ú
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
½
Â
,
!
ò
í
Ñ
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
(
M,F
)
²
þ
W
L
Ç
X
ê
L
ˆ
ª
,
3
˜
½
^
‡
e
‰
Ñ
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
(
M,F
)
²
þ
W
L
Ç
ž
”
¿
©
^
‡
,
=
•
x
ä
k
A
Ï
L
Ç
5
Ÿ
¥
d
V
6
/
.
·
K
3.
(
M,F
)
´
¥
d
V
6
/
(
M
1
,F
1
)
Ú
(
M
2
,F
2
)
D
Œ
Å
d
ÄÈ
,
K
(
M,F
)
²
þ
W
L
Ç
DOI:10.12677/pm.2022.125093832
n
Ø
ê
Æ
Ü
A
X
ê
I
α
•
I
i
=
1
I
i
−
K
i
2∆
[
f
H
(
f
KKK
K
+3
f
KKH
H
)
−
f
K
(
f
KHH
H
−
2
f
KHK
K
)]
,
(4.1)
I
i
0
=
2
I
i
0
−
H
i
0
2∆
[
f
K
(
f
HHH
H
+3
f
HHK
K
)
−
f
H
(
f
HKK
K
−
2
f
HKH
H
)]
.
(4.2)
y
²
.
-
(2.4)
¥
α
=
i
,
k
I
i
= 2
G
βγ
C
iβγ
= 2(
G
jk
C
ijk
+
G
j
0
k
C
ij
0
k
+
G
jk
0
C
ijk
0
+
G
j
0
k
0
C
ij
0
k
0
)
.
(4.3)
Š
â
(2.16)
Ú
(3.1),
k
G
jk
C
ijk
=
1
f
K
(
K
jk
−
f
H
f
KK
∆
y
j
y
k
)[
f
K
1
C
ijk
+
1
4
(
f
KKK
K
i
K
j
K
k
+
f
KK
K
ij
K
k
+
f
KK
K
ik
K
j
+
f
KK
K
jk
K
i
)]
=
K
jk
1
C
ijk
+
1
4
f
K
(
f
KK
K
i
+
f
KK
δ
k
i
K
k
+
f
KK
δ
j
i
K
j
)
+
1
4
f
K
K
jk
f
KKK
K
i
K
j
K
k
−
1
4
f
K
f
H
f
KK
∆
y
j
y
k
(
f
KKK
K
i
K
j
K
k
+
f
KK
K
ij
K
k
+
f
KK
K
ik
K
j
+
f
KK
K
jk
K
i
)
−
2
f
H
f
KK
∆
y
j
y
k
1
C
ijk
=
K
jk
1
C
ijk
+
3
4
f
K
f
KK
K
i
+
1
4
f
K
K
jk
f
KKK
K
i
K
j
K
k
−
1
4
f
K
f
H
f
KK
∆
y
j
y
k
(
f
KKK
K
i
K
j
K
k
+
f
KK
K
ij
K
k
+
f
KK
K
ik
K
j
+
f
KK
K
jk
K
i
)
,
(4.4)
Ù
¥
1
n
‡
ª
í
¥
A^
y
k
1
C
ijk
= 0.(3.17)
ü
>
Ó
ž
†
K
jk
¿
,
Œ
K
jk
K
j
=
y
k
.
(4.5)
r
(3.18)
Ú
(4.5)
“
\
(4.4),
²
†
O
Ž
Œ
G
jk
C
ijk
=
K
jk
1
C
ijk
+
K
i
4
f
K
(2
f
KKK
K
+3
f
KK
)
−
K
i
2∆
f
H
f
KK
K
f
K
(2
f
KKK
K
+3
f
KK
)
=
K
jk
1
C
ijk
+
K
i
2∆
∆
2
f
K
(2
f
KKK
K
+3
f
KK
)
−
K
i
2∆
Kf
H
f
KK
f
K
(2
f
KKK
K
+3
f
KK
)
.
(4.6)
DOI:10.12677/pm.2022.125093833
n
Ø
ê
Æ
Ü
A
5
¿
∆ =
f
K
f
H
−
2
ff
KH
,
·
‚
k
K
i
2∆
∆
2
f
K
(2
f
KKK
K
+3
f
KK
) =
K
i
2∆
[
f
K
f
H
−
2
ff
KH
2
f
K
(2
f
KKK
K
+3
f
KK
)]
=
K
i
2∆
(
1
2
f
H
−
ff
KH
f
K
)(2
f
KKK
K
+3
f
KK
)
.
(4.7)
r
(4.7)
“
\
(4.6),
Œ
G
jk
C
ijk
=
K
jk
1
C
ijk
+
K
i
2∆
(
1
2
f
H
−
ff
KH
f
K
)(2
f
KKK
K
+3
f
KK
)
−
K
i
2∆
Kf
H
f
KK
f
K
(2
f
KKK
K
+3
f
KK
)
.
(4.8)
r
(2.6)-(2.8)
“
\
(4.8),
²
{
ü
O
Ž
Œ
±
G
jk
C
ijk
=
K
jk
1
C
ijk
−
K
i
2∆
(
1
2
f
H
−
f
KH
K
)(
f
KKK
K
+3
f
KKH
H
)
=
1
2
1
I
i
−
K
i
2∆
(
1
2
f
H
−
f
KH
K
)(
f
KKK
K
+3
f
KKH
H
)
.
(4.9)
Ó
n
Œ
G
j
0
k
C
ij
0
k
=
−
K
i
2∆
f
KH
H
(
f
KHK
K
−
f
HKH
H
)
,
(4.10)
G
jk
0
C
ijk
0
=
−
K
i
2∆
f
KH
H
(
f
KHK
K
−
f
HKH
H
)
,
(4.11)
G
j
0
k
0
C
ij
0
k
0
=
K
i
2∆
(
1
2
f
K
−
f
KH
H
)(
f
KHH
H
−
f
KHK
K
)
.
(4.12)
r
(4.9)-(4.12)
“
\
(4.3),
²
n
Œ
I
i
=2(
G
jk
C
ijk
+
G
j
0
k
C
ij
0
k
+
G
jk
0
C
ijk
0
+
G
j
0
k
0
C
ij
0
k
0
)
=
1
I
i
−
K
i
∆
(
1
2
f
H
−
f
KH
K
)(
f
KKK
K
+3
f
KKH
H
)
−
2
K
i
∆
f
KH
H
(
f
KHK
K
−
f
HKH
H
)
+
K
i
∆
(
1
2
f
K
−
f
KH
H
)(
f
KHH
H
−
f
KHK
K
)
=
1
I
i
−
K
i
∆
[
1
2
f
H
(
f
KKK
K
+3
f
KKH
H
)
−
1
2
f
K
(
f
KHH
H
−
f
KHK
K
)]
−
K
i
∆
f
KH
[
−
K
(
f
KKK
K
+
f
KHK
H
)
−
H
(3
f
KKH
K
+2
f
HKH
H
)+
H
(2
f
KHK
K
+
f
KHH
H
)]
.
(4.13)
r
(2.7)-(2.9)
“
\
(4.13),
Œ
I
i
=
1
I
i
−
K
i
2∆
[
f
H
(
f
KKK
K
+3
f
KKH
H
)
−
f
K
(
f
KHH
H
−
2
f
KHK
K
)]
.
=
(4.1)
¤
á
.
Ó
n
Œ
y
(4.2)
¤
á
.
y
.
.
½
n
2.
(
M,F
)
´
¥
d
V
6
/
(
M
1
,F
1
)
Ú
(
M
2
,F
2
)
D
Œ
Å
d
ÄÈ
,
…
(
M
1
,F
1
)
Ú
(
M
2
,F
2
)
DOI:10.12677/pm.2022.125093834
n
Ø
ê
Æ
Ü
A
²
þ
W
L
Ç
ž
”
,
e
F
÷
v
e
•
§
|
f
KKK
K
+3
f
KKH
H
= 0
,
(4.14)
f
HHH
H
+3
f
KHH
K
= 0
,
(4.15)
f
KHK
K
=
f
KHH
H
= 0
,
(4.16)
K
(
M,F
)
²
þ
W
L
Ç
ž
”
.
y
²
.
Š
â
(2.3)
Œ
•
,(
M
1
,F
1
)
²
þ
W
L
Ç
ž
”
d
u
1
I
i
= 0
.
(4.17)
ò
(4.17)
“
\
(4.1),
Œ
I
i
=
−
K
i
2∆
[
f
H
(
f
KKK
K
+3
f
KKH
H
)
−
f
K
(
f
KHH
H
−
2
f
KHK
K
)]
.
(4.18)
®
•
(4.14)-(4.16)
¤
á
,
ò
(4.14)
Ú
(4.16)
“
\
(4.18),
Œ
I
i
=0.
Ó
n
d
(
M
2
,F
2
)
²
þ
W
L
Ç
ž
”
,
¿
ò
(4.15)
Ú
(4.16)
“
\
(4.2),
Œ
I
i
0
= 0.
Ï
d
I
=
I
i
dx
i
+
I
i
0
dx
i
0
= 0
.
y
.
.
5.
(
Ø
©
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
W
L
Ç
ž
”
7
‡
^
‡
,
=
3
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
W
L
Ç
ž
”
^
‡
e
,
‰
Ñ
‡
©•
§
•
x
.
…
3
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
ü
‡
©
þ
6
/
²
þ
W
L
Ç
ž
”
^
‡
e
,
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
²
þ
W
L
Ç
ž
”
¿
©
^
‡
,
•
x
ä
k
A
Ï
5
Ÿ
¥
d
V
6
/
.
Ï
·
‚
ò
Ï
L
¦
)
þ
ã
üa
‡
©•
§
|
,
‰
Ñ
ä
k
ž
”
W
L
Ç
Ú
²
þ
W
L
Ç
D
Œ
Å
d
ÄÈ
¥
d
V
6
/
ä
N
~
f
.
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
(11761069)
"
ë
•
©
z
[1]Shen,Z.(2006)Riemann-FinslerGeometrywithApplicationstoInformationGeometry.
Chi-
neseAnnalsofMathematics,SeriesB
,
27
,73-94.https://doi.org/10.1007/s11401-005-0333-3
DOI:10.12677/pm.2022.125093835
n
Ø
ê
Æ
Ü
A
[2]Asanov,G.S.(2012)FinslerGeometry,RelativityandGaugeTheories.SpringerScienceand
BusinessMedia,Berlin.
[3]Finsler,P.(1951)
¨
UberKurvenandFl¨acheninallgemeinenR¨aumen.Springer,Basel.
https://doi.org/10.1007/978-3-0348-4144-3
[4]Cartan,E.(1934)LesespacesdeFinsler.
BulletinoftheAmericanMathematicalSociety
,
40
,
521-522.https://doi.org/10.1090/S0002-9904-1934-05891-9
[5]Ehresmann,C.(1950)Lesconnexionsinfinit
W
simalesdansunespacefibr´ediff´erentiable.
Col-
loquedeTopologie
,
29
,55-75.
[6]Matsumoto,M.(1972)OnC-ReducibleFinslerSpaces.
Tensor
,
24
,29-37.
[7]Matsumoto, M. (1986)Foundations ofFinsler Geometryand Special Finsler Spaces.Kaiseisha,
Tokyo.
[8]Fukui, M. (1989) Complex FinslerManifolds.
JournalofMathematicsofKyotoUniversity
,
29
,
609-624.https://doi.org/10.1215/kjm/1250520177
[9]Shen, Z. (1998) OnFinsler Geometry ofSubmanifolds.
MathematischeAnnalen
,
311
, 549-576.
https://doi.org/10.1007/s002080050200
[10]Shen,Z.(2001)OnR-QuadraticFinslerSpaces.
PublicationesMathematicaeDebrecen
,
58
,
263-274.
[11]Mo, X.andZhou, L.(2010) AClassofFinsler MetricswithBounded CartanTorsion.
Canadian
MathematicalBulletin
,
53
,122-132.https://doi.org/10.4153/CMB-2010-026-8
[12]Deicke,A.(1953)
¨
UberdieFinsler-R¨aumemit
A
i
= 0.
ArchivderMathematik
,
4
,45-51.
https://doi.org/10.1007/BF01899750
[13]Bidabad, B.,Shahi,A.and Ahmadi,M.Y. (2017) Deformation of Cartan Curvature on Finsler
Manifolds.
BulletinoftheKoreanMathematicalSociety
,
54
,2119-2139.
[14]Chen,X.andShen,Z.(2003)RandersMetricswithSpecialCurvatureProperties.
Osaka
JournalofMathematics
,
40
,87-101.
[15]Najafi,B.andTayebi, A.(2017)Weakly Stretch FinslerMetrics.
PublicationesMathematicae-
Debrecen
,
91
,441-454.https://doi.org/10.5486/PMD.2017.7761
[16]Sadeghi, H. (2021) FinslerMetrics with Bounded Cartan Torsion.
JournalofFinslerGeometry
andItsApplications
,
2
,51-62.
[17]Rajabi,T.(2020)OntheNormofCartanTorsionofTwoClassesof(
α,β
)-Metrics.
Journal
ofFinslerGeometryandItsApplications
,
1
,66-72.
[18]Tayebi,A.andSadeghi,H.(2018)TwoClassesofFinslerMetricswithBoundedCartanTor-
sions.
GlobalJournalofAdvancedResearchonClassicalandModernGeometries
,
7
,23-36.
[19]Okada,T.(1982)MinkowskianProductofFinslerSpacesandBerwaldConnection.
Journal
ofMathematicsofKyotoUniversity
,
22
,323-332.https://doi.org/10.1215/kjm/1250521819
DOI:10.12677/pm.2022.125093836
n
Ø
ê
Æ
Ü
A
[20]Abate,M.andPatrizio,G.(1994)FinslerMetrics—AGlobalApproachwithApplicationsto
GeometricFunctionTheory.Springer-Verlag,Berlin,Heidelberg.
[21]Bao,D.,Chern,S.S.andShen,Z.(2000)AnIntroductiontoRiemann-FinslerGeometry.
Springer-Verlag,Berlin.
[22]Wu,Z.andZhong,C.(2011)SomeResultsonProductComplexFinslerManifolds.
Acta
MathematicaScientia
,
31B
,1541-1552.https://doi.org/10.1016/S0252-9602(11)60340-8
DOI:10.12677/pm.2022.125093837
n
Ø
ê
Æ