设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2022,11(5),3060-3068
PublishedOnlineMay2022inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2022.115326
•`zéêæN{
xxx•••ZZZ
H㲌ÆÚO†êÆÆ§H&²
ÂvFϵ2022c427F¶¹^Fϵ2022c521F¶uÙFϵ2022c531F
Á‡
3¦)Øªå`z¯K¥éêæN¼ê•{´š~61§¯¤±•§éêæN¼ê3‚5
5y†‚5Œ½5yS:•{¥åX-‡Š^"©Ì‡0éêæN•{9ÙŽ{§¿
ÏLOŽ~f`²d•{k5"
'…c
éêæN§k5
OptimizationLogarithmicBarrierMethod
ChenxuanZheng
SchoolofStatisticsandMathematics,YunnanUniversityofFinanceandEconomics,Kunming
Yunnan
Received:Apr.27
th
,2022;accepted:May21
st
,2022;published:May31
st
,2022
Abstract
Themethodofsolvingthelogarithmicbarrierfunctionmethodisverypopularin
solvingthenon-equalityconstraintoptimizationproblem,itiswellknownthatthe
©ÙÚ^:x•Z.•`zéêæN{[J].A^êÆ?Ð,2022,11(5):3060-3068.
DOI:10.12677/aam.2022.115326
x•Z
logarithmicbarrierfunctionplaysanimportantroleinlinearplanningandlinear
semi-planning.Thispapermainlyintroducesthelogarithmicbarriermethodandits
algorithm,andtheeffectivenessofthismethodisillustratedbycalculatingexamples.
Keywords
LogarithmicBarrier,Validity
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
æN¼ê{ÄgŽ´µéuCŒ1•>.Œ1:–\5Œ¨v§é>.þ
:–\áŒ¨v§±¦S“:µ43Œ1•S"XdB‡¦Œ1•S:8Ü´š˜§Ä
KŒ1:\þáŒ¨vž§¨vKCÎÿÂ"¤±§æN¼ê=·ÜuØª
å§æN¼ê{qS:{[1]§ÓêæN¼ê{ƒq[2]"CAc§éêæN¼êA^3üÑ`
zÚÚOÆ+•[3][4]"
•ÄØªå•`z¯K
min
x
f(x)
s.t.c
i
(x) >0,i= 1,2,···,m
(1)
Ù¥f(x),c
i
(x)´ëY¼ê§Œ1•PŠ:S={x|c
i
(x) ≥0,i= 1,···,m}"bŒ1••3S:§
=æN¼ê˜„A´:3S
0
S§v¼ê´1w;Œ1:ªuS
0
>.ž§v¼êŠª
u+∞"e¡·‚X-?ؘa~^æN¼ê,éêæN¼ê
F(x,µ) = f(x)−µ
m
X
i=1
logc
i
(x)
(2)
Ù¥µ>0¡•æNëê[5]"
•ʇØªå`z¯K
min
1
2
(x
1
+1)
2
+x
2
s.t.x
1
>0,x
2
>0
(3)
DOI:10.12677/aam.2022.1153263061A^êÆ?Ð
x•Z
ÄkEéêæN¼ê
P(x;µ) =
1
2
(x
1
+1)
2
+x
2
−u[log(x
1
−1)+logx
2
](4)
Ù¥µ•éê
-
∂F(x
1
,µ)
∂x
1
= x
1
+1−
µ
x
1
−1
= 0(5)
∂F(x
2
,µ)
∂x
2
= 1−
µ
x
2
= 0(6)
)x(µ) =
√
1+µ
µ
!
ÓžcçlÝ•
∇
2
=
1+
µ
(
√
1+µ−1)
2
0
0
1
µ
!
(7)
´½§¤±x(µ)´F(x,µ)´4Š
µ→0ž§x(µ) →x
∗
=
√
1
0
!
f
∗
= 1(8)
2.Ž{
ÄuéêæN¼êŽ{‘3£OP(x;µ)Cq•Ч¿±µŠ•4~S"Ta.Ž
{š~aqugv¼êµe§Œ±¤Xe"
䄵
0
>0,Øτ
0
>0,Щ:x
s
0
;
fork= 0,1,2,···
¦P(·;µ
k
)Cq•Šx
k
,lx
s
k
m©§k∇P(x;µ
k
)k≤τ
k
ÊŽ¶
XJ÷v•ªÂñu
ÊŽCq)x
k
;
ÀJ#æNëêµ
k+1
∈(0,µ
k
);
ÀJ#m©:x
s
k+1
end(for)
X·‚c¡J§∇
2
xx
P(x;µ)éuµ¦Úî{¤•TµezgS“¥•˜ýk
Ïé%C•zx
k
Eâ"$–Úî•{•‘(J§Ï•§¤ÄugV?êCq
DOI:10.12677/aam.2022.1153263062A^êÆ?Ð
x•Z
Ø¿©§Œ±¦^ˆ «Eâ5(Úî{3AÚƒS?\P(x;µ
k
)Âñ•§¿‘ׄÂñ
uÂñ5x(µ
k
)"ùEâ•):
^˜«(ÛÂñEâ5U?Úî{§X‚|¢½&6•"§‚7LyS“Ê3
3P(x;µ)•S§=1•S
0
S§„7L•Äéêæ¼êA5"
•¦P(x;µ
k
)•z§˜‡Ðå©:x
s
k
Œ±÷c¡Cq4zx
k−1
,x
k−2
,···¤½Â´
»í"
ÏL÷c¡Cq4zx
k−1
,x
k−2
,···¤½Â´»í§Œ±˜‡éÐP(x;µ
k
)•
zå©:x
s
k
½ö§ÏL•∇
x
P(x;µ)OŽ•x
k−1
:´»{x(µ)|µ>0}Cqƒ•þ
∇
2
xx
P(x;µ)˙x+
∂
∂µ
∇
x
P(x;µ) = 0(9)
ÏLOŽ1‘
∇
2
xx
P(x;µ)˙x−
m
X
i=1
1
c
i
(x)∇c
i
(x)
(10)
òx=x
k−1
Úµ=µ
k−1
‘\§·‚Œ±Cqdotx§,^§5¼µe1kÚå©
:x
s
k
µ
x
s
k
= x
k−1
+(µ
k
−µ
k−1
)˙x(11)
éuz˜gS“¥#æNëêµ
k+1
ÀJ§<‚JÑˆ«ˆéu•{"˜‡~„
σ´§=^µ
k+1
£µ
k+1
=0.2µ
k
½µ
k+1
=0.1µ
k
¤XJP(x;µ
k
)•z¯KØ´J)û§ X
J˜‡Ðå©:x
s
k+1
Œ±k˜½Œ&Ý/JÑ[6]"
3.5Ÿ
3.1.½n1
úª(1)¥fÚ−c
i
,i∈Iþ•à¼ê§… úª(2)¥½Â1••š˜"{µ
k
}•4
~S¦µ
k
↓0§¿)8M•š˜k.)8"@oe¡•ã´("
£i¤éu?¿˜‡µ>0,P(x;µ)3S
0
¥´à§¿…3S
0
þ•x(µ
k
)(ؘ½´•˜
)"?ÛÛÜ4Šx(µ
k
)•´P(x;µ)Û4Š"
£ii¤4zx(µ
k
)?¿SÑk˜‡ÂñfS§¿…ùS¤kŒU4 •:Ñ
3M¥"
£iii¤éu?¿4zS{x(µ
k
)}kf(x(µ
k
)) →f
∗
,P(x(µ
k
);µ
k
) →f
∗
éuM•˜(•ÄminxÑl−x≥0)½M´Ã.(•Ämin
(x
1
,x
2
)
x
1
Ñlx
1
≥0)à¼ê´ŒU§
DOI:10.12677/aam.2022.1153263063A^êÆ?Ð
x•Z
3ù«œ¹e§½n(ØØ·^u˜„œ¹[7]"
éu˜„Øªå¯K(1)§ƒA(J3Ÿþ•ÛÜ"‰½˜‡¯KÛÜ)x
∗
(•Ò´
`,˜‡ ÷v½n¿©^‡±9î‚pÖ5Úå^‡),éêæN¼êP(x;µ)k˜‡ÛÜ•
ŠCx
∗
¤kvŠ"1•S
0
Ã.ž§e¡éê¼êP(x;µ)Œ±Ã."µ
k
↓0
ž§P(x;µ
k
)ÛÜ4zS•kŒUÂñ(1)š)"
P(x;µ)•І÷v`z¯K(1)KKT^‡ :(x,λ)ƒmk-‡'X"34Šx(µ)ž§
P(x;µ)éxFÝ•"§=§
∇
x
P(x(µ);µ) = ∇f(x(µ))−
X
i∈I
µ
c
i
(x(µ))
∇c
i
(x(µ)) = 0(12)
XJ·‚½Â˜‡.‚KF¦fO
λ
i
(µ)
def
=
µ
c
i
(x(µ))
,i∈I(13)
r£12¤¤
∇f(x(µ))−
X
i∈I
λ
i
(µ)∇c
i
(x(µ)) = 0(14)
d^‡†1˜KKT^‡∇
x
L(x,λ)ƒÓ,0•¯K(1))§Ù¥.‚KF¼êLd
L(x,λ) = f(x)−
X
i∈I
λ
i
c
i
(x)(15)
éØªå¯K(1)Ù¦KKT^‡?1u§Xe:
c
i
(x) ≥0,i∈I
λ
i
≥0,i∈I
λ
i
c
i
(x) ≥0,i∈I
(16)
šK5^‡w ,dx=x(µ),λ=λ(µ);¯¢þ§éu¤ki∈I§c
i
(x(µ))Úλ
i
(µ)´î‚"
•kKKT^‡Ø÷vž§•pÖ^‡"Šâ½Â§·‚
λ
i
(µ)c
i
(x(µ)) = µ,i∈I(17)
Ù¥§µ´î‚
dþã*Œ•§µ
k
↓0ž§P(x;µ)•Šx(µ)9Ù.‚KF¦fOλ(µ)5 C
÷v(1)KKT^‡"¯¢þ§XJ3)(1)x
∗
? ÷v˜N\b§·‚Œ±y²(x(µ),λ(µ))
C•`éó)(x
∗
,λ
∗
)µ
k
↓0"
DOI:10.12677/aam.2022.1153263064A^êÆ?Ð
x•Z
3.2.½n2
bS
0
š˜§x
∗
´(1)ÛÜ)§3ù‡ÛÜ)¥÷v,λ
∗
KKT^‡"•b‚5Õá
å^‡(LICQ)§î‚pÖ^‡§¿©^‡´(x
∗
,λ
∗
)"@oe¡•ã´("
(i)k˜‡•˜ëYŒ‡•þ¼êx(µ)§éu¤kv•þ¼êx(µ)3x
∗
,‡C«
•´P(x;µ)ÛÜ4Чllim
µ↓0
x(µ) = x
∗
"
(ii)éu(i)¥¼êx(µ)§.‚KF¦fO(2)½Âλ(µ)Âñuλ
∗
µ↓0"
(iii)çlÝ∇
2
xx
P(x;µ)éu¤kvµÑ´½[8]"
C
p
½Â
C
p
def
={x(µ)|µ>0}(18)
4.OŽ~f
4.1.•ʇØªå`z¯K
Figure1.µ=1,0.1,0.01,0.001
ã1.µ=1,0.1,0.01,0.001
DOI:10.12677/aam.2022.1153263065A^êÆ?Ð
x•Z
min(x
1
+0.5)
2
+(x
2
−0.5)
2
s.t.x
1
∈[0,1],x
2
∈[0,1](19)
ÄkEéêæN¼ê
P(x;u) = (x
1
+0.5)
2
+(x
2
−0.5)
2
−u[logx
1
+log(1−x
1
)+logx
2
+log(1−x
2
)](20)
ù‡¼êp‚µ=1,0.1,0.01,0.001±›3ã1¥"dã1Œ•§ØŒ1«•>.NC§
Ùp‚ÑCÔ‚8I¼êŠ‚§=µ↓0"cüÌ㥕Š:±ŒÓ+Ø´ %§
ålý•Ø´§ùL²ŒõêÃå4zŽ{ÑŒ±¤õ/A^u£O•Š:x(µ)"
éuе=0.01•x(µ)•éêæN¼ê/>.0••£Äž§÷³^¼êp‚
¬.•§Ø@oý"3gv¼êœ¹e§p‚•5ŸL² ˜JØZ§ù—
[Úî!FÝeüÚÝFÝÃå`z•{5UØZ"Úî•{´Ø¯a ˜§
šý/5Ÿ§p‚A´†‚÷†>§÷X/m>>L²g%C§Úî•{
´ÄuØUÓ¼ýéêæN¼ê1•"Ïd,Úî{•ØU¯„Âñx(µ)§Øš3ù‡:
˜‡•S"
4.2.àg5y¯K
àg 5y´‚55yí2§ ˜¦)‚55yS:Ž{®²¤õí2àg5
y[9]§e¡‰Ñàg5y¯K"
Figure2.Therelationshipbetweenthedualgapandthe
numberofNewtoniterations
ã2.éómYÚNewtonS“gê'X
DOI:10.12677/aam.2022.1153263066A^êÆ?Ð
x•Z
minf(x) =
1
2
x
T
Qx+c
T
x
s.t.Ax≤b,
(21)
éêæN¼ê
P(x;µ) =
1
2
x
T
Qx+c
T
x−µ
n
X
i=1
logx
i
Ù¥µ>0,µ´æNÏf§¯K†éó¯KéómY•µ
f(x)−P(x) = nµ
µ→0ž§f(x)−P(x)→0"ÏLMATLAB^‡?1?§§)¤50011000‘ÅÝ§
æ^Newton£ˆ†‚|¢•{§ŠâCzµÏé•`)ÓžÑÑéómY"
æ^æN{éómYцNewtonS“gê'X§Xã2¤«"
lã2¥Œ±wÑ¯K†éó¯K8I¼êŠƒ=éómY‘XÚî{S“gêO
\5"
Figure3.Iterativeresult
ã3.S“(J
DOI:10.12677/aam.2022.1153263067A^êÆ?Ð
x•Z
•ÄXeàg5y¯K9Ùéó¯Kµ
minf(x) =
1
2
x
2
1
+x
2
2
+x
2
3
+
1
2
x
2
4
−7x
1
−5x
2
−24x
3
+9x
4
s.t.x
1
−x
2
+x
3
= 13
x
2
+x
4
= 5
x
1
,x
2
,x
3
,x
4
≥0
(22)
lã3¥Œ±wѧ|^éóéêæN{¦)àg5y¯K§JÐ…Âñ4
Š(6.3333,5.0000,11.6667,0.0000)"
5.(Ø
ŠâO Ž¢~(JѧéêæN{¦)Øªå`z¯KÚàg5y¯Kš~k
Œ1§´éêæN{k˜½Û•5§Ð©:‡3Œ1•S§¢SOŽ¥•憧ØÓ
¯KéЩ:kØÓ‡¦"¤±3±ïÄ¥§Œ±U?éêæN{5¦)•`z¯K"
ë•©z
[1]æ‰,š©Õ.•`zn؆•{[M].®:‰ÆÑ‡,1997.
[2]Polak,E.,Higgins,J.E.andMayne,D.Q.(1992)ABarrierFunctionMethodforMinimax
Problems.MathematicalProgramming,54,155-176.https://doi.org/10.1007/BF01586049
[3]Pourmohamad, T. and Lee, H.K.H. (2022) BayesianOptimization via Barrier Functions. Jour-
nalofComputationalandGraphicalStatistics,31,74-83.
https://doi.org/10.1080/10618600.2021.1935270
[4]Zhang,R.,Mei,J.,Dai,B.,Schuurmans,D.andLi,N.(2022)OntheEffectofLog-Barrier
Regularization inDecentralized Softmax Gradient Play inMultiagent Systems. arXivpreprint
arXiv:2202.00872
[5]•.•`zn؆Ž{[M].®:˜uŒÆÑ‡k•úi,2005.
[6]Frisch,K.R.(1955)TheLogarithmicPotentialMethodofConvexProgramming.Memoran-
dum,UniversityInstituteofEconomics,Oslo,5.
[7]Wright,M.H.(1992)InteriorMethodsforConstrainedOptimization.ActaNumerica,1,341-
407.https://doi.org/10.1017/S0962492900002300
[8]Fiacco, A.V.andMcCormick, G.P.(1990)NonlinearProgramming:Sequential Unconstrained
MinimizationTechniques.SocietyforIndustrialandAppliedMathematics,Philadelphia,PA.
https://doi.org/10.1137/1.9781611971316
[9]Fang,S.-C.andPuthenpura,S.(1993)LinearOptimizationandExtensions:Theoryand
Algorithms.Prentice-Hall,Inc.,Hoboken.
DOI:10.12677/aam.2022.1153263068A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.