设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(6),928-937
PublishedOnlineJune2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.126102
˜a©•§|Robin>НK)
ÇÇǰ°°²²²
Ü“‰ŒÆ§êƆÚOÆ§[‹=²
ÂvFϵ2022c53F¶¹^Fϵ2022c67F¶uÙFϵ2022c614F
Á‡
©Ñué©•§|>НKš‚5‘ÍÜO•g•§)û˜aš‚5©•§|>Н
K)"$^šKþà¼êJensen ØªÚØÄ:•ênØ?Ø˜a©•§|
Robin>НK















−∆
2
u(t−1) = f(t,u,v),t∈[1,T]
Z
,
−∆
2
v(t−1) = g(t,u,v),t∈[1,T]
Z
,
u(0) = ∆u(T) = 0,
v(0) = ∆v(T) = 0
)•35§Ù¥T≥2´˜‡ê§∆u(t)=u(t+1)−u(t)´c•©Žf§f,g:
[1,T]
Z
×[0,∞)×[0,∞) →[0,∞)ëY"
'…c
JensenØª§)§©•§|§ØÄ:•ênØ
PositiveSolutionsofRobinBoundary
ValueProblemsforaClassofSecond-Order
DifferenceSystem
HaiyiWu
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
©ÙÚ^:ǰ².˜a©•§|Robin>НK)[J].nØêÆ,2022,12(6):928-937.
DOI:10.12677/pm.2022.126102
ǰ²
Received:May3
rd
,2022;accepted:Jun.7
th
,2022;published:Jun.14
th
,2022
Abstract
Inthispaper,weconsiderthecoupledgrowthofnonlineartermsforboundaryvalue
problems of systemsof differenceequations,resolve the positive solutions ofboundary
valueproblemsforaclassofnonlineardifferenceequations.AlsobyusingJensen’s
inequalityfornonnegativeconcavefunctionsandthefixedpointindextheory,we
discusstheexistenceofpositivesolutionsofRobinboundaryvalueproblemsfora
classofsecond-orderdifferencesystem















−∆
2
u(t−1) = f(t,u,v),t∈[1,T]
Z
,
−∆
2
v(t−1) = g(t,u,v),t∈[1,T]
Z
,
u(0) = ∆u(T) = 0,
v(0) = ∆v(T) = 0
whereT≥2istheinteger,∆u(t)=u(t+1) −u(t)istheforwarddifferenceoperator,
f,g: [1,T]
Z
×[0,∞)×[0,∞) →[0,∞)arecontinuous.
Keywords
Jensen’sInequality,PositiveSolutions,Second-OrderDifferenceEquations,
FixedPointIndexTheory
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CC BY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
Z´ê8,é?¿a,b∈Z…a<b,P[a,b]
Z
:= {a,a+1,···,b}.
Cc5, ‘XlÑêÆ!ÚO!OŽ!>´©Û!ÄåXÚ!²LÆ!)ÔÆƉ+•¯
„uÐ, Œþd©•§£ãêÆ.JÑÚïÄ. ~X: ˜5ÔŸŸþP~¯K!«+)
Æ¥Á•.!Fiobonacci ¯K!E|¯K. ,'u ©•§(|)>НKïÄ%ƒé
DOI:10.12677/pm.2022.126102929nØêÆ
ǰ²
…ú, ¿…Œõê´æ^†‡©•§aq•{5ïÄ.Ù¥˜a´ïáGreen ¼êò¤ïÄ>
НK=z•¦A½¼ê˜m¥ŽfØÄ:,,|^ØÄ:½n!þe)•{½ÿÀÝnئ
),,˜a´$^©ÜnØ!C©{!.:nØ(ÜØÄ:nØïÄ, ë„©z[1–10].
2009c, Henderson[9]3f,g,a,bäkfÍÜ^‡e, ÄuIþØÄ:½n?Ø©X
Ú















∆
2
u(n−1)+λa(n)f(u(n),v(n)) = 0,n∈[1,N−1]
Z
,
∆
2
v(n−1)+µb(n)g(u(n),v(n)) = 0,n∈[1,N−1]
Z
,
u(0) = βu(η),u(N) = αu(η) = 0,
v(0) = βv(η),v(N) = αv(η) = 0
)•35,Ù¥η∈[1,N−1]
Z
,α,β,λ,µ>0,N≥4,…f,g,a,bšKëY.
3dÄ:þ,2011c,©[10]ïÄäk•˜„>.^‡©ê©XÚ)•35.
2020 c,3©[11]¥,Yang <ÄušKþà¼êJensen ØªÚØÄ:•ênØ, ïÄ
˜a[‚5~‡©•§|Robin>НK















−((u
0
)
p−1
)
0
= f(t,u,v),t∈[0,1],
−((v
0
)
q−1
)
0
= g(t,u,v),t∈[0,1],
u(0) = u
0
(1) = 0,
v(0) = v
0
(1) = 0
)•35,Ù¥p,q>1,…f,g: [0,1]×[0,∞)×[0,∞) →[0,∞)ëY.
Éþã©zéu, ©|^šKþà¼ê#Nš‚5‘f,g·ÜO•,ÄušKþà¼ê
JensenØª(ÜØÄ:•ênØ5¼kO,ïÄXe©•§|Dirichlet>НK















−∆
2
u(t−1) = f(t,u,v),t∈[1,T]
Z
,
−∆
2
v(t−1)= g(t,u,v),t∈[1,T]
Z
,
u(0) = u(T+1) = 0,
v(0) = v(T+1) = 0
(1)
)•35.
©|„Xe:1!•¹A‡ÐÚ(J, AO´dþà¼ê5Ÿ¤#ØªÚšKþ
à¼êJensenØª.1n!·‚k‰½©ob½,$^þà¼ê5•xš‚5‘f,g·ÜO
•.~X,f´g‚5O•,Kg´‡‚5O•.•, 3!¥,·‚‰Ñ©̇(J9Ùy².
2.ý•£
©¤^˜m•:
DOI:10.12677/pm.2022.126102930nØêÆ
ǰ²
PE:= {u(t)|u: [0,T+1]
Z
→R,u(0) = 0 = u(T+1)},P:= {u∈E|u(t) ≥0,t∈[0,T+1]
Z
},
KE3‰êkuk= max
t∈[0,T+1]
Z
|u(t)|e¤¢Banach ˜m,…P•Eþ˜‡I.
éu?¿(u,v) ∈E×E,
k(u,v)k:= max{kuk,kvk},
KE×E3‰êk(u,v)ke¤¢Banach˜m.
©XÚ(1)du



u(t) =
P
T
s=1
G(t,s)f(s,u(s),v(s)),t∈[1,T]
Z
,
v(t) =
P
T
s=1
G(t,s)g(s,u(s),v(s)),t∈[1,T]
Z
,
(2)
éuu(t),v(t) : [0,T+1]
Z
→R,½ÂŽfA
1
,A
2
: P×P→P,A: P×P→P×P,



A
1
(u,v)(t) :=
P
T
s=1
G(t,s)f(s,u
0
(s),v
0
(s)),t∈[1,T]
Z
,
A
2
(u,v)(t) :=
P
T
s=1
G(t,s)g(s,u
0
(s),v
0
(s)),t∈[1,T]
Z
,
(3)
…A(u,v)(t) := (A
1
(u,v)(t),A
2
(u,v)(t)),Ù¥G(t,s) := min{t,s},s,t∈[1,T]
Z
•‚5¯K



−∆
2
u(t−1) = h(t),t∈[1,T]
Z
,
u(0) = ∆u(T) = 0
‚¼ê.´y,ŽfA
1
,A
2
,AëY, •§|(1) duŽf•§(u,v) = A(u,v).
©¦^̇óäXe:
Ún1([8])E•¢Banach ˜m, P•E¥˜‡I, Ω ´Pþ˜‡k.m8, Žf
T: Ω∩P→PëY. e•3x
0
∈P\{0}, ¦
x−Tx6= λx
0
,x∈∂Ω∩P,λ≥0,
Ki(T,Ω∩P,P) = 0. ùpi´PþØÄ:•ê.
Ún2([8])E•¢Banach˜m,P•E¥˜‡I,Ω´Pþ˜‡k.m8,0 ∈Ω,
ŽfT: Ω∩P→PëY. e
x−λTx6= 0,x∈∂Ω∩P,λ∈[0,1],
Ki(T,Ω∩P,P) = 1.ùpi´PþØÄ:•ê.
Ún3([11])P×P´Banach˜m(E,k·k)˜‡I, ŽfT: P×P→P×PëY,
er
P×P
(T) <1,K•3P×PþŽfI−TëY_Žf(I−T)
−1
,
(I−T)
−1
P×P
=
∞
X
m=0
T
m
,
DOI:10.12677/pm.2022.126102931nØêÆ
ǰ²
Ù¥,r
P×P
(T)•ŽfT3P×PþÌŒ».
íØ1([11])P×P´Banach˜m(E,k·k)˜‡I, ŽfT: P×P→P×PëY,
er
P×P
(T) <1…x,x
0
∈P×P,÷vx≤Tx+x
0
,Kx≤(I−T)
−1
P×P
x
0
.
Ún4ω∈P´[0,T+1]
Z
þþà¼ê,e•3[0,T+1]
Z
þ˜:r,¦kωk= ω(r),
K
kωk<
r
µ
1
T
X
t=1
ω(t)sin
πt
2T+1
.(4)
Ù¥,µ
1
=
P
r
t=1
tsin
πt
2T+1
>0.
y².dbŒ•,
T
X
t=1
ω(t)sin
πt
2T+1
=
r
X
t=1
ω(r·
t
r
+(1−
t
r
)·0)sin
πt
2T+1
+
T
X
t=r+1
ω((T+1)·
t
T+1
+(1−
t
T+1
)·0)sin
πt
2T+1
>
ω(r)
r
r
X
t=1
tsin
πt
2T+1
=
kωkµ
1
r
,
l(4)¤á.
Ún5([7])Ψ
1
: [0,∞)→[0,∞) ´ëYþà¼ê, Ψ
2
: [1,T]
Z
→[0,∞) ´‰½¼ê,
ep
i
>0,K
Ψ
1

P
T
i=1
p
i
Ψ
2
(i)
P
T
i=1
p
i

≥
P
T
i=1
p
i
Ψ
1
(Ψ
2
(i))
P
T
i=1
p
i
.
Ún6ϕ
1
(t) = sin
πt
2T+1
,t∈[1,T]
Z
,K
λ
1
T
X
t=1
G(t,s)ϕ
1
(t) = ϕ
1
(s),s∈[1,T]
Z
.
Ù¥,λ
1
= 4sin
2
π
4T+2
.
y². Ï•λ
1
P
T
s=1
G(t,s)ϕ
1
(s)=ϕ
1
(t),t∈[1,T]
Z
.5¿,‚¼êé¡5,G(t,s)=
G(s,t),t,s∈[1,T]
Z
.¤±λ
1
P
T
s=1
G(s,t)ϕ
1
(s) = ϕ
1
(t),t∈[1,T]
Z
.Ïd(ؤá.
Ún7ψ: [0,∞) →[0,∞) ëY…3[0,∞) þà,KψüN4O.
y².é?¿x>x
2
>x
1
≥0,duψþà, K
ψ(x
2
) ≥ψ(x
1
)+
x
2
−x
1
x−x
2
(ψ(x)−ψ(x
2
)),
DOI:10.12677/pm.2022.126102932nØêÆ
ǰ²
(ÜψšK5,lim
x→∞
ψ( x)
x
≥0.lψ(x
2
) ≥ψ(x
1
).
3.̇(J9y²
©ob½µ
(H1)¼êf,g: [1,T]
Z
×[0,∞)×[0,∞) →[0,∞) ëY;
(H2)¼êψ
1
,ψ
2
: [0,∞) →[0,∞)ëY,ψ
1
•þà¼ê,…•3~êα>2(T+1)
2
sin
4
π
4T+2
,c>
0,¦
(i)f(t,x,y) ≥ψ
1
(y)−c,g(t,x,y) ≥ψ
2
(x)−c,t∈[1,T]
Z
,x,y∈[0,∞);
(ii)ψ
1
(ψ
2
(z)) ≥αz−c,z∈[0,∞);
(H3)•3~êa
1
,b
1
,c
1
,d
1
≥0,r>0,…r
P×P
(T
1
) <1,k
f(t,u,v) ≤a
1
u+b
1
v, g(t,u,v) ≤c
1
u+d
1
v,x,y∈[0,r],t∈[1,T]
Z
,
Ù¥,ŽfT
1
: P×P→P×P,
T
1
(u,v)(t) := (
T
X
s=1
G(t,s)(a
1
u(t)+b
1
v(t)),
T
X
s=1
G(t,s)(c
1
u(t)+d
1
v(t))).
©̇(JXe:
½n1b½(H1)-(H3) ¤á,•§|(1) –•3˜‡).
y².PM
1
:= {(u,v) ∈P×P: (u,v) = A(u,v)+λ(ω
0
,ω
0
),λ≥0},Ù¥ω
0
(t) := (2T+1)t−t
2
.
e(u
0
,v
0
) ∈M
1
,K•3λ
0
≥0,d
u
0
(t) =
T
X
s=1
G(t,s)f(s,u
0
(s),v
0
(s))+λ
0
ω
0
, v
0
(t) =
T
X
s=1
G(t,s)g(s,u
0
(s),v
0
(s))+λ
0
ω
0
,(5)
(Ü(2),(3)Œ,(u
0
,v
0
) = A(u
0
,v
0
)+λ
0
(ω
0
,ω
0
).
d(H1) Œ•,∆
2
u
0
(t−1)≤0,lu
0
3[1,T]
Z
þ´þà.ÓnŒ,v
0
3[1,T]
Z
þ•´þ
à.(Ü(5) ,
u
0
(t) ≥
T
X
s=1
G(t,s)f(s,u
0
(s),v
0
(s)), v
0
(t) ≥
T
X
s=1
G(t,s)g(s,u
0
(s),v
0
(s)),
db½(H2)¥(i),
u
0
(t) ≥
T
X
s=1
G(t,s)ψ
1
(v
0
(s))−c
1
, v
0
(t) ≥
T
X
s=1
G(t,s)ψ
2
(u
0
(s))−c
1
,(6)
DOI:10.12677/pm.2022.126102933nØêÆ
ǰ²
Ïd,
u
0
(t) ≥
T
X
s=1
G(t,s)ψ
1
(
T
X
τ=1
G(s,τ)ψ
2
(u
0
(τ)))−c
2
.(7)
du
T
X
τ=1
G(s,τ) =
s
X
τ=1
τ+
T
X
τ=s+1
s=
(T+1−s)s
2
,
-h(s) =
(T+1−s)s
2
,Kh•Š
T
2
,•ŒŠ
(T+1)
2
8
.5¿T≥2,¤±
P
T
τ=1
G(s,τ) ≥1.
dψ
1
üN4OÚÚn5Œ,
ψ
1
(
T
X
τ=1
G(s,τ)ψ
2
(u
0
(τ)))≥ψ
1

P
T
τ=1
G(s,τ)ψ
2
(u
0
(τ))
P
T
τ=1
G(s,τ)

≥
P
T
τ=1
G(s,τ)ψ
1
(ψ
2
(u
0
(τ)))
P
T
τ=1
G(s,τ)
≥
8
(T+1)
2
T
X
τ=1
G(s,τ)ψ
1
(ψ
2
(u
0
(τ))),
(Ü(H2)¥(ii)9(7)Œ,
u
0
(t)≥
8
(T+1)
2
T
X
s=1
G(t,s)
T
X
τ=1
G(s,τ)ψ
1
(ψ
2
(u
0
(τ)))−c
2
≥
8α
(T+1)
2
T
X
s=1
G(t,s)
T
X
τ=1
G(s,τ)u
0
(τ)−c
3
.
K,
u
0
(t) ≥
8α
(T+1)
2
T
X
s=1
G(t,s)
T
X
τ=1
G(s,τ)u
0
(τ)−c
3
.(8)
Pµ
2
=
P
T
t=1
sin
πt
2T+1
>0. é(8) üàÓž¦±sin
πt
2T+1
, 2lt=1Tþ¦Ú,¿dÚn6
Œ,
T
X
t=1
u
0
(t)sin
πt
2T+1
≥
8α
(T+1)
2
T
X
t=1

T
X
s=1
G(t,s)
T
X
τ=1
G(s,τ)u
0
(τ)sin
πt
2T+1

−µ
2
c
3
=
8α
(T+1)
2
T
X
s=1

T
X
t=1
G(t,s)sin
πt
2T+1
T
X
τ=1
G(s,τ)u
0
(τ)

−µ
2
c
3
=
8α
(T+1)
2
λ
1
T
X
s=1
T
X
τ=1
G(s,τ)sin
πs
2T+1
u
0
(τ)−µ
2
c
3
=
8α
(T+1)
2
λ
1
T
X
τ=1
T
X
s=1
G(s,τ)sin
πs
2T+1
u
0
(τ)−µ
2
c
3
=
8α
(T+1)
2
λ
2
1
T
X
t=1
sin
πt
2T+1
u
0
(t)−µ
2
c
3
.
DOI:10.12677/pm.2022.126102934nØêÆ
ǰ²
l
T
X
t=1
u
0
(t)sin
πt
2T+1
≤
(T+1)
2
λ
2
1
µ
2
c
3
8α−(T+1)
2
λ
2
1
.(9)
Ún4,
ku
0
k<
r
µ
1
T
X
t=1
u
0
(t)sin
πt
2T+1
≤
(T+1)
2
rλ
2
1
µ
2
c
3
µ
1
[8α−(T+1)
2
λ
2
1
]
.
u
0
k.,eyv
0
k..dÚn4 Œ•,
kv
0
k<
r
µ
1
T
X
t=1
v
0
(t)sin
πt
2T+1
.
d(6)Ú(9)(ÜÚn69Ún4Œí•,
(T+1)
2
λ
2
1
µ
2
c
3
8α−(T+1)
2
λ
2
1
≥
T
X
t=1
u
0
(t)sin
πt
2T+1
≥
T
X
t=1
T
X
s=1
G(t,s)ψ
1
(v
0
(s))sin
πt
2T+1
−µ
2
c
1
=
T
X
s=1
T
X
t=1
G(t,s)ψ
1
(v
0
(s))sin
πt
2T+1
−µ
2
c
1
=
1
λ
1
T
X
t=1
ψ
1
(v
0
(t))sin
πt
2T+1
−µ
2
c
1
=
1
λ
1
T
X
t=1
ψ
1

v
0
(t)
kv
0
k
·kv
0
k

sin
πt
2T+1
−µ
2
c
1
≥
1
λ
1
ψ
1
(kv
0
k)
kv
0
k
T
X
t=1
v
0
(t)sin
πt
2T+1
−µ
2
c
1
>
µ
1
rλ
1
ψ
1
(kv
0
k)−µ
2
c
1
.
Ïd,
ψ
1
(kv
0
k) <
(T+1)
2
rλ
3
1
µ
2
c
3
µ
1
(8α−(T+1)
2
λ
2
1
)
+
rλ
1
µ
2
c
1
µ
1
.
d(H2)Υ,lim
z→∞
ψ
1
(z) = ∞,K•3c
4
>0,¦kv
0
k<c
4
,M
1
k..
-R>sup{(u,v):(u,v)∈M
1
},K•3ω
0
6=0,¦(u,v)6=A(u,v)+λ(ω
0
,ω
0
).dÚn1 ,
?¿(u,v) ∈∂B
R
∩P×P,λ6= 0,
i(A,B
R
∩P×P,P×P) = 0.(10)
PM
2
={(u,v)∈
¯
B
r
∩P×P:(u,v)=λA(u,v),λ∈[0,1]},eyM
2
={0}.e(u
0
,v
0
)∈
DOI:10.12677/pm.2022.126102935nØêÆ
ǰ²
M
2
,(u
0
,v
0
)∈
¯
B
r
∩P×P,K(u
0
,v
0
)=λ
0
A(u
0
,v
0
).du¯K(1)duŽf•§(u
0
,v
0
)=
A(u
0
,v
0
),(Ü(2),é,‡λ
0
∈[0,1],
u
0
(t) ≤
T
X
s=1
G(t,s)f(s,u
0
(s),v
0
(s)), v
0
(t) ≤
T
X
s=1
G(t,s)g(s,u
0
(s),v
0
(s)),
d(H3)•,
u
0
(t) ≤
T
X
s=1
G(t,s)(a
1
u
0
+b
1
v
0
), v
0
(t) ≤
T
X
s=1
G(t,s)(c
1
u
0
+d
1
v
0
),
l
(u
0
,v
0
) ≤T
1
(u
0
,v
0
).(11)
díØ1Ú(10)Œ•, u
0
= v
0
= 0,M
2
= {0}.dÚn2Œ•,éu?¿(u,v) ∈B
r
∩P×P,λ∈
[0,1],(u,v) 6= λA(u,v).K
i(A,B
r
∩P×P,P×P) = 1.(12)
(Ü(10),(12),
i(A,(B
R
/B
r
)∩P×P,P×P) = −1.
KA3(B
R
/B
r
)∩P×P–k˜‡ØÄ:.
Ä7‘8
I[g,‰ÆÄ7“cÄ7]Ï‘8(11801453,11901464),[‹Ž“c‰EÄ7Oy]
Ï(20JR10RA100).
ë•©z
[1]Chen,T.L.,Ma,R.Y.andLiang,Y.W.(2019)MultiplePositiveSolutionsofSecond-Order
NonlinearDifferenceEquationswithDiscreteSingularφ-Laplacian.JournalofDifferenceE-
quationsandApplications,25,38-55.https://doi.org/10.1080/10236198.2018.1554064
[2]Gao,C.H. andMa,R.Y.(2016) EigenvaluesofDiscrete Sturm-Liouville Problemswith Eigen-
parameterDependentBoundaryConditions.LinearAlgebraandItsApplications,503,100-
119.https://doi.org/10.1016/j.laa.2016.03.043
[3]Ma,R.Y.andAn,Y.L.(2009)GlobalStructureofPositiveSolutionsforSuperlinearSecond
Orderm-PointBoundaryValueProblems.TopologicalMethodsinNonlinearAnalysis,34,
279-290.https://doi.org/10.12775/TMNA.2009.043
[4]Ma,R.Y., Gao, C.H.andLu,Y.Q.(2018) Spectrum Theory ofSecond-OrderDifferenceEqua-
tionswithIndefiniteWeight.JournalofSpectralTheory,8,971-985.
https://doi.org/10.4171/JST/219
DOI:10.12677/pm.2022.126102936nØêÆ
ǰ²
[5]Mohammed,A.,Radukecu,V.andVitolo,A.(2020)Blow-UpSolutionsforFullyNonlinear
Equation:Existence,AsvmototicEstimates andUniqueness. AdvancesinNonlinearAnalysis,
9,39-64.https://doi.org/10.1515/anona-2018-0134
[6]Tisdell,C.C. (2017)A DiscreteApproach toContinuous Second-OrderBoundaryValueProb-
lemsviaMonotoneIterativeTechniques.InternationalJournalofDifferenceEquations,12,
145-160.
[7]Mitrinovic,D.S.(1970)AnalyticInequalities.Springer-Verlag,Berlin,NewYork.
[8]Wang, Y. andShi, Y.M. (2005)Eigenvalues ofSecond-Order Difference Equationswith Period-
ic and Antiperiodic Boundary Conditions. JournalofMathematicalAnalysisandApplications,
309,56-69.https://doi.org/10.1016/j.jmaa.2004.12.010
[9]Henderson,J.,Ntouyas, S. and Purnaras,I. (2009) PositiveSolutions for Systems ofNonlinear
DiscreteBoundaryValueProblems.JournalofDifferenceEquationsandApplications,15,
895-912.https://doi.org/10.1080/10236190802350649
[10]Goodrich,C.S.(2011)ExistenceofaPositiveSolutiontoaSystemofDiscreteFractional
BoundaryValueProblems.AppliedMathematicsandComputation,217,4740-4753.
https://doi.org/10.1016/j.amc.2010.11.029
[11]Yang,Z.L.,Wang,X.M.andLi,H.Y.(2020)PositiveSolutionsforaSystemofSecond-Order
QuasilinearBoundaryValueProblems.NonlinearAnalysis,195,ArticleID:111749.
https://doi.org/10.1016/j.na.2020.111749
DOI:10.12677/pm.2022.126102937nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.