设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(6),938-951
PublishedOnlineJune2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.126103
˜ao<•Cz‘ÅD/¾.
KŠÄåÆ1•
???TTT¤¤¤
=²nóŒÆ§nÆ§[‹=²
ÂvFϵ2022c54F¶¹^Fϵ2022c68F¶uÙFϵ2022c615F
Á‡
•ïÄkÇ!D/ÇÚXÚ‘Å6Äé;¾DÂK•§©Ì‡•Ä˜‡3Cz<
• 5e§;¾k Ç!D/ÇÚXÚÑÉZ6‘ÅD/¾."ÏLEToäÊ
ìżêy²)•3•˜5"ïáû½;¾«ýKŠR
s
0
§|^Œê½nÚItˆoúª
D/¾«ý¿©ÚA7‡^‡"•äN/ù§XJR
s
0
<1§¿›X;¾±•ꕪ«ý"
•ªÏLEKŠR
s
0
Œ±uy§´aöXÚ6ĬOr;¾D¶/¾öD/Ç!k
ÇÚXÚ6Ä‘ÅÅĬ³›;¾DÂ"
'…c
SIRS.§;¾«ý§)•3•˜5
TheThresholdDynamicBehaviorofa
StochasticInfectiousDiseaseModel
withVaryingTotalPopulationSize
RuyiRen
SchoolofScience,LanzhouUniversityofTechnology,LanzhouGansu
Received:May4
th
,2022;accepted:Jun.8
th
,2022;published:Jun.15
th
,2022
©ÙÚ^:?T¤.˜ao<•Cz‘ÅD/¾.KŠÄåÆ1•[J].nØêÆ,2022,12(6):938-951.
DOI:10.12677/pm.2022.126103
?T¤
Abstract
Tostudytheeffectsofmortality,infectionratesofrandomdisturbancesandrandom
perturbationofthesystemonthespreadofdisease,inthispaper,weconsidera
stochasticinfectiousdiseasemodelinwhich themortality,transmissionandsystemof
the diseasearedisturbed withchanging populationsize.The existenceanduniqueness
ofknowledgeisprovedbyconstructingappropriateLyapunovfunctions.Established
thresholdsR
s
0
fordeterminingdiseaseextinction,applyingMartingale’stheoremof
largenumbersandItˆoformulas,sufficientandalmostnecessaryconditionshavebeen
obtainedfortheextinctionofinfectiousdiseases.Morespecifically,ifR
s
0
<1,the
diseasewilldieout.Finally,byconstructingthresholdR
s
0
,wefindthatthestochastic
perturbations ofthe deathrate and randomperturbationof the systemfor susceptible
populationcanenhancethespreadofdisease,whilethestochasticperturbationsof
thedeathrateandrandomperturbationofthesystemforinfectiouspopulation,as
wellasthetransmissionrateofthediseasecansuppressthespreadofthedisease.
Keywords
SIRSModel,ExtinctionofDisease,ExistenceandUniquenessofSolutions
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CC BY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
D/¾î-K•X <aNèxÚ¬²LuÐ,ïÄ´ý“Ú››D/¾-‡•ª.
êÆ.Œ±éÐ/•xD/¾DÂ5Æ9uЪ³!K•D/¾DÂ'…σ.ÏL½þ©
Û,Uýÿ;¾Dª³9y››„–k5.•¦êÆ.•Ð/• x;¾DÂL§,
3ïL§¥I‡•ÄK•;¾DÂy¢Ïƒ.
3¢S)¹¥§D/¾a/Ç!kÇ!EuÇÚ•¼›”Ç ÉG!!í§!‚¸—
Ý‚¸ÏƒK•[1–3]"®kŒþ©zy²‘Å‚¸6ÄéD/¾.ÄåÆ1•K•"
~X§3Gray<[4]óŠ¥§¦‚3D/Çβ¥Ú\‘Å‚¸K•§ïá˜‡‘ÅSIS.
DOI:10.12677/pm.2022.126103939nØêÆ
?T¤
«ýÚ±Y¿©^‡"Du<óŠ[5]§Ú\˜‡äkBeddington-DeAngelisõU•A
‘ÅSIR.§T.¥§Ñ)Ç-kÇÚu¾ÇÓžé‘ÅD()Z6§¦ ‚ÏLéKЧ
ïá;¾±È5Ú«ý¿©ÚA7‡^‡"•<[6]ÏL3(½5.¥Ú\‚¸D(§
ïÄäk˜„š‚5u¾Ç‘ÅSIRSD/¾.§ïáH{²-©Ù•3•˜5¿©^
‡§3˜½^‡e§y²‘Å6Äé;¾«ýK•"¸<[7]•ÄD/ÇÉxD(Úç
ÚD(K•§JÑ˜aGƒ†‘ÅSIRSD/¾.§ÑxD(ÚçÚD(U³›
;¾u(Ø¿y²3˜½^‡eþ²ï:´‘Åì?-½"N.Tuerxun<[8]bD
/ÇÉ‚¸Z6§ïÄ˜aäkšüNu)ÇÚòz*Ñ‘ÅSIRS.§|^ê‰ÅŒ
+nØy².²-©Ù•3•˜5"é<[9,10]bD/Ç!¡EÇÚkÇÓžÉ
‚¸D(K•§JÑ˜a‘ÅSISD/¾.§¿y²XÚ)•3•˜5Ú;¾±È
†«ý",k˜©z••Äõ‡ëêÉ‚¸6ÄD/¾.[3,5,9,11–13]"é<[14]ò
‚¸D(Ú\(½5.¥§=bD/ÇÏ•‚¸D(ÅÄÉZ6§JÑ˜a3Zý
üÑeäkš‚5u)Ç‘ÅSIRS.§Ñ‚¸D(rÝU³›;¾u†61
(Ø"D/¾.É‚¸K•ïÄ„kéõ[3,12,15–22]"
ë<[23]bD/ÇβÉ‘Å‚¸ÏƒK•§JÑ˜ao<•Cz…äkIOu)Ç
‘ÅSIRSD/¾.Xeµ











dS(t) = (bN(t)−µS(t)−
βS(t)I(t)
N(t)
+δR)dt−σ
S(t)I(t)
N(t)
dB(t),
dI(t) = [
βS(t)I(t)
N(t)
−(µ+α+γ)I(t)]dt+σ
S(t)I(t)
N(t)
dB(t),
dR(t) = [γI(t)−(µ+δ)R(t)]dt.
(1)
•S(t):D/¾¥´aöêþ,
•I(t):D/¾¥/¾öêþ,
•R(t):D/¾¥¡Eöêþ,
•N(t):o<•êþ,
•b:Ñ)Ç,
•µ:g,kÇ,
•β:a/‡N<þ>ǧ=ü žmS³>ö²þêþ,
•δ:¡E‡NÔ”•¼å„Ç,
•α:a/‡NϾkÇ,
•γ:a/‡N¡EÇ,
•σ:xD(rÝ,
ùpB(t)´˜‘IOÙK$Ä"ë<[23]ÑD/¾.(1)«ýÚ±È¿©^‡
Xeµ
DOI:10.12677/pm.2022.126103940nØêÆ
?T¤
(1)XJ(1) σ
2
>max{(β−α)
2
/2(b+ γ),β−α},(2)β−α≤0,
˜
R
0
<0,(3) σ
2
≤β−α,Ù
¥
˜
R
0
=
β−
σ
2
2
b+α+γ
n‡^‡¥k˜‡^‡¤á§K;¾«ý"
(2)XJ
˜
R
0
=
β
b+α+γ
−
σ
2
2(b+α+γ)
>1§K;¾±È"
3©z[23]Ä:þ§?˜Ú•Ä.(1)ÉXÚÉ6ħ©OK•XÚ(1)¥
dS
dt
§
dI
dt
§
dR
dt
"
•äNù§•Ä.Xeµ







dS(t) = [bN(t)−µS(t)−
βS(t)I(t)
N(t)
+δR(t)]dt−σ
1
S(t)I(t)
N(t)
dB
1
(t)+σ
2
S(t)dB
2
(t),
dI(t) = [
βS(t)I(t)
N(t)
−(µ+α+γ)I(t)]dt+σ
1
S(t)I(t)
N(t)
dB
1
(t)+σ
3
I(t)dB
3
(t),
dR(t) = [γI(t)−(µ+δ)R(t)]dt+σ
4
R(t)dB
4
(t).
(2)
B
1
(t)§B
2
(t)§B
3
(t)§B
4
(t)´o‡ÕáÙK$ħσ
1
§σ
2
§σ
3
§σ
4
•‚¸6ÄrÝ"b
.(2)¥¤këêÑ´šK"
l(2)ªŒ±
dN(t) = [(b−µ)N(t)−αI(t)]dt+σ
2
S(t)dB
2
(t)+σ
3
I(t)dB
3
(t)+σ
4
R(t)dB
4
(t).
-x=
S
N
,y=
I
N
,z=
R
N
§KXÚ(2)C•





















dx= [b(1−x)+(α−β)xy+δz+σ
2
3
xy
2
−σ
2
2
x
2
(1−x)+σ
2
4
xz
2
]dt
−σ
1
xydB
1
(t)+σ
2
x(1−x)dB
2
(t)−σ
3
xydB
3
(t)−σ
4
xzdB
4
(t),
dy= [βxy−(b+α+γ)y+αy
2
−σ
2
3
y
2
(1−y)+σ
2
2
x
2
y+σ
2
4
yz
2
]dt
+σ
1
xydB
1
(t)−σ
2
xydB
2
(t)+σ
3
y(1−y)dB
3
(t)−σ
4
yzdB
4
(t),
dz= [γy−(b+δ)z+αyz+σ
2
3
y
2
z+σ
2
2
x
2
z−σ
2
4
z
2
(1−z)]dt−σ
2
xzdB
2
(t)
−σ
3
yzdB
3
(t)+σ
4
z(1−z)dB
4
(t).
(3)
éu.(3)§Ï•kx+y+z= 1¤á§K.(3)•Œ±¤



























dx= [b(1−x)+(α−β)xy+δ(1−x−y)+σ
2
3
xy
2
−σ
2
2
x
2
(1−x)
+σ
2
4
x(1−x−y)
2
]dt−σ
1
xydB
1
(t)+σ
2
x(1−x)dB
2
(t)
−σ
3
xydB
3
(t)−σ
4
x(1−x−y)dB
4
(t),
dy= [βxy−(b+α+γ)y+αy
2
−σ
2
3
y
2
(1−y)+σ
2
2
x
2
y
+σ
2
4
y(1−x−y)
2
]dt+σ
1
xydB
1
(t)
−σ
2
xydB
2
(t)+σ
3
y(1−y)dB
3
(t)−σ
4
y(1−x−y)dB
4
(t),
(4)
3©ÛD/¾.L§¥§˜Æö}ÁXïá;¾«ýÚ±ÈKŠ^‡§~XDu
<[5]JÑ˜aäkBeddington-DeAngelisõU‡A¼ê‘ÅSIR.§;¾«ýÚ±
ÈKŠ^‡"Dieu<[24]JÑ˜aäkòz*ÑSIR‘Ň©•§§;¾«ýÚ
±ÈKŠ^‡"Du<[25]ïÄ˜aäkBeddington-DeAngelisu)Ç‘ÅSIR.§J
DOI:10.12677/pm.2022.126103941nØêÆ
?T¤
ÑD/¾.3òzÚšòzœ¹e±ÈÚH{¿©7‡^‡"ùŸ©Ù¥§·‚8
´3©z[23]Ä:þ•ÄD/Ç!kÇÚXÚÉ‚¸K•§í2.(4)§¿ÁXï
á.(4);¾«ýKŠ^‡"
©Ù•{Ü©SNXe"31Ü©¥ò‰Ñ©¬^Ä½ÂÚúª"31nÜ©¥
òy².(4)Û)•3•˜5¿…‰Ñ.(4)ØC8"1oÜ©ÏLïáÜ·
oäÊìżê§y²‘Å.(4)'u;¾«ýKŠ^‡"1ÊÜ©?1(Øo(Ú™5
Ð""
2.ý•£
!ò‰Ñ©¤^Ü©‡©•§ƒ'•£§SN•„©z[26–33].
½Â2.1[27,28,34]e,‡¼êτ:Ω→T∪{∞}÷v^‡{τ≤t}∈F
t
,∀t∈T,K¡τ
•˜‡Êž½F
t
Êž.
½Â2.2[28]4P: F→[0,1]XJ
(1)P(Ω) = 1.
(2)éA
i
∈F…A
i
∩A
j
= ∅(i6= j),i,j=1,2,...kP

∪
∞
i=1
A
i

= Σ
∞
i=1
P(A
j
)¤á§@o¡•
VÇÿÝ,¡

Ω,F,P

•Vǘm.XJ

Ω,F,P

•˜Vǘm.-
¯
F=
n
A∈F: ∃B,C∈F
¦B⊂A⊂C,P(B)=P(C)
o
,@o
¯
F´˜‡σ-“ê,¡
¯
F´Fz.e
¯
F=F,¡

Ω,F,P

•Vǘm.
½n1.3.2.3[27,34](rŒê½Æ)M(t)={M
t
}
t≥0
´t=0ž•"¢ŠëYÛÜ
,Kk
lim
t→+∞
hM,Mi
t
= ∞a.s. ⇒lim
t→+∞
M
t
hM,Mi
t
= 0a.s.
±9
limsup
t→+∞
hM,Mi
t
t
<∞a.s. ⇒lim
t→+∞
M
t
t
= 0a.s.
3.Û)•3•˜5
3ùÜ©¥§òy²ØC•Λ= {x>0,y>0,x+y<1}´XÚ(4)ØC8….(4)•3
•˜Û)"Äk‰Ñy²I‡Ún3.1"
Ún3.1.PΓ = {(x,y,z) : x>0,y>0,z>0,x+y+z= 1}"éu?Û‰½ЩŠ(x
0
,y
0
,z
0
) ∈
Γ§•§(3)•3•˜)(x(t),y(t),z(t),t≥0)…)ò±VÇ1±3Γ¥§•Ò´`§é?¿
t≥0§(x(t),y(t),z(t)) ∈Γ"
y²..(3)Xê´ÛÜLipschitzëY§éu?ÛЩŠ(x
0
,y
0
,z
0
)∈R
3
+
…t∈(0,τ
e
)§•3
DOI:10.12677/pm.2022.126103942nØêÆ
?T¤
•˜ÛÜ)(x(t),y(t),z(t))a.s§Ù¥τ
e
´»žm"X•I‡y²τ
e
=∞a.s.-n
0
≥1´¿
©Œ¦(x
0
,y
0
,z
0
)Ñ3«m[
1
n
0
,1]¥"é¤kên≥n
0
§½ÂÊž
τ
n
= inf{t∈[0,τ
e
) : min{x(t),y(t),z(t)}≤
1
n
};(5)
8Üinfø=∞(øL«˜8).Šâτ
n
½Â§Œ±wÑ‘Xn→∞§τ
n
´4O¿…Pτ
∞
=
lim
n→∞
τ
n
§Kτ
∞
≤τ
e
a.s"eτ
∞
=∞§Kτ
e
=∞a.s"e5§ekτ
∞
=∞¤á§KŒ±Ñ
)"eτ
∞
6= ∞§•Ò´`§∃T≥0Úε∈(0,1)¦
P{τ
∞
≤T}>ε.
Ïd•3ên
1
≥n
0
¦
P{τ
n
≤T}≥ε,∀n≥n
1
.(6)
½ÂC
2
-¼êD: R
3
+
→R§Ù¥
D(x,y,z) = lnxyz,
é²w§é?¿x,y,z∈(0,1)§¼êD(x,y,z)•K"
é¼êD(x,y,z)A^Itˆoúª§Œ±
LD(x,y,z)=
1
x
[b(1−x)+(α−β)xy+δz+σ
2
3
xy
2
−σ
2
2
x
2
(1−x)+σ
2
4
xz
2
]
−
1
2x
2
[−σ
1
xydB
1
(t)+σ
2
x(1−x)dB
2
(t)−σ
3
xydB
3
(t)−σ
4
xzdB
4
(t)],
+
1
y
[βxy−(b+α+γ)y+αy
2
−σ
2
3
y
2
(1−y)+σ
2
2
x
2
y+σ
2
4
yz
2
]
−
1
2y
2
[σ
1
xydB
1
(t)−σ
2
xydB
2
(t)+σ
3
y(1−y)dB
3
(t)−σ
4
yzdB
4
(t)]
+
1
z
[γy−(b+δ)z+αyz+σ
2
3
y
2
z+σ
2
2
x
2
z−σ
2
4
z
2
(1−z)]
−
1
2z
2
[−σ
2
xzdB
2
(t)−σ
3
yzdB
3
(t)+σ
4
z(1−z)dB
4
(t)]
=[
b
x
−b+(α−β)y+
δz
x
+σ
2
3
y
2
−σ
2
2
x(1−x)+σ
2
4
z
2
]
+[βx−(b+α+γ)+αy−σ
2
3
y(1−y)+σ
2
2
x
2
+σ
2
4
z
2
]
+[
γy
z
−(b+δ)+αy+σ
2
3
y
2
+σ
2
2
x
2
−σ
2
4
z(1−z)]
−
1
2
[σ
2
1
y
2
+σ
2
2
(1−x)
2
+σ
2
3
y
2
+σ
2
4
z
2
]
−
1
2
[σ
2
1
x
2
+σ
2
2
x
2
+σ
2
3
(1−y)
2
+σ
2
4
z
2
]
−
1
2
[σ
2
2
x
2
+σ
2
3
y
2
+σ
2
4
(1−z)
2
]
DOI:10.12677/pm.2022.126103943nØêÆ
?T¤
=[
b
x
−2b−δ+(α−β)y+
δz
x
+3σ
2
3
y
2
−σ
2
2
x+3σ
2
4
z
2
+βx−(b+α+γ)+αy−σ
2
3
y+3σ
2
2
x
2
+
γy
z
+αy−σ
2
4
z]
−
1
2
[(σ
2
1
+2σ
2
2
)x
2
+(σ
2
1
+2σ
2
3
)y
2
+2σ
2
4
z
2
+σ
2
2
(1−x)
2
+σ
2
3
(1−y)
2
+σ
2
4
(1−z)
2
]
≥−2b−δ−βy−(σ
2
3
+σ
2
2
)x−(b+α+γ)−σ
2
3
y−σ
2
4
z
−
1
2
[(σ
2
1
+2σ
2
2
)x
2
+(σ
2
1
+2σ
2
3
)y
2
+2σ
2
4
z
2
+σ
2
2
(1−x)
2
+σ
2
3
(1−y)
2
+σ
2
4
)(1−z)
2
].
,H(x,y,z).
duk^‡x+ y+z=1…¼êH(x,y,z)´ëY§K∃C<0§¦é?¿(x,y,z)∈Γ§
kH(x,y,z) ≥C¶Ïd
dD(x,y,z)≥Cdt+σ
1
(x−y)dB
1
(t)+σ
2
(3x−1)dB
2
(t)
+σ
3
(3y−1)dB
3
(t)+σ
4
(3z−1)dB
4
(t).(7)
2é•§(7)ü>l0τ
n
∧TÈ©Œ
Z
τ
n
∧T
0
dD(x,y,z)≥
Z
τ
n
∧T
0
Cdt+
Z
τ
n
∧T
0
σ
1
(x−y)dB
1
(t)+
Z
τ
n
∧T
0
σ
2
(3x−1)dB
2
(t)
+
Z
τ
n
∧T
0
σ
3
(3y−1)dB
3
(t)+
Z
τ
n
∧T
0
σ
4
(3z−1)dB
4
(t).
éþãØªÏ"§Œ±
ED(x(τ
n
∧T),y(τ
n
∧T),z(τ
n
∧T)) ≥CT+D(x
0
,y
0
,z
0
) >−∞.
éun≥n
1
§-8ÜΩ
n
={ω∈Ω:τ
n
=τ
n
(ω)≤T}"d(6)ª§kP(Ω
n
)≥ε¤á"d§é?
¿ω∈Ω
n
§3x(τ
n
,ω),y(τ
n
,ω),z(τ
n
,ω)¥–k˜‡u
1
n
"Ïd§
D(x(τ
n
,ω),y(τ
n
,ω),z(τ
n
,ω)) ≤ln
1
n
.
Œ±
E[D(x(τ
n
∧T),y(τ
n
∧T),z(τ
n
∧T))]≤E[lny(T∧τ
n
)]
≤E[1
Ω
n
lny(τ
n
)]
≤εln
1
n
.
DOI:10.12677/pm.2022.126103944nØêÆ
?T¤
Ù¥1
Ω
k
´¼êΩ
k
A¼ê§Ï•n→∞ž§−∞<CT<−∞´gñ§Ïdkτ
∞
=∞§
•Ò´τ
n
= ∞§Kτ
e
= ∞a.s"Ún3.1y²¤"2
3Ún3.1Ä:þ§Œ±wÑé?¿t≥0§kx(t)>0,y(t) >0,z(t)>0…x+y+z=1§½
n3.1(J²w´¤á"
½n3.1.PΛ = {(x,y) : x>0,y>0,x+y<1}§KΛ´.(4)ØC8"d§éu?ÛЩ
Š(x
0
,y
0
) ∈Λ§.(4)•3˜‡•˜)(x(t),y(t))…)±VÇ1•3uΛ¥§=é?¿t≥0§
(x(t),y(t)) ∈Λa.s"
4.;¾«ý
3!¥§ò?Ø.(4)'u;¾«ý¿©ÚA7‡^‡"Äk§••B¡y
²§JÑÚn4.1ÚIP4.1¥‰Ñ˜ÎÒ"
Ún4.1.é•§
dx= [b(1−x)+δ(1−x)−σ
2
2
x
2
(1−x)+σ
2
4
x(1−x)]dt+σ
2
x(1−x)dB
2
−σ
4
x(1−x)dB
4
.
b^‡b+δ>
1
2
σ
2
2
¤á§Ké?¿x∈(0,1)§K•§(8))x˜—Âñu1"
y².éu•§(8)§A^Itˆoúª§Œ±
dln(1−x)=[−b−δ+
1
2
σ
2
2
x
2
−σ
2
4
x−
1
2
σ
2
4
x
2
]dt+σ
2
xdB
2
−σ
4
xdB
4
≤[−b−δ+
1
2
σ
2
2
−σ
2
4
x−
1
2
σ
2
4
x
2
]dt+σ
2
xdB
2
−σ
4
xdB
4
,Υ
1
(x)dt+σ
2
xdB
2
−σ
4
xdB
4
.(8)
Ù¥Υ
1
(x) = −b−δ+
1
2
σ
2
2
−σ
2
4
x−
1
2
σ
2
4
x
2
"Ï•b^‡b+δ>
1
2
σ
2
2
¤áÚ¼êΥ
1
(x)ëY5§
éu?¿x∈(1 −%
1
,1)§ÀJ¿©~ê%
1
¦Υ
1
(x)<0"éª(8)ü>l0tÈ©¿Ø
±t§Œ±Ñ
ln(1−x(t))
t
≤
ln(1−x(0))
t
+
R
t
0
Υ
1
(x)dt
t
+
R
t
0
σ
2
xdB
2
(t)
t
−
R
t
0
σ
4
xdB
4
(t)
t
.
éþªü>þ(.¿$^Œê½nŒ
limsup
t→∞
ln(1−x(t))
t
≤limsup
t→∞
R
t
0
Υ
1
(x)dt
t
<0, ∀x∈(1−%
1
,1).
Ïd§é?¿x∈(1−%,1)§Œ±Ñx˜—ªu1"X§y²•§(8)?¿)x§l(0,1)m©
•ªŒ?\«•(1−%
1
,1)"½Â¼êV
∗
= −(2x+1)
k
∗
§Ù¥k
∗
•~ê§3¡y²L§¥¬
DOI:10.12677/pm.2022.126103945nØêÆ
?T¤
(½§dItˆoúªŒ
LV
∗
=−2k
∗
(2x+1)
k
∗
−1
[b(1−x)+δ(1−x)−σ
2
2
x
2
(1−x)+σ
2
4
x(1−x)]
−
4k
∗
(k
∗
−1)(2x+1)
k
∗
−2
2
[σ
2
2
x
2
(1−x)
2
+σ
2
4
(1−x)
2
]
=−2k
∗
(2x+1)
k
∗
−2
[(2x+1)(1−x)(b+δ−(σ
2
1
+σ
2
2
)x
2
+σ
2
4
x)
+(k
∗
−1)x
2
(1−x)
2
(σ
2
2
+σ
2
4
)]
,−2k
∗
(2x+1)
k
∗
−2
·Π
Ù¥Π = (2x+1)(1−x)(b+δ−(σ
2
1
+σ
2
2
)x
2
+σ
2
4
x)+(k
∗
−1)x
2
(1−x)
2
(σ
2
2
+σ
2
4
)"
x∈(0,1−%
1
]§Øª(2x+1)(1−x)(b+σ
2
4
x) >(b+σ
2
4
)(1−1+%
1
) = %
1
b¤á§KŒ±év
Œ~êk
∗
¦
Π>%
1
b−(2x+1)(σ
2
1
+σ
2
2
)x
2
+(k
∗
−1)(σ
2
2
+σ
2
4
)x
2
(1−x)
2
>
1
4
%
1
b, ∀x∈(0,1−%
1
].
Ïd§
LV
∗
= −2k
∗
(2x+1)
k
∗
−2
·Π <−2k
∗
·
1
4
%
1
b<−
1
2
k
∗
%
1
b, for allx∈(0,1−%
1
].
éþªl0τ
%
1
∧tÈ©…dDynkinúª§Œ±
EV
∗
(x(τ
%
1
∧t))=V
∗
(x(0))+E
Z
τ
%
1
∧t
0
LV
∗
(Ψ(s))ds
<V
∗
(x(0))−
1
2
k
∗
%
1
b·E(τ
%
1
∧t).
¦t→∞…A^FatouÚn§U
EV
∗
(x(τ
%
1
)) <V
∗
(x(0))−
1
2
k
∗
%
1
b·E(τ
%
1
).
ŠâV
∗
3(0,1)k.5§Œ±E(τ
%
1
) <∞"Ïd§éux∈(0,1)§t→∞ž§kx→1"Ú
ny²¤"2
IP4.1.·‚PXÚ(4))•Ψ(t) = (x(t),y(t))"AO/§L«ÐŠ•ψ= (x
0
,y
0
) ∈Λ"P¼ê
f(x,y)=βx−(b+α+γ)+αy−σ
2
3
y(1−y)+
1
2
(σ
2
2
−σ
2
1
)x
2
+
1
2
σ
2
4
(1−x−y)
2
−
1
2
σ
2
3
(1−y)
2
.(9)
ò²ï:(1,0)“\þã•§§Œ±(½;¾«ýKŠ^‡§=
f(1,0)=[β−(b+α+γ)+
σ
2
2
−σ
2
1
−σ
2
3
2
]
=(b+α+γ)[R
s
0
−1].(10)
DOI:10.12677/pm.2022.126103946nØêÆ
?T¤
Ù¥R
s
0
=
β
b+α+γ
+
σ
2
2
−σ
2
1
−σ
2
3
2(b+α+γ)
"
e¡òy²§3,^‡e§Éa/<꥕êeü–"§=;¾«ý"
½n4.1.éЊψ= (x
0
,y
0
)§PΨ(t) = (x(t),y(t))•.(4))"XJR
s
0
<1…b+δ>
1
2
σ
2
2
§é
?¿ÐŠ(x
0
,y
0
) ∈Λ§t→∞§K(x(t),y(t)) →(1,0)a.s";¾«ý"•õ/§
P

lim
t→∞
lny(t)
t
= (b+α+γ)(R
s
0
−1) <0

= 1,∀(x
0
,y
0
) ∈Λ,y>0.(11)
y².Ï•R
s
0
<1§Kl(10)ª¥Œ±wÑf(1,0) <0"é(x,y) ∈Λ§.(4)$^ItˆoúªŒ
Llny=
1
y
[βxy−(b+α+γ)y+αy
2
−σ
2
3
y
2
(1−y)+σ
2
2
x
2
y+σ
2
4
y(1−x−y)
2
]
−
1
2y
2
[σ
2
1
x
2
y
2
+σ
2
2
x
2
y
2
+σ
2
3
y
2
(1−y)
2
+σ
2
4
y
2
(1−x−y)
2
]
=βx−(b+α+γ)+αy−σ
2
3
y(1−y)+
1
2
(σ
2
2
−σ
2
1
)x
2
+
1
2
σ
2
4
(1−x−y)
2
−
1
2
σ
2
3
(1−y)
2
=f(x,y)
dlny=f(x,y)+σ
1
xdB
1
(t)−σ
2
xdB
2
+σ
3
(1−y)dB
3
−σ
4
(1−x−y)dB
4
.
Ï•¼êf(x,y)´ëY¿…f(1,0)<0§é?¿(x,y)∈U
%
2
={(x,y),x∈(1−%
2
,1),y∈
(0,%
2
)}"À~ê%
2
∈(0,1)¿©¦f(x,y) <0¤á"
éþªü>l0tÈ©¿Ø±t§Œ±
lny
t
=
lny
0
t
+
1
t
Z
t
0
f(x,s)ds+
1
t
Z
t
0
σ
1
xdB
1
(t)−
1
t
Z
t
0
σ
2
xdB
2
+
1
t
Z
t
0
σ
3
(1−y)dB
3
−
1
t
Z
t
0
σ
4
(1−x−y)dB
4
.
éþªü>þ(.¿…ŠâŒê½nŒ
limsup
t→∞
lny
t
= limsup
t→∞
f(x,y) <0,∀(x,y) ∈U
%
2
.(12)
Ïd§Œ±wÑé?¿(x,y) ∈U
%
2
§y˜—ªu0"
DOI:10.12677/pm.2022.126103947nØêÆ
?T¤
e5§·‚òy²é?¿(x,y) ∈U
%
2
§x→1"é?¿%
2
>0¦y<%
2
§Œ±
Lln(1−x)=−b−
α−β
1−x
xy−
δ
1−x
(1−x−y)−σ
2
3
xy
2
1−x
−σ
2
4
x(1−x−y)
2
1−x
+
σ
2
2
2
x
2
−σ
2
4
x
2
(1−x−y)
2
2(1−x)
2
−(σ
2
1
+σ
2
3
)
x
2
y
2
2(1−x)
2
≤−b+β
xρ
2
1−x
−
δ
1−x
(1−x−ρ
2
)−σ
2
4
x(1−x−ρ
2
)
2
1−x
+
σ
2
2
2
x
2
−σ
2
4
x
2
(1−x−ρ
2
)
2
2(1−x)
2
,Υ(x).
Ù¥Υ(x) = −b+β
xρ
2
1−x
−
δ
1−x
(1−x−ρ
2
)−σ
2
4
x(1−x−ρ
2
)
2
1−x
+
σ
2
2
2
x
2
−σ
2
4
x
2
(1−x−ρ
2
)
2
2(1−x)
2
"Šâ¼êΥ(x)
ëY5ÚÚn8(ا¿›Xé?¿x∈(1−%
2
,1)§kΥ(x) <0¤á"Ïd
dln(1−x)≤Υ(x)+σ
1
xy
1−x
dB
1
(t)−σ
2
xdB
2
(t)+σ
3
xy
1−x
dB
3
(t)
+σ
4
x(1−x−y)
1−x
dB
4
(t)(13)
é(13)ªü>l0tÈ©¿…رt§Œ±
ln(1−x)
t
≤
ln(1−x
0
)
t
+
Υ(x)
t
+
1
t
Z
t
0
σ
1
xy
1−x
dB
1
(t)−
1
t
Z
t
0
σ
2
xdB
2
(t)
+
1
t
Z
t
0
σ
3
xy
1−x
dB
3
(t)+
1
t
Z
t
0
σ
4
x(1−x−y)
1−x
dB
4
(t).(14)
(14)ªü>þ4•¿…ŠâŒê½nk
limsup
t→∞
ln(1−x)
t
≤limsup
t→∞
Υ(x)
t
<0∀x∈(1−%
2
,1).
Ïd§
limsup
t→∞
ln(1−x)
t
<0∀(x,y) ∈U
%
2
.(15)
KŠâØª(15)Ú(12)§Œ±Ñé?¿(x,y)∈U
%
2
§(x,y)˜—Âñu(1,0)"Ïdé?¿
¯ε>0§Œ±uy0 <%<%
2
k
P
n
lim
t→∞
(x(t),y(t)) = (1,0)
o
≥1−¯ε,(x
0
,y
0
) ∈U
%
.(16)
2
5.(Ø
©3©z[23]Ä:þ§•Ä;¾kÇÚ¡EǬÉ‚¸6ħïá˜‡ä
DOI:10.12677/pm.2022.126103948nØêÆ
?T¤
k<•5Cz‘ÅSIRS."y².(4)•3•˜Û)"XÏLïáû½;¾
«ýKŠR
s
0
=
β
b+α+γ
+
σ
2
2
−σ
2
1
−σ
2
3
2(b+α+γ)
§Ñ;¾«ý¿©A7‡^‡§=R
s
0
<1…^
‡b+δ>
1
2
σ
2
2
¤á§;¾«ý"
3YïÄóŠ¥§„Œ±•Ä©™¤óŠÚ&ÄÙ¦ïgŽ"3JÑ.
Ä:þ§„Œ±•Ääk<•logisticO•‘ÅD/¾.",§3XÚ(4)¥Ú\Ornstein-
UhlenbeckL§½\\>D(•´Š•Ä"ù¯KŒ±3e5óŠ¥?1?Ø"
ë•©z
[1]Pruss-Ustun,A.,Wolf,J.,Corvalan,C.,Bos,R.andNeira,M.(2016)PreventingDisease
throughHealthy Environments:AGlobal Assessment oftheBurden ofDisease fromEnviron-
mentalRisks.WorldHealthOrganization.
[2]May,R.M.(1973)Stability andComplexity inModel Ecosystems.PrincetonUniversityPress,
Princeton.
[3]Du,N.H.andNhu,N.N.(2020)PermanenceandExtinctionfortheStochasticSIREpidemic
Model.JournalofDifferentialEquations,269,9619-9652.
https://doi.org/10.1016/j.jde.2020.06.049
[4]Gray,A.,Greenhalgh,D.,Hu,L.,Mao, X.andPan,J.(2011)AStochasticDifferentialEqua-
tionsSISEpidemicModel.SIAMJournalonAppliedMathematics,71,876-902.
https://doi.org/10.1137/10081856X
[5]Du,N.H.andNhu,N.N.(2017)Permanence andExtinctionofCertain Stochastic SIRModels
PerturbedbyaComplexTypeofNoises.AppliedMathematicsLetters,64,223-230.
https://doi.org/10.1016/j.aml.2016.09.012
[6]Chen,Q.andLiu,Q.(2015)AnalysisoftheDeterministicandStochasticSIRSEpidemic
Models with NonlinearIncidence.PhysicaA:StatisticalMechanicsandItsApplications,428,
140-153.https://doi.org/10.1016/j.physa.2015.01.075
[7]Han,Z.and Zhao,J.(2013)Stochastic SIRSModel underRegimeSwitching.NonlinearAnal-
ysis:RealWorldApplications,14,352-364.https://doi.org/10.1016/j.nonrwa.2012.06.008
[8]Tuerxun, N., Wen,B. and Teng, Z. (2021) The Stationary Distribution in a Class of Stochastic
SIRS Epidemic Models with Non-Monotonic Incidence and DegenerateDiffusion. Mathematics
andComputersinSimulation,182,888-912.https://doi.org/10.1016/j.matcom.2020.03.008
[9]Cai,S.,Cai,Y.andMao,X.(2019)AStochasticDifferentialEquationSISEpidemicModel
with Two IndependentBrownianMotions.Journalof MathematicalAnalysis andApplications,
474,1536-1550.https://doi.org/10.1016/j.jmaa.2019.02.039
[10]Cai,S.,Cai,Y.andMao,X.(2019)AStochasticDifferentialEquationSISEpidemicModel
withTwoCorrelatedBrownianMotions.NonlinearDynamics,9,2175-2187.
https://doi.org/10.1007/s11071-019-05114-2
DOI:10.12677/pm.2022.126103949nØêÆ
?T¤
[11]Greenhalgh,D.,Liand,Y.andMao,X.(2015)DemographicStochasticityintheSDESIS
EpidemicModel.DiscreteandContinuousDynamicalSystems:SeriesB,20,2859-2884.
https://doi.org/10.3934/dcdsb.2015.20.2859
[12]Greenhalgh,D.,Liang,Y.andMao,X.(2016)SDESISEpidemicModelwithDemographic
StochasticityandVaryingPopulationSize.AppliedMathematicsandComputation,276,218-
238.https://doi.org/10.1016/j.amc.2015.11.094
[13]Fan,D.,Wang,K.andHong,L. (2009) TheComplete ParametersAnalysisof the Asymptotic
BehaviourofaLogisticEpidemicModelwithTwoStochasticPerturbations.Mathematical
ProblemsinEngineering,2009,ArticleID:904383.https://doi.org/10.1155/2009/904383
[14]Cai,Y.,Kang,Y.,Banerjee,M.andWang,W.(2015)AStochasticSIRSEpidemicModel
withInfectiousForceunderInterventionStrategies.JournalofDifferentialEquations,259,
7463-7502.https://doi.org/10.1016/j.jde.2015.08.024
[15]Liu,Q.andJiang,D.(2020)ThresholdBehaviorinaStochasticSIREpidemicModelwith
Logistic Birth.PhysicaA:StatisticalMechanicsandItsApplications,540, Article ID:123488.
https://doi.org/10.1016/j.physa.2019.123488
[16]Lahrouz,A.,Kiouach,D.andOmari,L.(2011)GlobalAnalysisofaDeterministicandS-
tochasticNonlinearSIRSEpidemicModel.NonlinearAnalysisModellingandControl,16,
59-76.https://doi.org/10.15388/NA.16.1.14115
[17]Chang,Z.,Meng,X.andZhang,T.(2018)ANewWayofInvestigatingtheAsymptotic
Behaviourof a StochasticSIS System withMultiplicative Noise.AppliedMathematicsLetters,
87,80-86.https://doi.org/10.1016/j.aml.2018.07.014
[18]Liu,Q.andChen,Q.(2016)DynamicsofaStochasticSIREpidemicModelwithSaturated
Incidence.AppliedMathematicsandComputation,282,155-166.
https://doi.org/10.1016/j.amc.2016.02.022
[19]Li,D.,Liu,S.andCui,J.A. (2017)ThresholdDynamics andErgodicityof anSIRSEpidemic
modelwithMarkovianSwitching.JournalofDifferentialEquations,263,8873-8915.
https://doi.org/10.1016/j.jde.2017.08.066
[20]Liu,J.,Chen,L.andWei,F.(2018)ThePersistenceandExtinctionofaStochasticSIS
EpidemicModelwithLogisticGrowth.AdvancesinDifferenceEquations,2018,ArticleNo.
68.https://doi.org/10.1186/s13662-018-1528-8
[21]Zhao, S.,Yuan, S.andWang, H.(2020)ThresholdBehaviorin aStochastic AlgalGrowthMod-
elwithStoichiometricConstraintsandSeasonalVariation.JournalofDifferentialEquations,
268,5113-5139.https://doi.org/10.1016/j.jde.2019.11.004
[22]Imhof,L.andWalcher,S.(2005)ExclusionandPersistenceinDeterministicandStochastic
ChemostatModels.JournalofDifferentialEquations,217,26-53.
https://doi.org/10.1016/j.jde.2005.06.017
DOI:10.12677/pm.2022.126103950nØêÆ
?T¤
[23]Zhao, Y.,Jiang, D.,Mao, X.andGray, A.(2015)TheThresholdof aStochastic SIRSEpidemic
Modelin a Population with Varying Size. DiscreteandContinuousDynamicalSystems:Series
B,20,31-35.
[24]Dieu,N.T.,Nguyen, D.H.,Du,N.H.andYin,G.(2016) ClassificationofAsymptotic Behavior
inaTochasticSIRModel.SIAMJournalonAppliedDynamicalSystems,15,1062-1084.
https://doi.org/10.1137/15M1043315
[25]Du,N.H.,Dieu,N.T.andNhu,N.N.(2019)ConditionsforPermanenceandErgodicityof
CertainSIREpidemicModels.ActaApplicandaeMathematicae,160,81-99.
https://doi.org/10.1007/s10440-018-0196-8
[26]ÿV,±Âó,/n˜.)ÔêÆn[M].ÜS:ÜSÏŒÆÑ‡,2012.
[27]Ž.‘Å)ÔêÆ.[M].®:‰Eч,2010.
[28]·Œ,‘¦²,ÇG‰.‘Ň©•§[M].®:‰ÆÑ‡,2008.
[29]ê•,±Âó,o«£.~‡©•§½5†-½5•{[M].®:‰ÆÑ‡,2001.
[30]Mao,X.(2006)StochasticDifferentialEquationsandApplications.2ndEdition,Academic
Press,Cambridge,MA.
[31]Tuong,T.D.,Nguyen,D.H.,Dieu,N.T.andTran,K.(2020)ExtinctionandPermanenceina
Stochastic SIRS Model in Regime-Switching with General Incidence Rate. NonlinearAnalysis:
HybridSystems,34,121-130.https://doi.org/10.1016/j.nahs.2019.05.008
[32]Alexandru, H.andNguyen, D.H.(2018)CoexistenceandExtinctionforStochasticKolmogorov
Systems.TheAnnalsofAppliedProbability,28,1893-1942.
https://doi.org/10.1214/17-AAP1347
[33]Meyn,S.P.andTweedie,R.L.(1993)StabilityofMarkovianProcessesII:Continuous-Time
ProcessesandSampledChains.AdvancesinAppliedProbability,25,487-517.
https://doi.org/10.2307/1427521
[34]Mao,X.R.(2007)StochasticDifferentialEquationsandApplications.Elsevier,Amsterdam.
DOI:10.12677/pm.2022.126103951nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.