设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(6),1027-1033
PublishedOnlineJune2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.126112
DingSExt-Phantom
444²²²¾¾¾§§§¡¡¡ÿÿÿ
Ü“‰ŒÆ§êƆÚOÆ§[‹=²
ÂvFϵ2022c516F¶¹^Fϵ2022c621F¶uÙFϵ2022c628F
Á‡
©Ú\DingSExt-phantom§?ØÙÄÓN5Ÿ"¿y²DingS
Ext-phantoma´R-Mod˜‡nŽ"AO/§‰Ñ˜‡R-´DingS
Ext-phantomd•x"
'…c
FP-S§DingSExt-Phantom§ý•ä
DingInjectiveExt-PhantomMorphisms
MingzhuLiu,XiaoyanYang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:May16
th
,2022;accepted:Jun.21
st
,2022;published:Jun.28
th
,2022
Abstract
ThispaperintroducestheDinginjectiveExt-phantommorphisms,discussesbasicho-
mologicalpropertiesofDinginjectiveExt-phantommorphisms,andprovesthecollec-
tionofallDinginjectiveExt-phantommorphismsisanidealofR-Mod.Inparticular,
©ÙÚ^:4²¾,¡ÿ.DingSExt-Phantom[J].nØêÆ,2022,12(6):1027-1033.
DOI:10.12677/pm.2022.126112
4²¾§¡ÿ
theequivalentcharacterizationthatamorphismofR-modulesisaDinginjective-Ext-
phantommorphismisgiven.
Keywords
FP-InjectiveModule,DingInjectiveExt-PhantomMorphism,Preenvelop e
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
Phantom åu“êÿÀÆ¥CW-E/ƒm[1]. PhantomnØš~aqu
“êÿÀ†n‰Æ¥nØ,Ïdphantom Úå¯õ“êÆ[2•'5.Neeman
Äg3[2]¥½Ân‰Æ¥phantom.2007c,Herzog3[3]¥|^k•L«Ú
Tor
R
1
(−,−)òphantomVgí2?¿‚‰Æþ,¿½ÂR-g:X→Y´
Ext-phantom , eé?¿k• L«R-B, Ext
1
R
(B,g):Ext
1
R
(B,X)→Ext
1
R
(B,Y) ´"Ó
. 2016c, Mao3[4]¥&Äphantom ÚExt-phantomýCX†ý•ä•35. 2020 c,
Mao 3[5]¥Ú\neat-phantom Úclean-cophantom Vg. •C, Asadollahi <3[6]¥
Ú\Gorenstein ²"phantom,ïÄpGorenstein ²"phantom9§‚ƒm'
X, y²Gorenstein ²"phantomnŽÚpGorenstein ²"phantom nŽ´˜
‡ýCXa.•‰ÑpGorenstein²"phantomA^d•x.
Š•GorensteinÓNnØ3và‚þA~,Ding,LiÚMao3[7,8]¥ïÄrGorenstein²
"ÚGorenstein FP-S,Ï•Ding,LiÚMao3ù•¡#ÑóŠ,ÏdGillespie3[9,10]¥
¡ƒ•DingÝ,DingSÚDing²",Ù¥Ding²"†Gorenstein²"´˜—.
ÉþãïÄéu,©Ì‡ïÄDingSExt-phantom,y²DingSExt-
phantoma´R-Mod˜‡nŽ,¿…‰ÆR-Mor¥DingSExt-phantoma
'u†È†ME-*ܵ4. d,•y²R-´˜‡DingSExt-phantom…=§
´F-cophantom,Ù¥F={R-áÜSC|é?¿FP-SR-E, Hom
R
(E,C)Ü}.
2.ý•£
ØšAO`²,©¥¤k‚R´(Ü‚,þ•†R-,R-Mod(Mod-R) L«†(m)R-
‰Æ,R-Mor L«†R-‰Æ.
DOI:10.12677/pm.2022.1261121028nØêÆ
4²¾§¡ÿ
½Â2.1^R-MorL«R-‰Æ, Ù¥,
(1)R-Mor ¥é–´†R-Ó,
(2)R-Mor ¥l(M
1
f
−→M
2
)(N
1
g
−→N
2
)•R-Mod ¥éf(d,s)
(M
1
d
−→N
1
,M
2
s
−→N
2
)
¦eã
M
1
d
//
f

M
2
g

N
1
s
//
N
2
†.
½Â2.2¡aI´R-ModnŽ,XJI÷ve^‡:
(1)éI¥?¿ü‡f,g: X→Y,kf+g: X→YE•I¥,
(2)I¥?¿g:X→Y†R-Mod ¥?¿f:A→X,h:Y→BEÜ
gf: A→Y,hg: X→BE•I¥.
½Â2.3eé?¿k•L«R-N,kExt
1
R
(N,M) = 0,K¡R-M´FP-S.FP-S
a^FIL«.
½Â2.4¡R-M´Ding S,XJ•3SR-Ü
I: ···→I
1
→I
0
→I
0
→I
1
→···
Ù¥M
∼
=
Ker(I
0
→I
1
), ¿…é?¿FP-SR-A,kHom
R
(A,I)Ü. DingSR-a
^DIL«.
½Â2.5C´˜‡R-a.
¡R-φ: X→Y´Y˜‡C-ýCX, XJX∈C¿…é?¿f: Z→Y, Ù¥
Z∈C, •3g: Z→X,¦φg= f.¡C-ýCXφ: X→Y´YC-CX, XJ÷vφg= φ
gÓg´Ó.éó/,kC-(ý) •ä½Â.
3.̇(J
e¡‰ÑDingSExt-phantom½Â.
½Â3.1eé?¿FP-SR-E,pExt
1
R
(E,ψ) : Ext
1
R
(E,A) →Ext
1
R
(E,Y)´"
Ó,K¡R-ψ: A→Y´DingSExt-phantom,{P•DI-Ext-phantom.
DOI:10.12677/pm.2022.1261121029nØêÆ
4²¾§¡ÿ
5P3.2dDingS½Â•:
(1)S´DingS.
(2)XJI: ···→I
1
→I
0
→I
−1
→I
−2
→···´SÜ, ¿é?¿FP-SE,
Hom(E,I)Ü,@odé¡5•:z‡†Þ”,Ø,{ØÑ´DingS.
(3)XJM´Ding S,@oé?¿FP-SEÚi≥1, Ext
i
R
(E,M) = 0.
dd·‚Ú\DingSExt-phantom.
·K3.3Ψ
DI
•¤kDI-Ext-phantoma. KΨ
DI
´R-Mod ˜‡nŽ.
y²: g
1
, g
2
:X→Y´Ψ
DI
¥?¿. é?¿FP-SR-E, dΨ
DI
½ÂŒ•:
Ext
1
R
(E,g
1
) = Ext
1
R
(E,g
2
) = 0.Ïd,·‚k
Ext
1
R
(E,g
1
+g
2
) = Ext
1
R
(E,g
1
)+Ext
1
R
(E,g
2
) = 0.
XJf: A→X•R-Mod¥,@ok
Ext
1
R
(E,fg
1
) = Ext
1
R
(E,f)Ext
1
R
(E,g
1
) = 0.
XJh: Y→B•R-Mod ¥,@ok
Ext
1
R
(E,g
1
h) = Ext
1
R
(E,g
1
)Ext
1
R
(E,h) = 0
¤±Ψ
DI
´R-Mod ¥nŽ.
e¡·‚&?DingSExt-phantom˜Ä5Ÿ.
Ún3.4DI-Ext-phantoma'u†Èµ4.
y²: {f
i
: M
i
→N
i
}
i∈I
´R-¥˜qDI-Ext-phantom.e¡y²é?¿FP-S
E,Ext
1
R
(E,
Q
i∈I
f
i
) = 0.•ÄXe†ã
Q
i∈I
Ext
1
R
(E,M
i
)
∼
=

Q
i∈I
Ext
1
R
(E,f
i
)
//
Q
i∈I
Ext
1
R
(E,N
i
)
∼
=

Ext
1
R
(E,
Q
i∈I
M
i
)
Ext
1
R
(E,
Q
i∈I
f
i
)
//
Ext
1
R
(E,
Q
i∈I
N
i
)
ϕExt
1
R
(E,f
i
) = 0,¤±
Q
i∈I
Ext
1
R
(E,f
i
) = 0,=Ext
1
R
(E,
Q
i∈I
f
i
) = 0.
3R-Mor ¥,¡R-α´jÏLiME-*Ü[11], XJ•3áÜS0 →i→
DOI:10.12677/pm.2022.1261121030nØêÆ
4²¾§¡ÿ
α→j→0,ke1Ü©)ã¦α= a
2
a
1
0
//
I
0
//
A
0
//
a
1

J
0
j

//
0
0
//
I
0
f
//
i

A
g
//
a
2

J
1
//
0
0
//
I
1
//
A
1
//
J
1
//
0
·K3.5DI-Ext-phantoma'uME-*ܵ4.
y²α:A
0
→A
1
´jÏLiME-*Ü, Xþ㤫, Ù¥iÚj´DI-Ext-phantom
.é?¿FP-SR-E,òExt
n
(E,−)Š^uþã,kXe1Ü†ã
Ext
1
(E,I
0
)
//
Ext
1
(E,A
0
)
//
Ext
1
(E,a
1
)

Ext
1
(E,J
0
)
Ext
1
(E ,j)

Ext
1
(E,I
0
)
Ext
1
(E,f)
//
Ext
1
(E ,i )

Ext
1
(E,A)
Ext
1
(E,g)
//
Ext
1
(E,a
2
)

Ext
1
(E,J
1
)
Ext
1
(E,I
1
)
//
Ext
1
(E,A
1
)
//
Ext
1
(E,J
1
)
Ï•iÚj´DI-Ext-phantom,¤±Ext
1
(E,i)=0,…Ext
1
(E,j)=0.l†ãŒ•:
Im(Ext
1
(E,a
1
)) ⊆Ker(Ext
1
(E,g))=Im(Ext
1
(E,f)) ⊆Ker(Ext
1
(E,a
2
)),Ïd
Ext
1
(E,α) = Ext
1
(E,a
2
)Ext
n
(E,a
1
) = 0.α´DI-Ext-phantom.
-F={R-áÜSC|é?¿FP-SR-E,Hom
R
(E,C)Ü}d[[12], Ún1.1]
•,F´Ext\{f¼f.
Fu<3[13]¥Ú\'uExt \{f¼f phantom . F´Ext \{f ¼f.
eéu?¿R-C, Ext
1
R
(C,ψ)∈F(C,Z), Ù¥Ext
1
R
(C,ψ):Ext
1
R
(C,Y)→Ext
1
R
(C,Z) ,K¡R-
ψ: Y→Z•F-cophantom.
e¡·K`²R-´DI-Ext-phantom…=§´F-cophantom.
·K3.6R´‚. éR-ψ: A→Y, e^‡d:
(1)ψ´˜‡DI-Ext-phantom.
(2)eρ: A→I´ASý•ä,Ké?¿FP-SR-E, ρ÷XψíÑ
0
//
A
ψ

ρ
//
I

//
L
//
0
0
//
Y
//
B
//
L
//
0
DOI:10.12677/pm.2022.1261121031nØêÆ
4²¾§¡ÿ
^¼fHom
R
(E,−)Š^EÜ.
y²:(1)⇒(2)é?¿FP-SR-E, d½Â•Ext
1
R
(E,ψ) = 0.ÏLe¡†ã
Hom
R
(E,L)
θ
//
Ext
1
R
(E,A)
Ext
1
R
(E,ψ)

Hom
R
(E,L)
τ
//
Ext
1
R
(E,Y)
Ï•τ= 0,¤±0 →Y→B→L→0^¼fHom
R
(E,−)Š^EÜ.
(2)⇒(1)b(2)¤á,é?¿FP-SR-E, •Äe¡†ã
Hom
R
(E,L)
θ
//
Ext
1
R
(E,A)
Ext
1
R
(E,ψ)

//
Ext
1
R
(E,I)

Hom
R
(E,L)
τ
//
Ext
1
R
(E,Y)
σ
//
Ext
1
R
(E,B)
ϕExt
1
R
(E,I)= 0, ¤±σExt
1
R
(E,ψ)=0. qd(2)•σ´ü, ¤±Ext
1
R
(E,ψ)=0, =ψ´˜
‡DI-Ext-phantom.
Ä7‘8
I[g,‰ÆÄ7]Ï‘8(11761060).
ë•©z
[1]McGibbon, C.A. (1995)Phantom Maps.In:James, I.M., Ed., HandbookofAlgebraicTopology,
ElsevierScienceB.V.,Amsterdam,1209-1257.
https://doi.org/10.1016/B978-044481779-2/50026-2
[2]Neeman,A. (1992)TheBrownRepresentabilityTheorem andPhantomlessTriangulatedCat-
egories.JournalofAlgebra,151,118-155.https://doi.org/10.1016/0021-8693(92)90135-9
[3]Herzog, I.(2008) ContravariantFunctors ontheCategoryofFinitelyPresentedModules.Israel
JournalofMathematics,167,347-410.https://doi.org/10.1007/s11856-008-1052-8
[4]Mao,L.X.(2016)PrecoversandPreenvelopesbyPhantomandExt-PhantomMorphisms.
CommunicationsinAlgebra,44,1704-1721.https://doi.org/10.1080/00927872.2015.1027388
[5]Mao,L.X.(2020)Neat-PhantomandClean-CophantomMorphisms.JournalofAlgebraand
ItsApplications,20,ArticleID:2150172.https://doi.org/10.1142/S0219498821501723
[6]Asadollahi,J.,Hemat,S.andVahed,R.(2020)GorensteinFlatPhantomMorphisms.Com-
municationsinAlgebra,48,2167-2182.https://doi.org/10.1080/00927872.2019.1710519
DOI:10.12677/pm.2022.1261121032nØêÆ
4²¾§¡ÿ
[7]Ding,N.Q.,Li,Y.L.andMao,L.X.(2009)StronglyGorensteinFlatModules.Journalofthe
AustralianMathematicalSociety,86,323-338.https://doi.org/10.1017/S1446788708000761
[8]Mao, L.X. and Ding, N.Q. (2008) Gorenstein FP-Injective and Gorenstein FlatModules. Jour-
nalofAlgebraandItsApplications,7,491-506.https://doi.org/10.1142/S0219498808002953
[9]Gillespie, J. (2010) Model Structures on Modules over Ding-Chen Rings. Homology,Homotopy
andApplications,12,61-73.https://doi.org/10.4310/HHA.2010.v12.n1.a6
[10]Gillespie, J.(2017)OnDing Injective,DingProjective, andDing FlatModules andComplexes.
RockyMountainJournalofMathematics,47,2641-2673.
https://doi.org/10.1216/RMJ-2017-47-8-2641
[11]Fu,X.H.andHerzog,I.(2016)PowersofthePhantomIdeal.ProceedingsoftheLondon
MathematicalSociety,112,714-752.https://doi.org/10.1112/plms/pdw006
[12]Auslander, M.andSolberg, O.(1993)RelativeHomologyandRepresentationTheoryI:Reative
HomologyandHomologicallyFiniteCategories.CommunicationsinAlgebra,21,2995-3031.
https://doi.org/10.1080/00927879308824717
[13]Fu,X.H., GuilAsensio, P.A., Herzog, I.and Torrecillas, B.(2013) IdealApproximationTheory.
AdvancesinMathematics,244,750-790.https://doi.org/10.1016/j.aim.2013.05.020
DOI:10.12677/pm.2022.1261121033nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.