设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2022,12(6),1027-1033
PublishedOnlineJune2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.126112
Ding
S
Ext-Phantom
444
²²²
¾¾¾
§§§
¡¡¡
ÿÿÿ
Ü
“
‰
Œ
Æ
§
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2022
c
5
16
F
¶
¹
^
F
Ï
µ
2022
c
6
21
F
¶
u
Ù
F
Ï
µ
2022
c
6
28
F
Á
‡
©
Ú
\
Ding
S
Ext-phantom
§
?
Ø
Ù
Ä
Ó
N
5
Ÿ
"
¿
y
²
Ding
S
Ext-phantom
a
´
R
-Mod
˜
‡
n
Ž
"
A
O
/
§
‰
Ñ
˜
‡
R
-
´
Ding
S
Ext-phantom
d
•
x
"
'
…
c
FP
-
S
§
Ding
S
Ext-Phantom
§
ý
•
ä
DingInjectiveExt-PhantomMorphisms
MingzhuLiu,XiaoyanYang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:May16
th
,2022;accepted:Jun.21
st
,2022;published:Jun.28
th
,2022
Abstract
ThispaperintroducestheDinginjectiveExt-phantommorphisms,discussesbasicho-
mologicalpropertiesofDinginjectiveExt-phantommorphisms,andprovesthecollec-
tionofallDinginjectiveExt-phantommorphismsisanidealof
R
-Mod.Inparticular,
©
Ù
Ú
^
:
4
²
¾
,
¡
ÿ
.Ding
S
Ext-Phantom
[J].
n
Ø
ê
Æ
,2022,12(6):1027-1033.
DOI:10.12677/pm.2022.126112
4
²
¾
§
¡
ÿ
theequivalentcharacterizationthatamorphismof
R
-modulesisaDinginjective-Ext-
phantommorphismisgiven.
Keywords
FP
-InjectiveModule,DingInjectiveExt-PhantomMorphism,Preenvelop e
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
Phantom
å
u
“
ê
ÿ
À
Æ
¥
CW
-
E
/
ƒ
m
[1]. Phantom
n
Ø
š
~
a
q
u
“
ê
ÿ
À
†
n
‰
Æ
¥
n
Ø
,
Ï
d
phantom
Ú
å
¯
õ
“
ê
Æ
[
2
•
'
5
.Neeman
Ä
g
3
[2]
¥
½
Â
n
‰
Æ
¥
phantom
.2007
c
,Herzog
3
[3]
¥
|
^k
•
L
«
Ú
Tor
R
1
(
−
,
−
)
ò
phantom
V
g
í
2
?
¿
‚
‰
Æ
þ
,
¿
½
Â
R
-
g
:
X
→
Y
´
Ext-phantom
,
e
é
?
¿
k
•
L
«
R
-
B
, Ext
1
R
(
B,g
):Ext
1
R
(
B,X
)
→
Ext
1
R
(
B,Y
)
´
"
Ó
. 2016
c
, Mao
3
[4]
¥
&
Ä
phantom
Ú
Ext-phantom
ý
CX
†ý
•
ä
•
3
5
. 2020
c
,
Mao
3
[5]
¥
Ú
\
neat-phantom
Ú
clean-cophantom
V
g
.
•
C
, Asadollahi
<
3
[6]
¥
Ú
\
Gorenstein
²
"
phantom
,
ï
Ä
p
Gorenstein
²
"
phantom
9
§
‚
ƒ
m
'
X
,
y
²
Gorenstein
²
"
phantom
n
Ž
Ú
p
Gorenstein
²
"
phantom
n
Ž
´
˜
‡
ý
CX
a
.
•
‰
Ñ
p
Gorenstein
²
"
phantom
A
^
d
•
x
.
Š
•
Gorenstein
Ó
N
n
Ø
3
v
à
‚
þ
A
~
,Ding,Li
Ú
Mao
3
[7,8]
¥
ï
Ä
r
Gorenstein
²
"
Ú
Gorenstein
FP
-
S
,
Ï
•
Ding,Li
Ú
Mao
3ù
•
¡
#
Ñ
ó
Š
,
Ï
d
Gillespie
3
[9,10]
¥
¡
ƒ
•
Ding
Ý
,Ding
S
Ú
Ding
²
"
,
Ù
¥
Ding
²
"
†
Gorenstein
²
"
´
˜
—
.
É
þ
ã
ï
Ä
é
u
,
©
Ì
‡
ï
Ä
Ding
S
Ext-phantom
,
y
²
Ding
S
Ext-
phantom
a
´
R
-Mod
˜
‡
n
Ž
,
¿
…
‰
Æ
R
-Mor
¥
Ding
S
Ext-phantom
a
'
u
†
È
†
ME
-
*
Ü
µ
4
.
d
,
•
y
²
R
-
´
˜
‡
Ding
S
Ext-phantom
…
=
§
´
F
-cophantom
,
Ù
¥
F
=
{
R
-
á
Ü
S
C
|
é
?
¿
FP
-
S
R
-
E
, Hom
R
(
E,
C
)
Ü
}
.
2.
ý
•
£
Ø
š
A
O
`
²
,
©
¥
¤
k
‚
R
´
(
Ü
‚
,
þ
•
†
R
-
,
R
-Mod(Mod-
R
)
L
«
†
(
m
)
R
-
‰
Æ
,
R
-Mor
L
«
†
R
-
‰
Æ
.
DOI:10.12677/pm.2022.1261121028
n
Ø
ê
Æ
4
²
¾
§
¡
ÿ
½
Â
2
.
1
^
R
-Mor
L
«
R
-
‰
Æ
,
Ù
¥
,
(1)
R
-Mor
¥
é
–
´
†
R
-
Ó
,
(2)
R
-Mor
¥
l
(
M
1
f
−→
M
2
)
(
N
1
g
−→
N
2
)
•
R
-Mod
¥
é
f
(
d,s
)
(
M
1
d
−→
N
1
,M
2
s
−→
N
2
)
¦
e
ã
M
1
d
/
/
f
M
2
g
N
1
s
/
/
N
2
†
.
½
Â
2
.
2
¡
a
I
´
R
-Mod
n
Ž
,
X
J
I
÷
v
e
^
‡
:
(1)
é
I
¥
?
¿
ü
‡
f,g
:
X
→
Y
,
k
f
+
g
:
X
→
Y
E
•
I
¥
,
(2)
I
¥
?
¿
g
:
X
→
Y
†
R
-Mod
¥
?
¿
f
:
A
→
X
,
h
:
Y
→
B
E
Ü
gf
:
A
→
Y
,
hg
:
X
→
B
E
•
I
¥
.
½
Â
2
.
3
e
é
?
¿
k
•
L
«
R
-
N
,
k
Ext
1
R
(
N,M
) = 0,
K
¡
R
-
M
´
FP
-
S
.
FP
-
S
a
^
FI
L
«
.
½
Â
2
.
4
¡
R
-
M
´
Ding
S
,
X
J
•
3
S
R
-
Ü
I
:
···→
I
1
→
I
0
→
I
0
→
I
1
→···
Ù
¥
M
∼
=
Ker(
I
0
→
I
1
),
¿
…
é
?
¿
FP
-
S
R
-
A
,
k
Hom
R
(
A,
I
)
Ü
. Ding
S
R
-
a
^
DI
L
«
.
½
Â
2
.
5
C
´
˜
‡
R
-
a
.
¡
R
-
φ
:
X
→
Y
´
Y
˜
‡
C
-
ý
CX
,
X
J
X
∈C
¿
…
é
?
¿
f
:
Z
→
Y
,
Ù
¥
Z
∈C
,
•
3
g
:
Z
→
X
,
¦
φg
=
f
.
¡
C
-
ý
CX
φ
:
X
→
Y
´
Y
C
-
CX
,
X
J
÷
v
φg
=
φ
g
Ó
g
´
Ó
.
é
ó
/
,
k
C
-(
ý
)
•
ä
½
Â
.
3.
Ì
‡
(
J
e
¡
‰
Ñ
Ding
S
Ext-phantom
½
Â
.
½
Â
3
.
1
e
é
?
¿
FP
-
S
R
-
E
,
p
Ext
1
R
(
E,ψ
) : Ext
1
R
(
E,A
)
→
Ext
1
R
(
E,Y
)
´
"
Ó
,
K
¡
R
-
ψ
:
A
→
Y
´
Ding
S
Ext-phantom
,
{P
•
DI
-Ext-phantom.
DOI:10.12677/pm.2022.1261121029
n
Ø
ê
Æ
4
²
¾
§
¡
ÿ
5
P
3
.
2
d
Ding
S
½
Â
•
:
(1)
S
´
Ding
S
.
(2)
X
J
I
:
···→
I
1
→
I
0
→
I
−
1
→
I
−
2
→···
´
S
Ü
,
¿
é
?
¿
FP
-
S
E
,
Hom(
E,
I
)
Ü
,
@
o
d
é
¡
5
•
:
z
‡
†
Þ
”
,
Ø
,
{
Ø
Ñ
´
Ding
S
.
(3)
X
J
M
´
Ding
S
,
@
o
é
?
¿
FP
-
S
E
Ú
i
≥
1, Ext
i
R
(
E,M
) = 0.
d
d
·
‚
Ú
\
Ding
S
Ext-phantom
.
·
K
3
.
3
Ψ
DI
•
¤
k
DI
-Ext-phantom
a
.
K
Ψ
DI
´
R
-Mod
˜
‡
n
Ž
.
y
²
:
g
1
,
g
2
:
X
→
Y
´
Ψ
DI
¥
?
¿
.
é
?
¿
FP
-
S
R
-
E
,
d
Ψ
DI
½
Â
Œ
•
:
Ext
1
R
(
E,g
1
) = Ext
1
R
(
E,g
2
) = 0.
Ï
d
,
·
‚
k
Ext
1
R
(
E,g
1
+
g
2
) = Ext
1
R
(
E,g
1
)+Ext
1
R
(
E,g
2
) = 0
.
X
J
f
:
A
→
X
•
R
-Mod
¥
,
@
o
k
Ext
1
R
(
E,fg
1
) = Ext
1
R
(
E,f
)Ext
1
R
(
E,g
1
) = 0
.
X
J
h
:
Y
→
B
•
R
-Mod
¥
,
@
o
k
Ext
1
R
(
E,g
1
h
) = Ext
1
R
(
E,g
1
)Ext
1
R
(
E,h
) = 0
¤
±
Ψ
DI
´
R
-Mod
¥
n
Ž
.
e
¡
·
‚
&?
Ding
S
Ext-phantom
˜
Ä
5
Ÿ
.
Ú
n
3
.
4
DI
-Ext-phantom
a
'
u
†
È
µ
4
.
y
²
:
{
f
i
:
M
i
→
N
i
}
i
∈
I
´
R
-
¥
˜
q
DI
-Ext-phantom
.
e
¡
y
²
é
?
¿
FP
-
S
E
,Ext
1
R
(
E,
Q
i
∈
I
f
i
) = 0.
•
Ä
X
e
†
ã
Q
i
∈
I
Ext
1
R
(
E,M
i
)
∼
=
Q
i
∈
I
Ext
1
R
(
E,f
i
)
/
/
Q
i
∈
I
Ext
1
R
(
E,N
i
)
∼
=
Ext
1
R
(
E,
Q
i
∈
I
M
i
)
Ext
1
R
(
E,
Q
i
∈
I
f
i
)
/
/
Ext
1
R
(
E,
Q
i
∈
I
N
i
)
Ï
•
Ext
1
R
(
E,f
i
) = 0,
¤
±
Q
i
∈
I
Ext
1
R
(
E,f
i
) = 0,
=
Ext
1
R
(
E,
Q
i
∈
I
f
i
) = 0.
3
R
-Mor
¥
,
¡
R
-
α
´
j
Ï
L
i
ME
-
*
Ü
[11],
X
J
•
3
á
Ü
S
0
→
i
→
DOI:10.12677/pm.2022.1261121030
n
Ø
ê
Æ
4
²
¾
§
¡
ÿ
α
→
j
→
0,
k
e
1
Ü
©
)
ã
¦
α
=
a
2
a
1
0
/
/
I
0
/
/
A
0
/
/
a
1
J
0
j
/
/
0
0
/
/
I
0
f
/
/
i
A
g
/
/
a
2
J
1
/
/
0
0
/
/
I
1
/
/
A
1
/
/
J
1
/
/
0
·
K
3
.
5
DI
-Ext-phantom
a
'
u
ME
-
*
Ü
µ
4
.
y
²
α
:
A
0
→
A
1
´
j
Ï
L
i
ME
-
*
Ü
,
Xþ
ã
¤
«
,
Ù
¥
i
Ú
j
´
DI
-Ext-phantom
.
é
?
¿
FP
-
S
R
-
E
,
ò
Ext
n
(
E,
−
)
Š
^u
þ
ã
,
k
X
e
1
Ü
†
ã
Ext
1
(
E,I
0
)
/
/
Ext
1
(
E,A
0
)
/
/
Ext
1
(
E,a
1
)
Ext
1
(
E,J
0
)
Ext
1
(
E ,j
)
Ext
1
(
E,I
0
)
Ext
1
(
E,f
)
/
/
Ext
1
(
E ,i
)
Ext
1
(
E,A
)
Ext
1
(
E,g
)
/
/
Ext
1
(
E,a
2
)
Ext
1
(
E,J
1
)
Ext
1
(
E,I
1
)
/
/
Ext
1
(
E,A
1
)
/
/
Ext
1
(
E,J
1
)
Ï
•
i
Ú
j
´
DI
-Ext-phantom
,
¤
±
Ext
1
(
E,i
)=0,
…
Ext
1
(
E,j
)=0.
l
†
ã
Œ
•
:
Im(Ext
1
(
E,a
1
))
⊆
Ker(Ext
1
(
E,g
))=Im(Ext
1
(
E,f
))
⊆
Ker(Ext
1
(
E,a
2
)),
Ï
d
Ext
1
(
E,α
) = Ext
1
(
E,a
2
)Ext
n
(
E,a
1
) = 0.
α
´
DI
-Ext-phantom
.
-
F
=
{
R
-
á
Ü
S
C
|
é
?
¿
FP
-
S
R
-
E
,Hom
R
(
E,
C
)
Ü
}
d
[[12],
Ú
n
1
.
1]
•
,
F
´
Ext
\
{
f
¼
f
.
Fu
<
3
[13]
¥
Ú
\
'
u
Ext
\
{
f
¼
f
phantom
.
F
´
Ext
\
{
f
¼
f
.
e
é
u
?
¿
R
-
C
, Ext
1
R
(
C,ψ
)
∈F
(
C,Z
),
Ù
¥
Ext
1
R
(
C,ψ
):Ext
1
R
(
C,Y
)
→
Ext
1
R
(
C,Z
) ,
K
¡
R
-
ψ
:
Y
→
Z
•
F
-cophantom
.
e
¡
·
K
`
²
R
-
´
DI
-Ext-phantom
…
=
§
´
F
-cophantom
.
·
K
3
.
6
R
´
‚
.
é
R
-
ψ
:
A
→
Y
,
e
^
‡
d
:
(1)
ψ
´
˜
‡
DI
-Ext-phantom
.
(2)
e
ρ
:
A
→
I
´
A
S
ý
•
ä
,
K
é
?
¿
FP
-
S
R
-
E
,
ρ
÷
X
ψ
í
Ñ
0
/
/
A
ψ
ρ
/
/
I
/
/
L
/
/
0
0
/
/
Y
/
/
B
/
/
L
/
/
0
DOI:10.12677/pm.2022.1261121031
n
Ø
ê
Æ
4
²
¾
§
¡
ÿ
^
¼
f
Hom
R
(
E,
−
)
Š
^
E
Ü
.
y
²
:(1)
⇒
(2)
é
?
¿
FP
-
S
R
-
E
,
d
½
Â
•
Ext
1
R
(
E,ψ
) = 0.
Ï
L
e
¡
†
ã
Hom
R
(
E,L
)
θ
/
/
Ext
1
R
(
E,A
)
Ext
1
R
(
E,ψ
)
Hom
R
(
E,L
)
τ
/
/
Ext
1
R
(
E,Y
)
Ï
•
τ
= 0,
¤
±
0
→
Y
→
B
→
L
→
0
^
¼
f
Hom
R
(
E,
−
)
Š
^
E
Ü
.
(2)
⇒
(1)
b
(2)
¤
á
,
é
?
¿
FP
-
S
R
-
E
,
•
Ä
e
¡
†
ã
Hom
R
(
E,L
)
θ
/
/
Ext
1
R
(
E,A
)
Ext
1
R
(
E,ψ
)
/
/
Ext
1
R
(
E,I
)
Hom
R
(
E,L
)
τ
/
/
Ext
1
R
(
E,Y
)
σ
/
/
Ext
1
R
(
E,B
)
Ï
•
Ext
1
R
(
E,I
)= 0,
¤
±
σ
Ext
1
R
(
E,ψ
)=0.
qd
(2)
•
σ
´
ü
,
¤
±
Ext
1
R
(
E,ψ
)=0,
=
ψ
´
˜
‡
DI
-Ext-phantom
.
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
]
Ï
‘
8
(11761060).
ë
•
©
z
[1]McGibbon, C.A. (1995)Phantom Maps.In:James, I.M., Ed.,
HandbookofAlgebraicTopology
,
ElsevierScienceB.V.,Amsterdam,1209-1257.
https://doi.org/10.1016/B978-044481779-2/50026-2
[2]Neeman,A. (1992)TheBrownRepresentabilityTheorem andPhantomlessTriangulatedCat-
egories.
JournalofAlgebra
,
151
,118-155.https://doi.org/10.1016/0021-8693(92)90135-9
[3]Herzog, I.(2008) ContravariantFunctors ontheCategoryofFinitelyPresentedModules.
Israel
JournalofMathematics
,
167
,347-410.https://doi.org/10.1007/s11856-008-1052-8
[4]Mao,L.X.(2016)PrecoversandPreenvelopesbyPhantomandExt-PhantomMorphisms.
CommunicationsinAlgebra
,
44
,1704-1721.https://doi.org/10.1080/00927872.2015.1027388
[5]Mao,L.X.(2020)Neat-PhantomandClean-CophantomMorphisms.
JournalofAlgebraand
ItsApplications
,
20
,ArticleID:2150172.https://doi.org/10.1142/S0219498821501723
[6]Asadollahi,J.,Hemat,S.andVahed,R.(2020)GorensteinFlatPhantomMorphisms.
Com-
municationsinAlgebra
,
48
,2167-2182.https://doi.org/10.1080/00927872.2019.1710519
DOI:10.12677/pm.2022.1261121032
n
Ø
ê
Æ
4
²
¾
§
¡
ÿ
[7]Ding,N.Q.,Li,Y.L.andMao,L.X.(2009)StronglyGorensteinFlatModules.
Journalofthe
AustralianMathematicalSociety
,
86
,323-338.https://doi.org/10.1017/S1446788708000761
[8]Mao, L.X. and Ding, N.Q. (2008) Gorenstein FP-Injective and Gorenstein FlatModules.
Jour-
nalofAlgebraandItsApplications
,
7
,491-506.https://doi.org/10.1142/S0219498808002953
[9]Gillespie, J. (2010) Model Structures on Modules over Ding-Chen Rings.
Homology,Homotopy
andApplications
,
12
,61-73.https://doi.org/10.4310/HHA.2010.v12.n1.a6
[10]Gillespie, J.(2017)OnDing Injective,DingProjective, andDing FlatModules andComplexes.
RockyMountainJournalofMathematics
,
47
,2641-2673.
https://doi.org/10.1216/RMJ-2017-47-8-2641
[11]Fu,X.H.andHerzog,I.(2016)PowersofthePhantomIdeal.
ProceedingsoftheLondon
MathematicalSociety
,
112
,714-752.https://doi.org/10.1112/plms/pdw006
[12]Auslander, M.andSolberg, O.(1993)RelativeHomologyandRepresentationTheoryI:Reative
HomologyandHomologicallyFiniteCategories.
CommunicationsinAlgebra
,
21
,2995-3031.
https://doi.org/10.1080/00927879308824717
[13]Fu,X.H., GuilAsensio, P.A., Herzog, I.and Torrecillas, B.(2013) IdealApproximationTheory.
AdvancesinMathematics
,
244
,750-790.https://doi.org/10.1016/j.aim.2013.05.020
DOI:10.12677/pm.2022.1261121033
n
Ø
ê
Æ