设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2022,11(7),4129-4141
PublishedOnlineJuly2022inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2022.117440
˜
a
‘
š
‚
5
>
.
^
‡
©•
§
)
õ
)
5
µµµ
yyy
ÚÚÚ
∗
§§§
´´´
ýýý
†
Ü
“
‰
Œ
Æ
§
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2022
c
6
1
F
¶
¹
^
F
Ï
µ
2022
c
6
27
F
¶
u
Ù
F
Ï
µ
2022
c
7
4
F
Á
‡
‘
š
‚
5
>
.
^
‡
©•
§
>
Š
¯
K
3
æ
^
à
R
|
Y
Y
g
j
-
\
x
ù
±
9
¦
)
‚
/
•
þ
ý
.
•
§
|
»
•
)
•
¡
k
X
-
‡
A^
"
©
$
^
Ø
Ä:
•
ê
½
n
Ú
þ
e
)
•{
§
š
‚
5
‘
•
¼
ê
…
3
Ã
¡
?
‡
‚
5
O
•
ž
§
é
¿
©
ë
ê
§
ï
á
þ
ã
¯
K
)
•
3
5
9
õ
)
5
(
J
§
ù
•‡
©•
§
>
Š
¯
K
ê
Š
)
J
ø
n
Ø
•{
"
•
Ï
L
˜
‡
~
f
`
²
½
n
(
Ø
k
5
"
'
…
c
õ
)
5
§
)
§
þ
e
)
•{
§
ÿ
À
Ý
n
Ø
MultiplicityofPositiveSolutionsfor
aClassofSecond-OrderDifference
EquationwithNonlinearBoundary
Conditions
ZhengqiJing
∗
,YanqiongLu
†
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,Lanzhou Gansu
∗
1
˜
Š
ö
"
†
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
µ
y
Ú
,
´
ý
.
˜
a
‘
š
‚
5
>
.
^
‡
©•
§
)
õ
)
5
[J].
A^
ê
Æ
?
Ð
,2022,11(7):
4129-4141.DOI:10.12677/aam.2022.117440
µ
y
Ú
§
´
ý
Received:Jun.1
st
,2021;accepted:Jun.27
th
,2022;published:Jul.4
th
,2022
Abstract
Boundaryvalueproblemsofdifferenceequationswithnonlinearboundaryconditions
have many important applicationssuch asin strengthening Bridges withpolyurethane
cement wireropes andsolving positiveradial solutionsof ellipticequationsin annular
domain.Inthispaper,byusingthefixedpointindextheoremandthemethodofupper
andlowersolutions, weobtaintheexistenceandmultiplicityofpositivesolutionsto
theaboveproblemsforsufficientlysmallparameterswhenthenonlineartermisa
positivefunctionandsuperlineargrowthatinfinity.Theresultsprovideatheoretical
methodfornumericalsolutionofboundaryvalueproblemsofdifferentialequations.
Finally,wegiveanexampletoillustratethevalidityofthemainresults.
Keywords
Multiplicity,PositiveSolution,UpperandLowerSolutions,Topological
DegreeTheory
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
‘
š
‚
5
>
.
^
‡
‡
©•
§
/
©•
§
>
Š
¯
K
´
˜
a
-
‡
š
‚
5
¯
K
,
É
N
õ
Æ
ö
ï
Ä
[1–11].1998
c
,DUNNINGERDR
Ú
°
ÿ
[1]
$
^
þ
e
)
•{
Ú
ÿ
À
Ý
n
Ø
ï
Ä
‘
š
‚
5
>
.
^
‡
‡
©•
§
>
Š
¯
K
u
00
(
x
)+
λh
(
x
)
f
(
u
(
x
)) = 0
,
0
<x<
1
,
αu
(0)
−
βu
0
(0) =
λg
1
(
u
(0))
,
γu
(1)+
δu
0
(1) =
λg
2
(
u
(1))
)
õ
)
5
,
Ù
¥
λ>
0,
f
:[0
,
∞
)
→
(0
,
∞
)
ë
Y
…
f
∞
=lim
u
→∞
f
(
u
)
/u
=
∞
,
g
1
,g
2
:[0
,
∞
)
→
(0
,
∞
)
ë
Y
.
d
,
ù
a
¯
K
)
•
3
5
Ú
õ
)
5ï
Ä
¼
´
a
¤
J
,
ë
„
Umezu,Kenichiro
[2],AbdouK.Drame,DavidG.Costa[5],Shivaji
[6,7],
ê
X
[9]
ó
Š
9
Ù
ë
•
©
z
.
A
O
DOI:10.12677/aam.2022.1174404130
A^
ê
Æ
?
Ð
µ
y
Ú
§
´
ý
/
,
h
(
t
)
≡
1
ž
,AbdouK.Drame,DavidG.Costa[5]
$
^
ž
m
N
–
•{
¼
¯
K
−
u
00
=
λf
(
u
)
,
−
u
0
(0)+
u
(0) =
g
(
u
(0))
,
u
0
(1)+
u
(1) =
g
(
u
(1))
)
•
3
5
,
Ù
¥
λ>
0
•
ë
ê
,
f
:[0
,
∞
)
→
R
´
˜
‡
Û
Ü
Lipschitz
ë
Y
(
š
‚
5
)
¼
ê
,
…
f
(0)
<
0,
g
: [0
,
∞
)
→
R
´
˜
‡
ë
Y
š
‚
5
¼
ê
.
C
c
5
,
‘
X
‰
Æ
E
â
u
Ð
,
©•
§
>
Š
¯
K
A^
+
•
5
2
•
,
'
X
O
Ž
Å
‰
Æ
,
²
L
Æ
,
²
ä
,
)
Æ
9
›
›
Ø
Æ
‰
L
§
¥
Ñ
y
Œ
þ
©•
§
[12,13],
ù
Ò
I
‡
é
©•
§
?
1
•
\
Ú2
•
ï
Ä
.
A
O
/
,
©•
§
>
Š
¯
K
)
•
3
5
Ú
õ
)
5
Ú
å
é
õ
Æ
ö
,
[12,13].2013
c
,
o
ý
,
/
Ô
4
[10]
$
^
Guo-Krasnoselskii
Ø
Ä:
n
Ø
ï
Ä
‘
ë
ê
š
‚
5
©•
§
>
Š
¯
K
(
∆
2
u
(
k
+1)+
λa
(
k
)
f
(
u
(
k
)) = 0
,k
∈
[1
,T
]
Z
,
α
∆
u
(0) = 0
,u
(
T
+1) =
βu
(
k
)
)
•
3
5
.2014
c
,
´
ý
,
ê
X
[11]
$
^
©
Ü
n
Ø
ï
Ä
‘
š
‚
5
>
.
^
‡
©•
§
(
−
∆[
p
(
k
−
1)∆
y
(
k
−
1)]+
q
(
k
)
y
(
k
) =
λa
(
k
)
f
(
y
(
k
))
,k
∈
I,
−
∆
y
(0)+
αg
(
y
(0)) = 0
,
∆
y
(
N
)+
βg
(
y
(
N
+1)) = 0
)
Û(
,
Ù
¥
α,β
≥
0
•
~
ê
,
I
:=
{
1
,
······
,N
}
,
p
:
{
0
,
1
,
······
,N
}→
(0
,
∞
)
,q,a
:
I
→
[0
,
∞
)
,
k
∈
I
ž
,
a
(
k
)
>
0.
É
þ
ã
©
z
[1,10,11]
é
u
,
©
?
Ø
‘
š
‚
5
>
.
^
‡
©•
§
>
Š
¯
K
∆
2
u
(
t
−
1)+
λh
(
t
)
f
(
u
(
t
)) = 0
,t
∈
[1
,T
]
Z
,
αu
(0)
−
β
∆
u
(0) =
λg
1
(
u
(0))
,
γu
(
T
+1)+
δ
∆
u
(
T
) =
λg
2
(
u
(
T
))
(1)
)
•
3
5
9
õ
)
5
,
Ù
¥
α,β,γ,δ
≥
0,
%
:=
αδ
+
αγ
(
T
+1)+
γβ>
0
•
ë
ê
,
λ>
0,[1
,T
]
Z
=
{
1
,
2
,
···
,T
}
,h
: [1
,T
]
Z
→
[0
,
∞
)
…
h
6≡
0;
¿
¼
¯
K
(1)
)
•
3
5
Ú
õ
)
5
(
J
.
½
n
1.1
b
e
^
‡
(A1)
f
: [0
,
∞
)
→
(0
,
∞
)
ë
Y
;
(A2)
g
1
,g
2
: [0
,
∞
)
→
(0
,
∞
)
ë
Y
;
(A3)
f
∞
=lim
u
→∞
f
(
u
)
/u
=
∞
¤
á
,
K
•
3
˜
‡
λ
∗
>
0,
¦
0
<λ<λ
∗
ž
,
¯
K
(1)
–
k
ü
‡
)
;
λ
=
λ
∗
ž
,
¯
K
(1)
–
k
˜
‡
)
;
λ>λ
∗
ž
,
¯
K
(1)
Ã
)
.
½
n
1.2
b
f
≡
0
…
(A2)
Ú
(A4)(
g
1
)
∞
=lim
u
→∞
g
1
(
u
)
/u
=
∞
,
(
g
2
)
∞
=lim
u
→∞
g
2
(
u
)
/u
=
∞
¤
á
,
K
•
3
˜
‡
λ
∗
>
0,
¦
0
<λ<λ
∗
ž
,
¯
K
(1)
–
•
3
ü
‡
)
;
λ
=
λ
∗
ž
,
¯
K
(1)
–
•
3
˜
‡
)
;
λ>λ
∗
ž
,
¯
K
(1)
Ã
)
.
DOI:10.12677/aam.2022.1174404131
A^
ê
Æ
?
Ð
µ
y
Ú
§
´
ý
2.
ý
•
£
d
©•
§
n
Ø
•
£
[12],
´
•
¯
K
(1)
)
d
u
¯
K
∆
2
u
(
t
−
1)+
λh
(
t
)
f
(
u
(
t
)) = 0
,t
∈
[1
,T
]
Z
,
αu
(0)
−
β
∆
u
(0) = 0
,
γu
(
T
+1)+
δ
∆
u
(
T
) = 0
(2)
)
Ú
¯
K
∆
2
u
(
t
−
1) = 0
,t
∈
[1
,T
]
Z
,
αu
(0)
−
β
∆
u
(0) =
λg
1
(
u
(0))
,
γu
(
T
+1)+
δ
∆
u
(
T
) =
λg
2
(
u
(
T
))
(3)
)
ƒ
Ú
.
Ï
L
O
Ž
Œ
¯
K
(2)
)
•
u
1
(
t
) =
λ
T
X
s
=1
G
(
t,s
)
h
(
s
)
f
(
u
(
s
))
,
¯
K
(3)
)
•
u
2
(
t
) =
αg
2
(
u
(
T
))
−
γg
1
(
u
(0))
%
t
+
(
δ
+
γ
(
T
+1))
g
1
(
u
(0))+
βg
2
(
u
(
T
))
%
.
Ï
d
Ø
J
y
¯
K
(1)
d
u
Ú
©•
§
u
(
t
) =
λ
(
P
(
u
(0)
,u
(
T
))
t
+
Q
(
u
(0)
,u
(
T
)))+
λ
T
X
s
=1
G
(
t,s
)
h
(
s
)
f
(
u
(
s
))
,
(4)
Ù
¥
P
(
s,t
) =
αg
2
(
t
)
−
γg
1
(
s
)
%
,Q
(
s,t
) =
(
δ
+
γ
(
T
+1))
g
1
(
s
)+
βg
2
(
t
)
%
(5)
…
‚
¼
ê
G
(
t,s
) =
1
%
(
(
δ
+
γ
(
T
+1)
−
γs
)(
β
+
αt
)
,
0
≤
t
≤
s
≤
T
+1
,
(
δ
+
γ
(
T
+1)
−
γt
)(
β
+
αs
)
,
0
≤
s
≤
t
≤
T
+1
.
(6)
Ú
n
2.1
G
(
t,s
)
´
(6)
¥
½
Â
‚
¼
ê
,
K
G
(
t,s
)
÷
v
X
e
5
Ÿ
:
(i)
G
(
t,s
)
≥
0
,t,s
∈
[0
,T
+1]
Z
;
(ii)
G
(
t,s
)
≥
1
T
+1
G
(
τ,s
)
,t
∈
[1
,T
]
Z
, s,τ
∈
[0
,T
+1]
Z
.
DOI:10.12677/aam.2022.1174404132
A^
ê
Æ
?
Ð
µ
y
Ú
§
´
ý
y
²
d
G
(
t,s
)
½
Â
•
G
(
t,s
)
≥
1
%
δβ
≥
0
t,s
∈
[0
,T
+1]
Z
.
A
O
/
,
t
∈
[1
,T
]
Z
ž
,
k
G
(
t,s
)
≥
1
%
(
δ
+
γ
)
β,s
= 0
,
(
δ
+
γ
)(
β
+
α
)
,s
∈
[1
,T
]
Z
,
(
β
+
α
)
δ,s
=
T
+1
.
,
˜
•
¡
,
é
u
?
¿
s,τ
∈
[0
,T
+1]
Z
,
k
G
(
τ,s
)
≤
1
%
(
δ
+
γ
(
T
+1)
−
γs
)(
β
+
αs
)
Ï
d
G
(
t,s
)
≥
1
T
+1
G
(
τ,s
)
¤
á
.
Ú
n
2.2
¼
ê
P
(
x,y
)
t
+
Q
(
x,y
)
÷
v
X
e
5
Ÿ
:
(i)
P
(
x,y
)
t
+
Q
(
x,y
)
≥
min
{
Q
(
x,y
)
,P
(
x,y
)(
T
+1)+
Q
(
x,y
)
}≥
0
,t
∈
[0
,T
+1]
Z
,x,y>
0
,
(ii)
P
(
x,y
)
t
+
Q
(
x,y
)
≤
max
{
Q
(
x,y
)
,P
(
x,y
)(
T
+1)+
Q
(
x,y
)
}
,t
∈
[0
,T
+1]
Z
,x,y>
0
,
(iii)
P
(
x,y
)
t
+
Q
(
x,y
)
≥
1
T
+1
(
P
(
x,y
)
τ
+
Q
(
x,y
))
,t
∈
[1
,T
]
Z
,τ
∈
[0
,T
+1]
Z
,x,y>
0
.
y
²
w
,
,
é
z
‡
x,y
≥
0
…
g
1
,g
2
´
š
K
¼
ê
^
‡
e
,
é
P
(
x,y
)
t
+
Q
(
x,y
)
?
1
©
Û
,
é
u
?
¿
t
∈
[0
,T
+1]
Z
,τ
∈
[0
,T
+1]
Z
k
(1)
P
(
x,y
)
≥
0
ž
,
P
(
x,y
)
t
+
Q
(
x,y
)
≥
Q
(
x,y
)
≥
0;
(2)
P
(
x,y
)
<
0
ž
,
P
(
x,y
)
t
+
Q
(
x,y
)
≥
P
(
x,y
)(
T
+1)+
Q
(
x,y
)
≥
0
,
Ï
d
5
Ÿ
(i)
¤
á
.
Ó
n
Œ
y
5
Ÿ
(ii)
¤
á
.
e
y
5
Ÿ
(iii)
¤
á
.
é
u
?
¿
t
∈
[1
,T
]
Z
,τ
∈
[0
,T
+1]
Z
k
(1)
P
(
x,y
)
≥
0
ž
,
P
(
x,y
)
t
+
Q
(
x,y
)
≥
P
(
x,y
)+
Q
(
x,y
) =
1
T
+1
(
P
(
x,y
)(
T
+1)+
Q
(
x,y
)(
T
+1))
≥
1
T
+1
(
P
(
x,y
)(
T
+1)+
Q
(
x,y
))
≥
1
T
+1
(
P
(
x,y
)
τ
+
Q
(
x,y
));
(2)
P
(
x,y
)
<
0
ž
,
P
(
x,y
)
t
+
Q
(
x,y
)
≥
P
(
x,y
)
T
+
Q
(
x,y
)
≥
P
(
x,y
)(
T
+1)+
Q
(
x,y
)
=
1
T
+1
(
P
(
x,y
)+
Q
(
x,y
)(
T
+1)) =
1
T
+1
(
P
(
x,y
)+
Q
(
x,y
)
T
+
Q
(
x,y
))
≥
1
T
+1
Q
(
x,y
)
≥
1
T
+1
(
P
(
x,y
)
τ
+
Q
(
x,y
))
,
Ï
d
5
Ÿ
(iii)
¤
á
.
Ú
n
2.3
([14])
E
´
Banach
˜
m
,
K
⊂
E
´
E
¥
˜
‡
I
.
é
?
¿
r>
0,
P
K
r
=
{
u
∈
K
|k
DOI:10.12677/aam.2022.1174404133
A^
ê
Æ
?
Ð
µ
y
Ú
§
´
ý
u
k≤
r
}
.
b
Ž
f
T
:
¯
K
r
→
K
ë
Y
,
u
∈
∂K
r
ž
,
¦
Tu
6
=
u
.
(i)
e
u
∈
∂K
r
ž
,
÷
v
k
Tu
k≥k
u
k
,
K
i
(
T,K
r
,K
) = 0.
(ii)
e
u
∈
∂K
r
ž
,
÷
v
k
Tu
k≤k
u
k
,
K
i
(
T,K
r
,K
) = 1.
-
E
=
{
u
|
u
: [0
,T
+1]
Z
→
R
}
,
K
E
U
‰
ê
k
u
k
=max
t
∈
[0
,T
+1]
Z
|
u
(
t
)
|
¤
Banach
˜
m
.
½
Â
8
Ü
K
0
=
{
u
∈
E
|
u
≥
0
}
,
K
K
0
•
E
¥
š
K
I
.
½
Â
E
þ
I
K
X
e
:
K
=
{
u
∈
E
|
u
≥
0
,
min
t
∈
[1
,T
]
Z
u
(
t
)
≥
1
T
+1
k
u
k}
.
(7)
´
„
K
⊂
K
0
,
…
(4)
Œ
Š
Ø
Ä:
•
§
Tu
=
u
,
Ù
¥
Ž
f
T
:
E
→
E
½
Â
X
e
:
Tu
(
t
) =
λ
(
P
(
u
(0)
,u
(
T
))
t
+
Q
(
u
(0)
,u
(
T
)))+
λ
T
X
s
=1
G
(
t,s
)
h
(
s
)
f
(
u
(
s
))
.
(8)
Ú
n
2.4
T
(
K
0
)
⊂
K,
…
Ž
f
T
:
K
0
→
K
ë
Y
.
y
²
é
u
?
¿
u
∈
K
0
,
t
∈
[1
,T
]
Z
ž
,
d
Ú
n
2.1(ii)
Ú
Ú
n
2.2(iii)
Œ
Tu
(
t
)
≥
λ
1
T
+1
{
P
(
u
(0)
,u
(
T
))
τ
+
Q
(
u
(0)
,u
(
T
))+
T
X
s
=1
G
(
τ,s
)
h
(
s
)
f
(
u
(
s
))
}
≥
1
T
+1
Tu
(
τ
)
, τ
∈
[0
,T
+1]
Z
.
Ï
d
min
t
∈
[1
,T
]
Z
Tu
(
t
)
≥
1
T
+1
k
Tu
k
=
Tu
∈
K
,
T
(
K
0
)
⊂
K
.
q
Ï
•
E
•
k
•
‘
˜
m
,
¤
±
d
f
ë
Y5
,
´
y
T
:
K
0
→
K
ë
Y
.
3.
)
•
3
5
†
Ø
•
3
5
½
n
3.1
b
(
A
1)
−
(
A
3).
K
λ>
0
¿
©
ž
,
¯
K
(1)
–
•
3
˜
‡
)
;
λ>
0
¿
©
Œ
ž
,
¯
K
(1)
Ã
)
.
y
²
-
M
=max
(
t,s
)
∈
[0
,T
+1]
Z
×
[0
,T
+1]
Z
G
(
t,s
)
, m
=min
(
t,s
)
∈
[1
,T
]
Z
×
[1
,T
]
Z
G
(
t,s
)
,
K
d
Ú
n
2.1
•
,
M,m>
0,
é
?
¿
q>
0,
P
I
(
q
) =
M
max
u
∈
K,
k
u
k
=
q
T
X
s
=1
h
(
s
)
f
(
u
(
s
))
>
0
.
é
?
¿
r
1
>
0,
P
K
r
1
=
{
u
∈
K
|k
u
k
<r
1
}
.
é
?
¿
u
∈
∂K
r
1
,
•
3
¿
©
σ>
0
÷
v
σ
≤
r
1
2
I
(
r
1
)
,σ
max(
Q
(
u
(0)
,u
(
T
))
,P
(
u
(0)
,u
(
T
))+
Q
(
u
(0)
,u
(
T
)))
≤
r
1
/
2
.
DOI:10.12677/aam.2022.1174404134
A^
ê
Æ
?
Ð
µ
y
Ú
§
´
ý
λ
≤
σ
ž
,
é
?
¿
t
∈
[0
,T
+1]
Z
,
d
Ú
n
2.2(ii)
•
Tu
(
t
)
≤
r
1
2
+
σM
T
X
s
=1
h
(
s
)
f
(
u
(
s
))
≤
r
1
2
+
σI
(
r
1
)
≤
r
1
,
=
k
Tu
k≤
r
1
=
k
u
k
,u
∈
∂K
r
1
.
d
Ú
n
2.3
•
deg(
T,K
r
1
,K
) = 1
.
é
‰
½
λ
≤
σ
,
Ï
f
∞
=
∞
,
•
3
~
ê
p>
0,
¦
é
?
¿
u
≥
p
,
k
f
(
u
)
≥
ηu
,
Ù
¥
η>
0
¿
©
Œ
…
÷
v
λmη
T
+1
T
X
s
=1
h
(
s
)
≥
1
.
r
2
≥
max
{
(
T
+1)
p,r
1
+1
}
,
P
K
r
2
=
{
u
∈
K
|k
u
k
<r
2
}
.
u
∈
∂K
r
2
,
ž
,min
t
∈
[1
,T
]
Z
u
(
t
)
≥
1
T
+1
k
u
k≥
p.
Ï
d
,
é
?
¿
t
∈
[1
,T
]
Z
,
k
Tu
(
t
)
≥
λm
T
X
s
=1
h
(
s
)
f
(
u
(
s
))
≥
λmη
T
X
s
=1
h
(
s
)
f
(
u
(
s
))
≥
λmη
T
+1
k
u
k
T
X
s
=1
h
(
s
)
≥k
u
k
,
=
k
Tu
k≥k
u
k
,u
∈
∂K
r
2
,
d
Ú
n
2.3
•
deg(
T,K
r
2
,K
) = 0
.
d
Ø
Ä:
•
ê
Œ
\
5
,deg(
T,K
r
2
\
¯
K
r
1
,K
)=
−
1,
Ï
d
,
Ž
f
T
3
K
r
2
\
¯
K
r
1
–
•
3
˜
‡
Ø
Ä
:
,
=
¯
K
(1)
–
•
3
˜
‡
)
.
d
(
A
1)
,
(
A
3)
Œ
•
,
•
3
˜
‡
~
ê
c>
0,
¦
é
?
¿
u
≥
0,
k
f
(
u
)
≥
cu.
b
¯
K
(4)
•
3
)
u
∈
E,
d
Ú
n
2.4
•
u
∈
K.
¿
©
Œ
λ>
0,
¦
λmc
T
+1
T
X
s
=1
h
(
s
)
>
1
.
K
é
?
¿
t
∈
[1
,T
]
Z
,
k
u
(
t
)
≥
λmc
T
X
s
=1
h
(
s
)
u
(
s
)
≥
λmc
T
+1
k
u
k
T
X
s
=1
h
(
s
)
>
k
u
k
,
ù
†
b
g
ñ
.
Ï
d
,
λ
¿
©
Œ
ž
,
¯
K
(4)
Ã
)
.
4.
õ
‡
)
•
3
5
•
¼
¯
K
(1)
õ
‡
)
•
3
5
,
·
‚
Ú
\
¯
K
(1)
þ
e
)
•{
.
DOI:10.12677/aam.2022.1174404135
A^
ê
Æ
?
Ð
µ
y
Ú
§
´
ý
½
Â
4.1
e
¯
u
∈
E
÷
v
∆
2
¯
u
(
t
−
1)+
λh
(
t
)
f
(¯
u
(
t
))
≤
0
,t
∈
[1
,T
]
Z
,
α
¯
u
(0)
−
β
∆¯
u
(0)
≥
λg
1
(¯
u
(0))
,
γ
¯
u
(
T
+1)+
δ
∆¯
u
(
T
)
≥
λg
2
(¯
u
(
T
))
,
K
¡
¯
u
•¯
K
(1)
þ
)
;
e
u
∈
E
÷
v
∆
2
u
(
t
−
1)+
λh
(
t
)
f
(
u
(
t
))
≥
0
,t
∈
[1
,T
]
Z
,
αu
(0)
−
β
∆
u
(0)
≤
λg
1
(
u
(0))
,
γu
(
T
+1)+
δ
∆
u
(
T
)
≤
λg
2
(
u
(
T
))
,
K
¡
u
•¯
K
(1)
e
)
.
e
¡
‰
Ñ
¯
K
(1)
)
•
3
5
(
J
.
Ú
n
4.1
u,
¯
u
∈
E
©
O
•¯
K
(1)
e
)
Ú
þ
)
,
…
÷
v
u
≤
¯
u,
K
¯
K
(1)
•
3
˜
‡
)
u
÷
v
u
(
t
)
≤
u
(
t
)
≤
¯
u
(
t
)
,t
∈
[0
,T
+1]
Z
.
y
²
•
9
Ï
¯
K
∆
2
u
(
t
−
1)+
λh
(
t
)
f
∗
(
u
(
t
)) = 0
,t
∈
[1
,T
]
Z
,
αu
(0)
−
β
∆
u
(0) =
λg
∗
1
(
u
(0))
,
γu
(
T
+1)+
δ
∆
u
(
T
) =
λg
∗
2
(
u
(
T
))
,
(9)
Ù
¥
f
∗
(
u
(
t
)) =
f
(¯
u
(
t
))
,u
(
t
)
≥
¯
u
(
t
)
,
f
(
u
(
t
))
,u
(
t
)
≤
u
(
t
)
≤
¯
u
(
t
)
,
f
(
u
(
t
))
,u
(
t
)
≤
u
(
t
)
,
g
∗
1
(
u
(
t
)) =
g
1
(¯
u
(
t
))
,u
(
t
)
≥
¯
u
(
t
)
,
g
1
(
u
(
t
))
,u
(
t
)
≤
u
(
t
)
≤
¯
u
(
t
)
,
g
1
(
u
(
t
))
,u
(
t
)
≤
u
(
t
)
,
g
∗
2
(
u
(
t
)) =
g
2
(¯
u
(
t
))
,u
(
t
)
≥
¯
u
(
t
)
,
g
2
(
u
(
t
))
,u
(
t
)
≤
u
(
t
)
≤
¯
u
(
t
)
,
g
2
(
u
(
t
))
,u
(
t
)
≤
u
(
t
)
.
´
„
¯
K
(9)
d
u
Ú
©•
§
u
(
t
) =
λ
(
P
∗
(
u
(0)
,u
(
T
))
t
+
Q
∗
(
u
(0)
,u
(
T
)))+
λ
T
X
s
=1
G
(
t,s
)
h
(
s
)
f
∗
(
u
(
s
))
,
Ù
¥
P
∗
(
s,t
) =
αg
∗
2
(
t
)
−
γg
∗
1
(
s
)
%
,
Q
∗
(
s,t
) =
(
δ
+
γ
(
T
+1))
g
∗
1
(
s
)+
βg
∗
2
(
t
)
%
,
DOI:10.12677/aam.2022.1174404136
A^
ê
Æ
?
Ð
µ
y
Ú
§
´
ý
G
(
t,s
)
´
ƒ
é
A
‚
¼
ê
.
-
T
∗
u
(
t
) =
λ
(
P
∗
(
u
(0)
,u
(
T
))
t
+
Q
∗
(
u
(0)
,u
(
T
)))+
λ
T
X
s
=1
G
(
t,s
)
h
(
s
)
f
∗
(
u
(
s
))
,
d
Ú
n
2.4
´
y
Ž
f
T
∗
:
E
→
E
ë
Y
.
du
f
∗
,g
∗
1
,g
∗
2
´
k
.
,
Ï
d
T
∗
k
.
.
Š
â
Schauder
Ø
Ä:½
n
•
,
T
∗
k
˜
‡
Ø
Ä:
u
,
=
u
•¯
K
(9)
˜
‡
)
.
e
¡
y
²
¯
K
(9)
)
u
÷
v
u
(
t
)
≤
u
(
t
)
≤
¯
u
(
t
)
.
Ä
k
y
²
u
(
t
)
≤
¯
u
(
t
).
b
•
3
t
0
∈
[0
,T
+1]
Z
,
¦
u
(
t
0
)
>
¯
u
(
t
0
).
K
k
±
e
o
«
œ
¹
:
(i)
u
(
t
)
>
¯
u
(
t
),
t
∈
[0
,T
+1]
Z
.
k
f
∗
(
u
(
t
)) =
f
(¯
u
(
t
))
,g
∗
1
(
u
(0)) =
g
1
(¯
u
(0))
,g
∗
2
(
u
(
T
)) =
g
2
(¯
u
(
T
))
,
Ï
d
∆
2
(¯
u
−
u
)(
t
−
1)
≤
0
,α
(¯
u
−
u
)(0)
−
β
∆(¯
u
−
u
)(0)
≥
0
,γ
(¯
u
−
u
)(
T
+1)+
δ
∆(¯
u
−
u
)(
T
)
≥
0
,
Š
â
4
Œ
Š
n
[13]
•
,
é
u
?
¿
t
∈
[0
,T
+1]
Z
k
¯
u
(
t
)
≥
u
(
t
)
,
g
ñ
!
(ii)
u
(
t
)
>
¯
u
(
t
),
t
∈
[
a,b
]
Z
,a,b
∈
[0
,T
+1],
…
u
(
a
−
1)
≤
¯
u
(
a
−
1)
,u
(
b
+1)
≤
¯
u
(
b
+1).
K
∆
2
(¯
u
−
u
)(
t
−
1)
≤
0
,t
∈
[
a,T
+1]
Z
,
α
(¯
u
−
u
)(
a
−
1)
−
β
∆(¯
u
−
u
)(
a
−
1)
≥
0
,γ
(¯
u
−
u
)(
b
+1)+
δ
∆(¯
u
−
u
)(
b
)
≥
0
.
2
g
d
4
Œ
Š
n
[13]
•
,
é
u
?
¿
t
∈
[
a,b
]
Z
,¯
u
(
t
)
≥
u
(
t
)
,
g
ñ
!
$
^
ƒ
q
•{
Œ
?
n
±
e
ü
«
œ
¹
:
(iii)
u
(
t
)
>
¯
u
(
t
),
t
∈
[0
,a
−
1]
Z
,a
∈
[0
,T
+1]
Z
,
…
u
(
a
)
≤
¯
u
(
a
)
.
(iv)
u
(
t
)
>
¯
u
(
t
),
t
∈
[
a
+1
,T
+1]
Z
,a
∈
[0
,T
+1]
Z
,
…
u
(
a
)
≤
¯
u
(
a
)
.
Ó
n
Œ
y
u
(
t
)
≤
u
(
t
)
,t
∈
[0
,T
+1]
Z
.
l
u
(
t
)
≤
u
(
t
)
≤
¯
u
(
t
)
.
Ï
d
f
∗
=
f,g
∗
1
=
g
1
,g
∗
2
=
g
2
,
=
u
´
¯
K
(1)
˜
‡
)
.
du
·
‚
•
Ä
´
¯
K
(1)
)
,
5
½
u<
0
ž
,
k
f
(
u
) =
f
(0)
,g
1
(
u
) =
g
1
(0)
,g
2
(
u
) =
g
2
(0)
.
Ú
n
4.2
(A1)-(A3)
¤
á
,
-
I
⊂
(0
,
∞
)
•
;
f
8
,
e
λ
∈
I,
K
•
3
~
ê
b
I
>
0,
¦
¯
K
(1)
¤
k
)
u
÷
v
k
u
k≤
b
I
.
y
²
b
{
u
n
}
∞
n
=1
´
¯
K
(1)
)
,
…
lim
n
→∞
|
u
n
|6
=
∞
,
λ
n
∈
I
.
d
Ú
n
2.4
•
u
n
∈
K
.
d
f
∞
=
∞
•
,
À
η>
0
¿
©
Œ
÷
v
λ
n
η
T
T
P
s
=1
h
(
s
)
≥
2
.
K
•
3
˜
‡
p>
0,
¦
u
≥
p
ž
,
f
(
u
)
≥
ηu.
Ï
lim
n
→∞
|
u
n
|
=
∞
,
é
?
¿
p>
0,
•
3
N>
0,
¦
n
≥
N
ž
,
k
min
t
∈
[1
,T
]
u
n
(
t
)
≥
1
T
+1
k
u
n
k≥
p.
Ï
d
u
n
(
t
)
≥
λ
n
T
X
s
=1
h
(
s
)
f
(
u
n
(
s
))
≥
λ
n
η
T
+1
k
u
n
k
T
X
s
=1
h
(
s
)
≥
2
k
u
n
k
,
g
ñ
!
Ï
d
b
†
Ø
,
·
K
(
.
DOI:10.12677/aam.2022.1174404137
A^
ê
Æ
?
Ð
µ
y
Ú
§
´
ý
-
Γ=
{
λ>
0
|
¯
K
(1)
•
3
˜
‡
)
}
,
…
-
λ
∗
=supΓ.
d
½
n
3.1
•
Γ
6
=
∅
,
…
0
<λ
∗
<
∞
.
e
y
λ
∗
∈
Γ.
λ
n
∈
Γ
…
λ
n
→
λ
∗
.
Ï
•
λ
n
´
k
.
,
¤
±
d
Ú
n
4.2
•
λ
n
ƒ
é
A
)
u
n
´
k
.
.
d
Ú
©
Ž
f
Γ
ë
Y5
•
λ
∗
∈
Γ.
-
λ
∗
´
¯
K
(1)
˜
‡
)
u
∗
¤
é
A
ë
ê
,
…
½
Â
˜
f
(
u
(
t
)) =
f
(
u
∗
(
t
)+
ε
)
,u
(
t
)
≥
u
∗
(
t
)+
ε,
f
(
u
(
t
))
,
−
ε
≤
u
(
t
)
≤
u
∗
(
t
)+
ε,
f
(
−
ε
)
,u
(
t
)
≤−
ε,
˜
g
1
(
u
(
t
)) =
g
1
(
u
∗
(
t
)+
ε
)
,u
(
t
)
≥
u
∗
(
t
)+
ε,
g
1
(
u
(
t
))
,
−
ε
≤
u
(
t
)
≤
u
∗
(
t
)+
ε,
g
1
(
−
ε
)
,u
(
t
)
≤−
ε,
˜
g
2
(
u
(
t
)) =
g
2
(
u
∗
(
t
)+
ε
)
,u
(
t
)
≥
u
∗
(
t
)+
ε,
g
2
(
u
(
t
))
,
−
ε
≤
u
(
t
)
≤
u
∗
(
t
)+
ε,
g
2
(
−
ε
)
,u
(
t
)
≤−
ε.
-
˜
T
λ
(
u
(
t
)) =
λ
(
˜
P
(
u
(0)
,u
(
T
))
t
+
˜
Q
(
u
(0)
,u
(
T
)))+
λ
T
X
s
=1
G
(
t,s
)
h
(
s
)
˜
f
(
u
(
s
))
,
Ù
¥
˜
P
(
s,t
) =
α
˜
g
2
(
t
)
−
γ
˜
g
1
(
s
)
%
,
˜
Q
(
s,t
) =
(
δ
+
γ
(
T
+1))˜
g
1
(
s
)+
β
˜
g
2
(
t
)
%
.
•
Ω =
{
u
∈
E
|−
ε<u
(
t
)
<u
∗
(
t
)+
ε
}
.
Ú
n
4.3
u
∈
E
,
•
3
˜
‡
¿
©
ε>
0,
0
<λ<λ
∗
ž
÷
v
˜
T
λ
u
=
u
,
K
u
∈
¯
Ω
.
y
²
w
,
u
≥
0.
•
y
²
u
≤
u
∗
+
ε
,
Ä
k
`
²
u
∗
+
ε
´
¯
K
(1)
˜
‡
þ
)
.
Ï
•
u
∗
≥
0,
¤
±
•
3
˜
‡
~
ê
c>
0,
¦
t
∈
[1
,T
]
Z
ž
,
k
f
(
u
∗
(
t
))
>c
.
Ï
L
˜
—
ë
Y5
,
•
3
˜
‡
ε
0
,
¦
0
≤
ε
≤
ε
0
ž
,
k
|
f
(
u
∗
(
t
)+
ε
)
−
f
(
u
∗
(
t
))
|
<c
(
λ
∗
−
λ
)
/λ.
K
∆
2
(
u
∗
+
ε
)(
t
−
1) = ∆
2
u
∗
(
t
−
1) =
−
λ
∗
h
(
t
)
f
(
u
∗
(
t
))
=
−
λh
(
t
)
f
(
u
∗
(
t
)+
ε
)+
λ
[
h
(
t
)
f
(
u
∗
(
t
)+
ε
)
−
h
(
t
)
f
(
u
∗
(
t
))]+(
λ
−
λ
∗
)
h
(
t
)
f
(
u
∗
(
t
))
<
−
λh
(
t
)
f
(
u
∗
(
t
)+
ε
)+
ch
(
t
)(
λ
∗
−
λ
)+
ch
(
t
)(
λ
−
λ
∗
) =
−
λh
(
t
)
f
(
u
∗
(
t
)+
ε
)
.
Ï
d
∆
2
(
u
∗
+
ε
)(
t
−
1)+
λh
(
t
)
f
(
u
∗
(
t
)+
ε
)
≤
0
.
Ó
n
,
ε>
0
¿
©
ž
,
d
g
1
,g
2
˜
—
ë
Y5
Œ
α
(
u
∗
(0)+
ε
)
−
β
∆(
u
∗
(0)+
ε
)
≥
λg
1
(
u
∗
(0)+
ε
)
,γ
(
u
∗
(
T
+1)+
ε
)+
δ
∆(
u
∗
(
T
)+
ε
)
≥
λg
2
(
u
∗
(
T
)+
ε
)
.
DOI:10.12677/aam.2022.1174404138
A^
ê
Æ
?
Ð
µ
y
Ú
§
´
ý
u
∗
+
ε
´
¯
K
(1)
˜
‡
þ
)
.
Š
â
Ú
n
4.1
•
u
≤
(
u
∗
+
ε
)
.
½
n
1.1
y
²
-
0
<λ<λ
∗
,
Ï
•
u
∗
Ú
0
©
O
´
¯
K
(1)
þ
)
Ú
e
)
,
¤
±
d
Ú
n
4.1
•
,
¯
K
(1)
•
3
˜
‡
)
u
λ
÷
v
0
≤
u
λ
≤
u
∗
,
Ï
d
0
<λ
≤
λ
∗
ž
,
¯
K
(1)
•
3
˜
‡
)
;
λ>λ
∗
ž
,
¯
K
(1)
Ã
)
.
?
˜
Ú
,
d
Ú
n
4.3
•
,
0
<λ<λ
∗
ž
,
u
λ
∈
Ω
.
P
B
(
u
λ
,R
)
•
E
¥
±
u
λ
•
%
,
R
•
Œ
»
¥
.
é
¿
©
Œ
R
,
d
˜
T
λ
3
λ
;
«
m
þ
k
.
•
,
deg(
I
−
˜
T
λ
,B
(
u
λ
,R
)
,
0) = 1
.
e
•
3
u
∈
∂
Ω,
¦
u
=
˜
T
λ
u,
K
f
=
˜
f,g
=˜
g,
=
u
•¯
K
(1)
1
‡
)
.
b
é
¤
k
u
∈
∂
Ω,
k
u
6
=
˜
T
λ
u,
deg(
I
−
˜
T
λ
,
Ω
,
0)
k
½
Â
.
d
Ú
n
4.3
•
,
˜
T
λ
3
B
(
u
λ
,R
)
\
Ω
þ
v
k
Ø
Ä:
,
d
ÿ
À
Ý
ƒ
Ø
5
•
deg(
I
−
T
λ
,
Ω
,
0) = deg(
I
−
˜
T
λ
,
Ω
,
0) = 1
.
,
˜
•
¡
,
d
Ú
n
4.2
•
,
é
?
¿
‰
½
λ
∈
I
,
¯
K
(1)
Œ
U
)
k
.
,
Ï
d
deg(
I
−
T
λ
,B
(0
,M
)
,
0) =
c,
Ù
¥
c
´
~
ê
,
M>
0
•
¿
©
Œ
~
ê
.
Ï
•
λ>λ
∗
ž
,
¯
K
(1)
Ã
)
,
¤
±
c
=0.
d
ÿ
À
Ý
ƒ
Ø
5
Œ
•
,
deg(
I
−
T
λ
,B
(0
,M
)
\
Ω
,
0) =
−
1
,
Ï
d
0
<λ<λ
∗
ž
,
¯
K
(1)
•
3
1
‡
)
.
½
n
1.2
y
²
b
¯
K
(1)
¥
f
≡
0
.
3ù
«
œ
¹
e
,
¯
K
(1)
d
u
Ž
f
•
§
u
=
Tu
,
Ù
¥
Tu
(
t
) =
λ
(
αg
2
(
u
(
T
))
−
γg
1
(
u
(0))
%
t
+
(
δ
+
γ
(
T
+1))
g
1
(
u
(0))+
βg
2
(
u
(
T
))
%
)
.
e
^
±
e
I
“
O
3
(7)
¥
¤
½
Â
I
K
1
=
{
u
∈
E
|
u
=
at
+
b,a,b
∈
R
,t
∈
[0
,T
+1]
Z
}
,
K
T
(
K
0
)
⊂
K
1
ë
Y
.
?
˜
Ú
,
e
u
∈
K
1
,
P
k
u
k
= max
{
u
(0)
,u
(
T
+1)
}
.
|
^
^
‡
(A4)
¥
g
1
Ú
g
2
ƒ
A
O
O
†
k
c
^
‡
(A3)
f
O
,
e
¡
y
²
†
½
n
1.1
a
q
,
d
?
Ñ
.
~
4.1
•
l
Ñ
>
Š
¯
K
∆
2
u
(
t
−
1)+
λt
(
u
2
(
t
)+1) = 0
,t
∈
[1
,
8]
Z
,
αu
(0)
−
β
∆
u
(0) =
λe
u
(0)
,
γu
(9)+
δ
∆
u
(8) =
λu
3
(8)
,
(10)
Ù
¥
h
(
t
) =
t
∈
[1
,
8]
Z
…
h
(
t
)
6≡
0
,f
(
u
) =
u
2
+1
.
N
´
y
lim
u
→
+
∞
f
(
u
)
u
=lim
u
→
+
∞
u
2
+1
u
= +
∞
DOI:10.12677/aam.2022.1174404139
A^
ê
Æ
?
Ð
µ
y
Ú
§
´
ý
¤
á
,
=
^
‡
(A1)-(A3)
¤
á
.
K
d
½
n
1.1
•
é
¿
©
λ>
0,
•
3
˜
‡
λ
∗
>
0,
¦
0
<λ<
λ
∗
ž
,
¯
K
(10)
–
k
ü
‡
)
;
λ
=
λ
∗
ž
,
¯
K
(10)
–
k
˜
‡
)
;
λ>λ
∗
ž
,
¯
K
(10)
Ã
)
.
e
f
(
u
)
≡
0
…
Ø
J
y
lim
u
→
+
∞
g
1
(
u
)
u
=lim
u
→
+
∞
e
u
u
= +
∞
,
lim
u
→
+
∞
g
2
(
u
)
u
=lim
u
→
+
∞
u
3
u
= +
∞
¤
á
,
=
^
‡
(A2)
Ú
(A4)
¤
á
.
Ï
d
d
½
n
1.2
•
é
¿
©
λ>
0,
•
3
˜
‡
λ
∗
>
0,
¦
0
<λ<
λ
∗
ž
,
¯
K
(10)
–
k
ü
‡
)
;
λ
=
λ
∗
ž
,
¯
K
(10)
–
k
˜
‡
)
;
λ>λ
∗
ž
,
¯
K
(10)
Ã
)
.
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
“
c
Ä
7
(No11901464, No11801453),
Ü
“
‰
Œ
Æ
“
c
“
‰
ï
U
å
J
,
O
y
‘
8
(NWNU-LKQN-2020-20),
[
‹
Ž
“
c
‰
E
Ä
7
O
y
‘
8
(21JR1RA230),
[
‹
Ž
p
Æ
M
#
U
å
J
,
‘
8
(2021A-006).
ë
•
©
z
[1]Dunninger,D.R.andWang,H.Y.(1998)MultiplicityofPositiveSolutionsforaNonlinear
DifferentialEquationwithNonlinearBoundaryConditions.
AnnalesPoloniciMathematici
,
69
,155-165.https://doi.org/10.4064/ap-69-2-155-165
[2]Umezu,K.(2000)GlobalPositiveSolutionBranchesofPositoneProblemswithNonlinear
BoundaryConditions.
DifferentialIntegralEquations
,
13
,669-686.
[3]Hu,L.andWang,L.L.(2007)MultiplePositiveSolutionsofBoundaryValueProblemfor
SystemsofNonlinearSecond-OrderDifferentialEquations.
JournalofMathematicalAnalysis
andApplications
,
335
,1052-1060.https://doi.org/10.1016/j.jmaa.2006.11.031
[4]Zheng,D.M.andLu,S.P.(2011)PositiveSolutionsofBoundaryValueProblemsforSystems
of NonlinearSecond-OrderDifferential Equations.
ChineseQuarterlyJournalofMathematics
,
26
,:179-184.
[5]Abdou,K.D. andDavid,G.C. (2012)On PositiveSolutions ofOne-Dimensional Semipositone
EquationswithNonlinearBoundaryConditions.
AppliedMathematicsLetters
,
25
,2411-2416.
https://doi.org/10.1016/j.aml.2012.07.015
[6]Mallick,M.,Sankar,L.,Shivaji,R.andSundar,S.(2018)InfiniteSemipositoneProblems
withaFallingZeroandNonlinearBoundaryConditions.
ElectronicJournalofDifferential
Equations
,
193
,1-13.
[7]Goddard,J.,Morris,Q.,Shivaji,R.andSon,B.(2018)BifurcationCurvesforSingularand
Nonsingular Problems with Nonlinear Boundary Conditions.
ElectronicJournalofDifferential
Equations
,
2018
,1-12.
[8]Su,X.X. (2019)ExistenceofPositive SolutionsforaClass of SingularSecond-Order Ordinary
DifferentialEquationswithNonlinearBoundaryCondition.
JournalofSichuanUniversity
(NaturalScienceEdition)
,
56
,1019-1025.
DOI:10.12677/aam.2022.1174404140
A^
ê
Æ
?
Ð
µ
y
Ú
§
´
ý
[9]Ma,R.Y.andWang,S.Y.(2020)PositiveSolutionsforSomeSemi-PositoneProblemswith
NonlinearBoundaryConditionsviaBifurcationTheory.
MediterraneanJournalofMathemat-
ics
,
17
,ArticleNo.12.https://doi.org/10.1007/s00009-019-1443-6
[10]
o
ý
,
/
Ô
4
.
š
‚
5
©•
§
>
Š
¯
K
)
•
3
5
[J].
)
Ô
ê
ÆÆ
,2013,28(2):
279-301.
[11]Lu,Y.Q. andMa, R.Y.(2014) GlobalStructure ofPositive Solutionsfor Second-OrderDiffer-
enceEquationwithNonlinearBoundaryValueCondition.
AdvancesinDifferenceEquations
,
2014
,ArticleNo.188.https://doi.org/10.1186/1687-1847-2014-188
[12]
ê
X
,
p
«
u
,
ê
¦
s
,
´
ý
.
©•
§
n
Ø
9
Ù
A^
[M].
®
:
‰
Æ
Ñ
‡
,2018.
[13]Kelley,W.G.andPeterson,A.C.(2001)DifferenceEquations.AcademicPress,SanDiego,
CA.
[14]Guo,D.J.andLakshmikantham,V.(1988)NonlinearProblemsinAbstractCones.Academic
Press,NewYork,SanDiego.
DOI:10.12677/aam.2022.1174404141
A^
ê
Æ
?
Ð