设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(7),1103-1124
PublishedOnlineJuly2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.127122
äkžm•6PÁØÊ5•§áÚf
°°°ÿÿÿ§§§ààà
∗
Ü“‰ŒÆêƆÚOÆ§[‹=²
ÂvFϵ2022c525F¶¹^Fϵ2022c628F¶uÙFϵ2022c75F
Á‡
éuäkžm•6PÁØÊ5•§§©ïÄT•§)•žmÄåÆ1•"š‚5‘f
O••êp÷v16p65ž§3#nصee§|^È©O•{)·½5"Ó
ž§p÷v1 6p<5 ž§y²žm•6ÛáÚf•35±9ØC5"
'…c
Ê5•§§žm•6PÁاžm•6ÛáÚf
AttractorsfortheViscoelasticEquation
withTime-DependentMemoryKernel
HaiyanYuan,XuanWang
∗
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:May25
th
,2022;accepted:Jun.28
th
,2022;published:Jul.5
th
,2022
Abstract
Inthispaper,weinvestigatethelong-timedynamicalbehaviorofsolutionsforthe
∗ÏÕŠö
©ÙÚ^:°ÿ,à.äkžm•6PÁØÊ5•§áÚf[J].nØêÆ,2022,12(7):1103-1124.
DOI:10.12677/pm.2022.127122
°ÿ§à
viscoelasticequationwithtime-dependentmemorykernel.Whenthegrowthexponent
pofnonlinearityf(u)isupto1 6p65,thewell-posednessofthesolutionsisproved
byusingtheintegralestimationmethod,andweobtainedaninvarianttime-dependent
globalattractorwhen1 6p<5 .
Keywords
ViscoelasticEquation,Time-DependentMemoryKernel,Time-DependentGlobal
Attractors
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense (CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
©ïÄäkžm•6PÁØÊ5•§ÄåXÚ)•žm1•



















u
tt
−∆u
tt
−h
t
(0)∆u−
Z
∞
0
∂
s
h
t
(s)∆u(t−s)ds+f(u) = g,(x,t) ∈Ω×(τ,+∞),
u(x,t) = 0,x∈∂Ω, t>τ,
u(x,t) = u
τ
(x),x∈Ω, t6τ,
u
t
(x,t) = v
τ
(x),x∈Ω, t6τ,
(1.1)
Ù¥Ω ⊂R
3
•‘k1w>.k.•.
žm•6¼êh
t
(s) =k
t
(s)+k
∞
,k
∞
= 1,k
t
(s) >0,∂
s
k
t
(s) 60,∀s∈R
+
,t∈R.?˜Ú, b
µ
t
(s) = −∂
s
k
t
(s) = −∂
s
h
t
(s),¿…N(t,s) 7→µ
t
(s) : R×R
+
→R
+
= [0,∞)÷v±e^‡:
(H
1
)éu?¿½t∈R, Ns7→µ
t
(s)´šO,ýéëY…ŒÚ. ½Â
κ(t) =
Z
∞
0
µ
t
(s)ds,inf
t∈R
κ(t) >0.
(H
2
)éu?¿τ∈R,•3˜‡ëY¼êK
τ
: [τ,∞) →R
+
¦
µ
t
(s) 6K
τ
(t)µ
τ
(s),∀t>τ, a.e.s∈R
+
.
DOI:10.12677/pm.2022.1271221104nØêÆ
°ÿ§à
(H
3
)éuz˜‡½s>0, Nt7→µ
t
(s)éu¤kt∈R´Œ‡,¿…éu?¿;
8K⊂R×R
+
,k
(t,s) 7→µ
t
(s) ∈L
∞
(K),(t,s) 7→∂
t
µ
t
(s) ∈L
∞
(K).
(H
4
)•3δ>0 ¦
∂
t
µ
t
(s)+∂
s
µ
t
(s)+δκ(t)µ
t
(s) 60,∀t∈R
+
, a.e.s∈R
+
.
(H
5
)¼êt7→∂
t
µ
t
(s)÷v
sup
t∈R
1
[κ(t)]
2
Z
∞
0
|∂
t
µ
t
(s)|ds<∞.
(H
6
)éu?¿t∈R,µ
t
(0) <C, ¿…
sup
t∈R
µ
t
(0)
[κ(t)]
2
<+∞.
(H
7
)éu?¿a<b∈R,•3ν>0,¦
Z
1
ν
ν
µ
t
(s)ds>
κ(t)
2
,∀t∈[a,b].
bå‘g∈L
2
(Ω),…š‚5‘f∈C
1
(R)÷vf(0) = 0,¿…÷v
|f(u
1
)−f(u
2
)|6C(1+|u
1
|
p−1
+|u
2
|
p−1
)|u
1
−u
2
|,∀u
1
,u
2
∈R,(1.2)
Ù¥1 6p65, C•~ê, …•3θ: 0 <θ61,¦
hf(u),ui>hF(u),1i−
1
2
(1−θ)kuk
2
1
−c
f
,(1.3)
hF(u),1i>−
1
2
(1−θ)kuk
2
1
−c
f
,∀u∈H
1
0
(Ω),(1.4)
Ù¥F(u) =
R
u
0
f(s)ds,c
f
>0.
PÁØk
t
(s) ≡k(s)ž, •§(1.1) =z•˜„PòPÁ.Ê5•§.Cc5,kNõÆö
Ñ3l¯'uÊ5.ïÄ,¿¼´aïĤJ[1–8].~X, ©z[1] ¥,Cavalcanti<
32001cïáäkPÁ‘Úš‚5‘|u
t
|
ρ
u
tt
Ê5.,¿y²f)N•35.
•§•¹PÁØk
t
(s) ž,L«Ê5áÊ5‘Xžm6²¬Åìž”, =ÑyPzy
–.32018 c,Conti<3©z[8] ¥ïÄäkžm•6PÁØÊ5.
∂
tt
u−h
t
(0)∆u−
Z
∞
0
∂
s
h
t
(s)∆u(t−s)ds+f(u) = g,(1.5)
DOI:10.12677/pm.2022.1271221105nØêÆ
°ÿ§à
Ù¥PÁؼêh
t
(·) •‘XžmCzŒÿ¼ê, Conti<•§(1.5) f)·½5. 3
dÄ:þ, ¦‚3©z[9]¥y²d•§(1.5) ¤)¤uÐL§žm •6ÛáÚf•35
±9K5.
ɱþ©zéu, ©3#nصee, |^È©O•{)·½5, ¿y²ž
m•6ÛáÚf•35†ØC5. ©(Xe:31!, 0˜ò‡^VgÚ(Ø;
31n!,?Ø·½5,¿y²•§(1.1) žm•6ÛáÚf•35†ØC5.
3‘Øã¥,•{Bå„,½ÂC•?¿~ê.
2.ý•£
-µ
t
(s) = −∂
s
k
t
(s) = −∂
s
h
t
(s)…k
t
(∞) = 1,K•§(1.1) Œ=z•
u
tt
−∆u
tt
−∆u−
Z
∞
0
µ
t
(s)∆η
t
(s)ds+f(u) = g.(2.1)
éu?¿t>τ,k
η
t
(s) =
(
u(t)−u(t−s),s6t−τ,
η
τ
(s−t+τ)+u(t)−u
τ
,s>t−τ.
(2.2)
ƒAÐ->Š^‡•:

















u(x,t) = 0,x∈∂Ω,t>τ,
η
t
(x,s) = 0,(x,s) ∈∂Ω×R
+
,t>τ,
u(x,τ) = u
τ
(x,t),x∈Ω,
u
t
(x,τ) = v
τ
(x,t),x∈Ω,
η
τ
(x,s) = η
τ
(x,s),(x,s) ∈Ω×R
+
.
(2.3)
XÓ©z[10],A= −∆ …½Â•D(A) = H
1
0
(Ω)∩H
2
(Ω).•ÄHilbert ˜mxD(A
k
2
),k∈
R,¿DƒƒASȆ‰ê
h·,·i
D(A
k
2
)
= hA
k
2
·,A
k
2
·
i,k·k
D(A
k
2
)
= kA
k
2
·k,
ùph·,·iÚk·k•L
2
(Ω)SȆ‰ê.
Ïd, éu?¿k>r, k;i\D(A
k
2
)→D(A
r
2
), ±9éu¤kk∈[0,
n
2
), këYi\
D(A
k
2
) →L
2n
n−2k
(Ω).
éu0 6k<3,PH
k
= D(A
k
2
),k·k
k
= k·k
H
k
= k·k
D(A
k
2
)
,KH= L
2
(Ω),H
1
= H
1
0
(Ω),H
2
=
H
1
0
(Ω)∩H
2
(Ω).ŠâPÁؼê÷v^‡,0 6r<3 ž,½ÂXePÁ˜m
M
σ
t
= L
2
µ
t
(R
+
;H
1+σ
) = {ξ
t
: R
+
→H
1+σ
|
Z
∞
0
µ
t
(s)kξ
t
(s)k
2
1+σ
ds<+∞},
DOI:10.12677/pm.2022.1271221106nØêÆ
°ÿ§à
¿DƒƒASȆ‰ê
hη
t
,ξ
t
i
M
σ
t
=
Z
∞
0
µ
t
(s)hη
t
(s),ξ
t
(s)i
1+σ
ds,
kξ
t
k
2
M
σ
t
=
Z
∞
0
µ
t
(s)kξ
t
(s)k
2
1+σ
ds.
Šâ(H
2
),éu?¿η
t
∈M
σ
τ
,k
kη
t
k
2
M
σ
t
6K
τ
(t)kη
t
k
2
M
σ
τ
,∀t>τ,(2.4)
…këYi\
M
σ
τ
⊂M
σ
t
,∀t>τ.
AO/,½Âžm•6ƒ˜m
H
σ
t
= H
1+σ
×H
1+σ
×M
σ
t
,
¿…Dƒ‰ê
kzk
2
H
σ
t
= k(u,v,η
t
)k
2
H
σ
t
= kuk
2
1+σ
+kvk
2
1+σ
+kη
t
k
2
M
σ
t
.
éu?¿r>0 ±9?¿t∈R, -
B
σ
t
(R) = {z∈H
σ
t
:kzk
H
σ
t
6R}.
½Â2.1[11]{H
t
}
t∈R
´˜xD‰‚5˜m, éuVëêŽfxU(t,τ) :H
τ
→H
t
,t>τ∈
R,XJ÷v±e5Ÿ:
(i)é?¿τ∈R,U(τ,τ) = Id´H
t
þðN;
(ii)é?¿t>s>τ,τ∈R,kU(t,s)U(s,τ) = U(t,τ),
K¡U(t,τ)´˜‡L§.
Ún2.2[9](È©.GronwallØª)Γ : [τ,∞) →R´ëY¼ê,éu,ε>0 ±9?¿
b>a>τ, eÈ©Øª¤á:
Γ(b)+2ε
Z
b
a
Γ(y)dy6Γ(a)+
Z
b
a
q
1
(y)Γ(y)dy+
Z
b
a
q
2
(y)dy,
Ù¥q
1
,q
2
>0 …q
i
∈L
1
loc
[τ,∞)(i= 1,2) ÷v,•3c
1
,c
2
>0, ¦
Z
b
a
q
1
(y)dy6ε(b−a)+c
1
,sup
t>τ
Z
t+1
t
q
2
(y)dy6c
2
,
DOI:10.12677/pm.2022.1271221107nØêÆ
°ÿ§à
@o
Γ(t) 6e
c
1

|Γ(τ)|e
−ε(t−τ)
+
c
2
e
ε
1−e
−ε

,∀t>τ.
½Â2.3[12,13]XJ˜‡8xB= {B
t
}
t∈R
´˜—k.,=
sup
t∈R
kB
t
k
X
t
= sup
t∈R
sup
ξ∈B
t
kξk
X
t
<+∞, ¿…éu z˜‡R>0, •3~êτ
e
= τ
e
(R)>0, ¦

U(t,τ)B
τ
(R) ⊂B
t
,∀t−τ>τ
e
,
K¡B= {B
t
}
t∈R
•žm•6áÂ8.
½Â2.4[12,13]e˜‡8xA= {A
t
}
t∈R
÷vXe5Ÿ:
(i)é?¿t∈R,z˜‡A
t
3X
t
¥Ñ´;;
(ii)A´.£áÚ, =A•˜—k.,¿…é?¿˜—k.8xC= {C
t
}
t∈R
,
lim
τ→−∞
dist
X
t
(U(t,τ)C
τ
,A
t
) = 0;
(iii)(•5)e•3˜‡8xD= {D
t
}
t∈R
÷v(i)Ú(ii), @oA
t
⊂D
t
,∀t∈R,
K¡A= {A
t
}
t∈R
•L§U(t,τ)žm•6ÛáÚf.
Ún2.5[12]L§U(t,τ)žm•6áÚfA={A
t
}
t∈R
•3…•˜…=8ÜO=
{O
t
}
t∈R
•š˜,Ù¥O
t
∈X
t
´;,¿…O´.£áÚ.
Ún2.6[14]U(t,τ)´Š^užm•6ƒ˜mX
τ
˜‡L§, é?¿t>τ, U(t,τ):
X
τ
→X
t
´ëY,…Pkžm•6ÛáÚfA= {A(t)}
t∈R
.@oA´ØC,=,U(t,τ)A
τ
=
A
t
,∀t>τ.
Ún2.7[9]PI= [τ,T],bu∈W
1,∞
(I;H
1+σ
)…η
τ
∈M
σ
τ
.@o, éu?¿τ6a6b6
T,±eØª¤á:
kη
b
k
2
M
σ
b
−
Z
b
a
Z
∞
0
[∂
t
µ
t
(s)+∂
s
µ
t
(s)]kη
t
(s)k
2
1+σ
dsdt6kη
a
k
2
M
σ
a
+2
Z
b
a
hu
t
(t),η
t
i
M
σ
t
dt.
Ún2.8[9]éu?¿b>a>τ±9z‡ω∈(0,1],½Â•¼
Φ
0
(t) = 2hu(t),u
t
(t)i
1
,
Ψ
0
(t) = −
2
κ(t)
Z
∞
0
µ
t
(s)hψ
t
(s),u
t
(t)i
1
ds.
¼êΦ
0
÷v
Φ
0
(b)+(2−ω)
Z
b
a
kp(t)k
2
1
dt6Φ
0
(a)+2
Z
b
a
k∂
t
p(t)k
2
1
dt
+
1
ω
Z
b
a
κ(t)kϕ
t
k
2
M
t
dt−2
Z
b
a
hγ(t),p(t)idt,
DOI:10.12677/pm.2022.1271221108nØêÆ
°ÿ§à
¿…Ψ
0
÷v
Ψ
0
(b)+
Z
b
a
k∂
t
p(t)k
2
1
dt6Ψ
0
(a)−M
Z
b
a
Z
∞
0
[∂
t
µ
t
(s)+∂
s
µ
t
(s)]kϕ
t
(s)k
2
1
dsdt
+ω
Z
b
a
kp(t)k
2
1
dt+
C
ω
Z
b
a
κ(t)kϕ
t
k
2
M
t
dt
+2
Z
b
a
2
κ(t)
Z
∞
0
µ
t
(s)hγ(t),ϕ
t
(s)idsdt,
Ù¥MÚC•=•6uPÁØ~ê.
3.̇(J
3.1.·½5
½Â3.1éu?¿ T>τ∈R,g∈H,…z
τ
=(u
τ
,v
τ
,η
τ
)∈H
τ
,XJ(u(τ),u
t
(τ),η
τ
)=
(u
τ
,v
τ
,η
τ
),¿…
(i)z(t) ∈H
t
a.e.t∈[τ,T];
(ii)u∈W
2,∞
(τ,T;H
1
),u
t
∈C([τ,T];H
1
),η
t
÷vª(2.2);
(iii)éu?¿ω∈H
1
,k
hu
tt
,ωi+hu
tt
,ωi
1
+hu,ωi
1
+
Z
∞
0
µ
t
(s)hη
t
(s),ωi
1
ds+hf(u),ωi= hg,ωi, a.e.t∈(τ,T],
K¡z(t) = (u(t),u
t
(t),η
t
)•¯K(2.1) 3žm«mIþ÷vЊz(τ) = z
τ
f).
½n3.2(·½5)PI=[τ,T],∀T>τ.b(1.2)-(1.4)ª±9^‡(H
1
)-(H
7
)¤á,g∈
H,Kéu?¿Њz
τ
∈H
τ
,z
τ
÷vkz
τ
k
H
τ
6R,¯K(2.1)-(2.3)•3•˜f)z(t)=
(u(t),u
t
(t),η
t
) = U(t,τ)z
τ
,Kéu?¿½t, k
sup
t>τ
kz(t)k
2
H
t
+
Z
t
τ
κ(y)kη
y
k
2
M
y
dy+sup
t>τ
Z
t+1
t
ku
tt
(s)k
2
1
ds6Q(R),
Ù¥Q(R) >0 ´Rþ˜‡ëYO¼ê, ¿…
k¯z(t)k
2
H
t
6Q(R)e
C(R,T)(t−τ)
k¯z(τ)k
2
H
τ
, t∈[τ,T],
Ù¥¯z(t)=z
1
(t)−z
2
(t),…z
1
(t),z
2
(t)´¯K(2.1)-(2.3)÷vЊz
1
=(u
1
τ
,v
1
τ
,η
1
τ
),z
2
=
(u
2
τ
,v
2
τ
,η
2τ
)f).
y²•§(2.1)¦±u
t
,Œ
d
dt
(kuk
2
1
+ku
t
k
2
+ku
t
k
2
1
+2hF(u),1i−2hg,ui)+2hu
t
,η
t
i
M
t
= 0.(3.1)
DOI:10.12677/pm.2022.1271221109nØêÆ
°ÿ§à
½ÂN(t) = kuk
2
1
+ku
t
k
2
+ku
t
k
2
1
+2hF(u),1i−2hg,ui.
|^(1.4)ª, Œ•
N(t) >
θ
2
(kuk
2
1
+ku
t
k
2
1
)−Q
0
,(3.2)
Ù¥θd(1.4)ª½Â, Q
0
=
2
θλ
1
kgk
2
+c
f
.
é(3.1)ª3[τ,t]þÈ©,
N(t)+2
Z
t
τ
hu
t
,η
y
i
M
y
dy= N(τ) 6Q(R),∀t>τ.(3.3)
ŠâÚn2.7,Œ•
kη
t
k
2
M
t
−
Z
t
τ
Z
∞
0
[∂
y
µ
y
(s)+∂
s
µ
y
(s)]kη
y
(s)k
2
1
dsdy6kη
τ
k
2
M
τ
+2
Z
t
τ
hu
t
,η
y
i
M
y
dy.(3.4)
d(1.2)ª, Œ•
2hF(u),1i6C(1+kuk
p+1
1
),
(Ü(3.2)ª, 
θ
2
(kuk
2
+ku
t
k
2
1
+kη
t
k
2
M
t
)−Q
0
6N(t) = N(t)+kη
t
k
2
M
t
6C(1+kuk
2
1
+kuk
p+1
1
+2ku
t
k
2
1
+kgk
2
), ∀t>τ.(3.5)
Ïd,
k(u(t),η
t
)k
2
H
t
+
Z
t
τ
κ(y)kη
y
k
2
M
y
dy6Q(R),∀t>τ,(3.6)
•§(2.1)¦±u
tt
,
ku
tt
k
2
+ku
tt
k
2
1
= −hu,u
tt
i
1
−
Z
∞
0
µ
t
(s)hη
t
(s),u
tt
i
1
ds−hf(u),u
tt
i+hg,u
tt
i.(3.7)
d(1.2)ª, Œ
|hf(u),u
tt
i|6kf(u)k
L
1+
1
p
ku
tt
k
L
p+1
6C(1+ku(t)k
p
1
)ku
tt
k
1
,
DOI:10.12677/pm.2022.1271221110nØêÆ
°ÿ§à
¿…d(H
2
)




−
Z
∞
0
µ
t
(s)hη
t
(s),∂
t
ui
1
ds




6ku
tt
k
1
Z
∞
0
µ
t
(s)kη
t
(s)k
1
ds
6ku
tt
k
1

Z
∞
0
µ
t
(s)ds

1
2

Z
∞
0
µ
t
(s)kη
t
(s)k
2
1
ds

1
2
6ku
tt
k
1
p
K
τ
(t)
p
κ(τ)kη
t
k
M
t
.
d(3.7)ªŒ
ku
tt
k
2
1
6C(1+ku(t)k
1
+ku(t)k
p
1
+
p
K
τ
(t)
p
κ(τ)kη
t
k
M
t
+kgk)ku
tt
k
1
6Q(R)(1+
p
K
τ
(t)
p
κ(τ)kη
t
k
M
t
)ku
tt
k
1
6
1
2
ku
tt
k
2
1
+C(R,T),∀t∈[τ,T].(3.8)
qϕ
ku
tt
k
2
1
6
1
2
ku
tt
k
2
1
+Q(R)(1+κ(t)kη
t
k
2
M
t
),
sup
t>τ
Z
t+1
t
ku
tt
(s)k
2
1
ds6Q(R)

1+sup
t>τ
Z
t+1
t
κ(s)kη
s
k
2
M
s
ds

6Q(R).(3.9)
z
n
(t) = (u
n
,v
n
,η
t
n
),•3H
1
Ä{w
j
}
∞
j=1
,…Aw
j
= λ
j
w
j
,j= 1,2,···,¦
h∂
tt
u
n
,w
j
i+h∂
tt
u
n
,w
j
i
1
+hu
n
,w
j
i
1
+
Z
∞
0
µ
t
(s)hη
t
n
(s),w
j
i
1
ds+hf(u
n
),w
j
i
=hg,w
j
i, j= 1,···,n, t>τ,(3.10)
Ù¥u
n
= Σ
n
j=i
T
j
n
(t)(w
j
),¿…
η
t
n
(s) =



u
n
(t)−u
n
(t−s),s6t−τ,
η
τ
n
(s−t+τ)+u
n
(t)−u
τ
n
,s>t−τ,
±9ƒAЩ^‡
(u
n
(τ),∂
t
u
n
(τ),η
τ
n
) = (u
τ
n
,v
τ
n
,η
τ
n
) →(u
τ
,v
τ
,η
τ
).
'u(3.10)ª3[τ,t]þÈ©,
Z
t
τ
(h∂
tt
u
n
,w
j
i+h∂
tt
u
n
,w
j
i
1
+hu
n
,w
j
i
1
+
Z
∞
0
µ
t
(s)hη
t
n
(s),w
j
i
1
ds
+hf(u
n
),w
j
i−hg,w
j
i)dt= 0,j= 1,···,n.(3.11)
DOI:10.12677/pm.2022.1271221111nØêÆ
°ÿ§à
qdu
kf(u
n
)k
L
1+
1
p
6C(1+ku
n
k
p
1
) 6Q(R),
KkXe(J
3L
∞
(τ,T;H
1
×H
1
×H
1
)þ(u
n
,∂
t
u
n
,∂
tt
u
n
) →(u,∂
t
u,∂
tt
u)f∗Âñ,
3H
1
×H
1
×H
1
þ(u
n
(t),∂
t
u
n
(t),∂
tt
u
n
(t)) →(u(t),∂
t
u(t),∂
tt
u(t))fÂñ,
3C([τ,T];H×H) þ(u
n
(t),∂
t
u
n
(t)) →(u(t),∂
t
u(t)),
3Ω×(τ,T)þ(u
n
,∂
t
u
n
) →(u,∂
t
u),
3L
∞
(τ,T;L
1+
1
p
)þf(u
n
) →f(u)f∗Âñ,
¿…d(3.16)ª•, •3q
t
∈M
t
¦
3M
t
þη
t
n
→q
t
f∗Âñ, ∀t∈[τ,T].
q
¯η
t
n
= η
t
n
−η
t
,¯u
n
= u
n
−u,¯η
τ
n
= η
τ
n
−η
τ
,¯u
τ
n
= u
τ
n
−u
τ
.
d(2.4)ª, 
k¯η
t
n
k
2
M
−1
t
6K
τ
(t)k¯η
t
n
k
2
M
−1
τ
=C(T)

Z
t−τ
0
µ
τ
(s)k¯u
n
(t)−¯u
n
(t−s)drk
2
ds
+
Z
∞
t−τ
µ
τ
(s)k¯η
τ
n
(s−t+τ)+¯u
n
(t)−¯u
τ
n
ds

6C(T)(k¯u
n
k
2
C([τ,T];H)
κ(τ)+k¯η
τ
n
k
2
M
τ
) →0,∀t∈[τ,T].
Šâ4••˜5,•q
t
= η
t
.
du
¯η
t
n
(s) =
(
¯u
n
(t)−¯u
n
(t−s),s6t−τ,
¯η
τ
n
(s−t+τ)+¯u
n
(t)−¯u
τ
n
,s>t−τ,
Kk
Z
∞
0
µ
t
(s)h¯η
t
n
(s),w
j
i
1
ds
=
Z
t−τ
0
µ
t
(s)h¯u
n
(t),w
j
i
1
ds−
Z
t−τ
0
µ
t
(s)h¯u
n
(t−s),w
j
i
1
ds
+
Z
∞
t−τ
µ
t
(s)h¯η
τ
n
(s−t+τ)−¯u
τ
n
,w
j
i
1
ds+
Z
∞
t−τ
µ
t
(s)h¯u
n
(t),w
j
i
1
ds
=κ(t)h¯u
n
(t),w
j
i
1
−
Z
t−τ
0
µ
t
(s)h¯u
n
(t−s),w
j
i
1
ds
+
Z
∞
0
µ
t
(s+t−τ)h¯η
τ
n
(s),w
j
i
1
ds−h¯u
n
(s),w
j
i
1
Z
∞
t−τ
µ
t
(s)ds.(3.12)
DOI:10.12677/pm.2022.1271221112nØêÆ
°ÿ§à
du
|µ
t
(s)h¯u
n
(t−s),w
j
i
1
|6µ
t
(s)k¯u
n
(t−s)k
1
kw
j
k
1
6Q(R)µ
t
(s) ∈L
1
(R
+
),




Z
∞
0
µ
t
(s+t−τ)h¯η
τ
n
(s),w
j
i
1
ds




6CK
τ
(t)
p
κ(τ)k¯η
τ
n
k
M
τ
→0,
Ïd,n→∞ž, A^Lebesgue ››Âñ½n,Œ
lim
n→∞
Z
∞
0
µ
t
(s)h¯η
t
n
(s),w
j
i
1
ds= 0,j= 1,2,···,n, a.e.t∈(τ,T].
qdu




Z
∞
0
µ
t
(s)h¯η
t
n
(s),w
j
i
1
ds




6
Z
∞
0
µ
t
(s)k¯η
t
n
(s)k
1
kw
j
k
1
ds
6C
p
κ(t)k¯η
τ
n
k
M
t
6Q(R)(1+κ(t)) ∈L
1
(τ,t).
ŠâLebesgue ››Âñ½n,k
lim
n→∞
Z
t
τ
Z
∞
0
µ
t
(s)h¯η
t
n
(s),w
j
i
1
dsdt= 0.
-(3.12)ª¥n→∞Œ•z= (u,u
t
,η
t
)•¯K(2.1)-(2.3) f).
e¡y²f)Lipschitz -½5.
z
1
= (u
1
(t),∂
t
u
1
(t),η
t
1
),z
2
= (u
2
(t),∂
t
u
2
(t),η
t
2
)
•¯K(2.1)-(2.3)ü‡f). @o¯z(t) = (¯u(t),∂
t
¯u(t),¯η
t
) = z
1
(t)−z
2
(t)÷v
¯u
tt
+A¯u
tt
+A¯u+
Z
∞
0
µ
t
(s)A¯η
t
(s)ds= −f(u
1
)+f(u
2
),(3.13)
Ù¥
¯η
t
(s) =
(
¯u(t)−¯u(t−s),s6t−τ,
¯η
τ
(s−t+τ)+¯u(t)−¯u
τ
,s>t−τ,
•§(3.13)¦±¯u
t
,
1
2
d
dt
F(t)+
Z
∞
0
µ
t
(s)h¯η
t
(s),¯u
t
(t)i
1
ds
=−hf(u
1
)−f(u
2
),¯u(t)i
6C(1+ku
1
k
p−1
L
p+1
+ku
2
k
p−1
L
p+1
)k¯uk
L
p+1
k¯u
t
k
L
p+1
6C(R,T)F(t), t∈[τ,T],
Ù¥F(t) = (k¯uk
2
1
+k¯u
t
k
2
+k¯u
t
k
2
1
).
DOI:10.12677/pm.2022.1271221113nØêÆ
°ÿ§à
Ïd,éþª3[τ,t] þÈ©,
F(t)+2
Z
t
τ
h¯u
t
(y),¯η
y
i
M
y
dy6F(τ)+C(R,T)
Z
t
τ
F(y)dy,t∈[τ,T].(3.14)
dÚn2.7Œ•
k¯η
t
k
2
M
t
−
Z
t
τ
Z
∞
0
[∂
y
µ
y
(s)+∂
s
µ
y
(s)]k¯η
y
(s)k
2
1
dsdy
6k¯η
τ
k
2
M
τ
+2
Z
t
τ
h¯u
t
,¯η
y
i
M
y
dy.(3.15)
F(t) = F(t)+k¯η
t
k
2
M
1
t
,Kk
k¯z(t)k
2
H
t
6F(t) 6Q(R)k¯z(t)k
2
H
t
,
l
F(t) 6F(τ)+C(R,T)
Z
t
τ
F(y)dy,
F(t) 6F(τ)e
C(R,T)(t−τ)
,
k¯z(t)k
2
H
t
6Q(R)e
C(R,T)(t−τ)
k¯z(τ)k
2
H
τ
, t∈[τ,T].
Ù¥,k¯z
τ
k
2
H
τ
6R.
Šâ½n3.2,Œ±½Â¯K(2.1)-(2.3) 3H
t
þ)L§,=
U(t,τ) : H
τ
→H
t
,U(t,τ)z
τ
= z(t),∀z
τ
∈H
τ
,t>τ,(3.16)
…{U(t,τ)}•Š^uH
t
þL§x.
3.2.žm•6ÛáÚf
½n3.3(ÑÑ5){U(t,τ)}
t>τ
•(3.16)ª½Â)L§,¿…(1.2)-(1.4) ª±9^‡(H
1
)-
(H
7
)¤á,g∈H, …z
τ
∈H
τ
÷vkz
τ
k
H
τ
6R,K•3ε>0,R
0
>0 ¦
kU(t,τ)z
τ
k
2
H
t
6Q(R)e
−ε(t−τ)
+R
0
,∀t>τ.
y²ò•§(2.1)¦±2u(t),Œ
d
dt
Φ(t)−2ku
t
k
2
1
−2ku
t
k
2
+2hf(u)−g,ui= −2
Z
∞
0
µ
t
(s)hη
t
(s),ui
1
ds
6−2
Z
∞
0
µ
t
(s)kη
t
(s)k
1
kuk
1
ds
6
θ
2
ku(t)k
2
1
+
2
θ
κ(t)kη
t
k
2
M
t
,(3.17)
DOI:10.12677/pm.2022.1271221114nØêÆ
°ÿ§à
Ù¥
Φ(t) = hu
t
,ui+hu
t
,ui
1
6Q(R)(kuk
2
1
+ku
t
k
2
1
).(3.18)
é(3.17)ª3[a,b] þÈ©,¿|^(1.3)ª, Œ•
Φ(b)+(1+
θ
2
)
Z
b
a
kuk
2
1
dt+2
Z
b
a
hF(u),1idt−2
Z
b
a
hg,uidt
6Φ(a)+2
Z
b
a
ku
t
k
2
dt+2
Z
b
a
ku
t
k
2
1
dt+
2
θ
Z
b
a
κ(t)kη
t
k
2
M
1
t
dt+c
f
(b−a).(3.19)
•§(2.1)ˆ‘¦±−
2
κ(t)
µ
t
(s)η
t
(s),'us∈(0,∞) È©,
−
2
κ(t)
Z
∞
0
µ
t
(s)

hu
tt
,η
t
(s)i+hu
tt
,η
t
(s)i
1

ds
=
2
κ(t)
Z
∞
0
µ
t
(s)hu,η
t
(s)i
1
ds+
2
κ(t)




Z
∞
0
µ
t
(s)A
1
2
η
t
(s)ds




2
+
2
κ(t)
Z
∞
0
µ
t
(s)hf(u)−g,η
t
(s)ids.(3.20)
•O(3.20)ª†à, ½Â•¼
Ψ(t) = −
2
κ(t)
Z
∞
0
µ
t
(s)

hu
t
(t),η
t
(s)i+hu
t
(t),η
t
(s)i
1

ds,(3.21)
…
|Ψ(t)|6
2
κ(t)
Z
∞
0
µ
t
(s)

ku
t
(t)k
1
kη
t
(s)k
1
+ku
t
(t)kkη
t
(s)k

ds
6
2
κ(t)
h
p
κ(t)ku
t
(t)k
1
kη
t
k
M
t
+
p
κ(t)ku
t
(t)kkη
t
k
M
t
i
6Q(R)

ku
t
(t)k
2
1
+kη
t
k
2
M
t

.(3.22)
½Â©ã¼ê
φ
ε
(s) =

























0,0 6s<ε,
s
ε
−1,ε6s<2ε,
1,2ε6s6
1
ε
,
2−εs,
1
ε
6s<
2
ε
,
0,
2
ε
6s,
DOI:10.12677/pm.2022.1271221115nØêÆ
°ÿ§à
Ù¥0 <ε<
1
2
,¿…
µ
ε
t
(s) = φ
ε
(s)µ
t
(s) 6µ
t
(s),∀s∈R
+
.
w,,suppµ
ε
t
(s) = [ε,
2
ε
].
κ
ε
(t) =
Z
∞
0
µ
ε
t
(s)ds=
Z
2
ε
ε
µ
ε
t
(s)ds6κ(t).
|^(3.18)Ú(3.21) ª,Œ•
|Φ(t)|+|Ψ(t)|6Q(R)E(t),(3.23)
Ù¥E(t) =
1
2
kU(t,τ)z
τ
k
2
H
t
.
½Â•¼
Ψ
ε
(t) = −
2
κ
ε
(t)
Z
∞
0
µ
ε
t
(s)

hu
t
(t),η
t
(s)i+hu
t
(t),η
t
(s)i
1

ds,
K
d
dt
Ψ
ε
(t) = J
1
+J
2
,(3.24)
Ù¥
J
1
= −2
d
dt

1
κ
ε
(t)

Z
∞
0
µ
ε
t
(s)hu
t
(t),η
t
(s)i
1
ds−
2
κ
ε
(t)
d
dt
Z
∞
0
µ
ε
t
(s)hu
t
(t),η
t
(s)i
1
ds,
J
2
= −2
d
dt

1
κ
ε
(t)

Z
∞
0
µ
ε
t
(s)hu
t
(t),η
t
(s)ids−
2
κ
ε
(t)
d
dt
Z
∞
0
µ
ε
t
(s)hu
t
(t),η
t
(s)ids.
-
R
ε
(t) =

κ(t)
κ
ε
(t)

2
>1.
d^‡(H
7
),ε¿©, k
sup
t∈[a,b]
R
ε
(t) 64,∀t∈[a,b].(3.25)
aqu©z[9]¥y², 
J
1
(t) 6−(2−R
ε
(t))ku
t
k
2
1
−M
Z
∞
0
[∂
t
µ
t
(s)+∂
s
µ
t
(s)]kη
t
(s)k
2
1
ds
+Q(R)
Z
∞
0
r
ε
(t,s)ds−
2
p
R
ε
(t)
κ(t)
Z
∞
0
µ
ε
t
(s)hu
tt
,η
t
(s)ids
+Cκ(t)kη
t
(s)k
2
M
t
.(3.26)
DOI:10.12677/pm.2022.1271221116nØêÆ
°ÿ§à
J
2
(t) 6−(2−R
ε
(t))ku
t
k
2
−M
Z
∞
0
[∂
t
µ
t
(s)+∂
s
µ
t
(s)]kη
t
(s)k
2
1
ds
+Q(R)
Z
∞
0
r
ε
(t,s)ds−
2
p
R
ε
(t)
κ(t)
Z
∞
0
µ
ε
t
(s)hu
tt
,η
t
(s)ids
+Cκ(t)kη
t
(s)k
2
M
t
.(3.27)
òª(3.25)-(3.27)“\ª(3.24), ¿3[a,b] þÈ©,
Ψ
ε
(b)+
Z
b
a
[2−R
ε
(t)]ku
t
k
2
1
dt+
Z
b
a
[2−R
ε
(t)]ku
t
k
2
dt
6Ψ
ε
(a)−2M
Z
b
a
Z
∞
0
[∂
t
µ
t
(s)+∂
s
µ
t
(s)]kη
t
(s)k
2
1
dsdt+C
Z
b
a
κ(t)kη
t
(s)k
2
M
t
dt
+Q(R)
Z
b
a
Z
∞
0
r
ε
(t,s)dsdt−
Z
b
a
2
p
R
ε
(t)
κ(t)
Z
∞
0
µ
ε
t
(s)hu
tt
+Au
tt
,η
t
(s)idsdt.(3.28)
ε→0 ž,w,k
µ
ε
t
(s) →µ
t
(s),κ
ε
(t) →κ(t),R
ε
(t) →1,∀(t,s) ∈[a,b]×R
+
.
é?¿δ>0Ú?¿½s>0,•3δ
1
=
s
2
>0,¦ε<δ
1
ž,
1
ε
χ
[ε,2ε]
(s) = 0 <δ,lim
ε→0
r
ε
(t,s) = 0.
-(3.28)ª¥ε→0,¿|^Lebesgue››Âñ½n, Œ•
Ψ(b)+
Z
b
a
ku
t
k
2
1
dt+
Z
b
a
ku
t
k
2
dt
6Ψ(a)−2M
Z
b
a
Z
∞
0
[∂
t
µ
t
(s)+∂
s
µ
t
(s)]kη
t
(s)k
2
1
dsdt+C
Z
b
a
κ(t)kη
t
(s)k
2
M
1
t
dt
−
Z
b
a
2
κ(t)
Z
∞
0
µ
t
(s)hu
t
+Au
t
,η
t
(s)idsdt.(3.29)
d•§(2.1)Œ•
−
2
κ(t)
Z
∞
0
µ
t
(s)hu
tt
+Au
tt
,η
t
(s)ids
=
2
κ(t)
"
Z
∞
0
µ
t
(s)hu(t),η
t
(s)i
1
ds+




Z
∞
0
µ
t
(s)A
1
2
η
t
(s)ds




2
+
Z
∞
0
µ
t
(s)hf(u)−g,η
t
(s)ids

6
2
κ(t)

(ku(t)k
1
+kf(u)k
L
6
5
+kgk
−1
)
Z
∞
0
µ
t
(s)kη
t
(s)k
1
ds
+
Z
Ω

Z
∞
0
µ
t
(s)ds
Z
∞
0
µ
t
(s)(A
1
2
η
t
(s))
2
ds

dx

DOI:10.12677/pm.2022.1271221117nØêÆ
°ÿ§à
6
2
p
κ(t)
(ku(t)k
1
+(1+kuk
4
L
6
)kuk
L
6
+kgk)kη
t
k
M
t
+2
Z
∞
0
µ
t
(s)
Z
Ω



A
1
2
η
t
(s)



2
dxds
6
θ
16
ku(t)k
2
1
+
θ
32
kgk
2
+Q(R)kη
t
k
2
M
t
6
θ
16
ku(t)k
2
1
+
θ
32
kgk
2
+Q(R)κ(t)kη
t
k
2
M
t
,(3.30)
Ù¥A^Øª1 6
1
inf
t∈R
κ(t)
κ(t) 6Cκ(t).
ò(3.30)ª“\(3.29) ª,
Ψ(b)+
Z
b
a
ku
t
k
2
1
dt+
Z
b
a
ku
t
k
2
dt
6Ψ(a)−2M
Z
b
a
Z
∞
0
[∂
t
µ
t
(s)+∂
s
µ
t
(s)]kη
t
(s)k
2
1
dsdt+
θ
16
kuk
2
1
dt
+Q(R)
Z
b
a
κ(t)kη
t
(s)k
2
M
t
dt+
θ
32
kgk
2
(b−a).(3.31)

Υ(t) = N(t)+2ε[Φ(t)+4Ψ(t)]+Q
0
,
Ù¥N(t) d(3.5) ª¤½Â,Φ(t) ÚΨ(t) d(3.23) ª¤½Â.
ε>0 ¿©,d(3.5) Ú(3.23) ªŒ•
θ
4
E(t)−Q
0
6N(t) 6Q(R)E(t)+Ckgk
2
,
θ
2
E(t) 6Υ(t) 6Q(R)E(t)+Q
1
,(3.32)
Ù¥E(t) d(3.23) ª½Â,…Q
1
= C(Q
0
+kgk
2
) = C(c
f
+kgk
2
).
Šâ(3.3),(3.19) Ú(3.29) ª,¿|^^‡(H
4
)±9(3.32) ªŒ
Υ(b)+2ε
Z
b
a
Υ(t)dt+P
1
+P
2
6Υ(a)+εQ
1
(b−a),
…
P
1
= ε
Z
b
a
(θE(t)−4ε[Φ(t)+4Ψ(t)])dt>0,
P
2
= −(1−16εM)
Z
b
a
Z
∞
0
[∂
t
µ
t
(s)+∂
s
µ
t
(s)]kη
t
(s)k
2
1
dsdt−εQ(R)
Z
b
a
κ(t)kη
t
k
2
M
t
dt
>[δ(1−16εM)−εQ(R)]
Z
b
a
κ(t)kη
t
k
2
M
t
dt>0.
DOI:10.12677/pm.2022.1271221118nØêÆ
°ÿ§à
•,A^Ún1.2 
Υ(t) 6Υ(τ)e
−ε(t−τ)
+
εQ
1
e
ε
1−e
−ε
,
E(t) 6
2
θ
Υ(t) 6Q(R)e
−ε(t−τ)
+R
0
,
Ù¥R
0
=
2Q
1
θ
sup
ε∈(0,1]
εe
ε
1−e
−ε
.
½n3.4e½n3.3b¤á, …c
f
= 0,g= 0,KR
0
= Q
1
= 0,¿…
kU(t,τ)k
2
H
t
6Q(R)e
−ε(t−τ)
,∀kz
τ
k
2
H
τ
6R,t>τ.
?¿½τ∈R…(p
τ
,ϕ
τ
) ∈H
τ
.•Ä•§
Ap
tt
+Ap+
Z
∞
0
µ
t
(s)Aϕ
t
(s)ds+γ(t) = 0,(3.33)
Ù¥γ•å‘,…
ϕ
t
(s) =



p(t)−p(t−s)dr,
ϕ
τ
(s−t+τ)+p(t)−p
τ
,
(3.34)
ƒAЊ^‡•
(p(τ),p
t
(τ),ϕ
τ
) = (p
τ
,q
τ
,ϕ
τ
).(3.35)
Ún3.5XJš‚5‘f÷v(1.2)ª, òÙ©)•:
f(s) = f
0
(s)+f
1
(s),
Ù¥f
1
•Lipschitz ëY¼ê…f
1
(0) = 0,¿…
f
0
(s) = 0,∀s∈[−1,1],f
0
(s)s>F
0
(s) :=
Z
s
0
f
0
(y)dy,∀s∈R,
|f
0
(s
1
)−f
0
(s
2
)|6C|s
1
−s
2
|(1+|s
1
|+|s
2
|)
p−1
,∀s
1
,s
2
∈R.
½n3.3 L²L§U(t,τ) kžm•6áÂ8B={B
t
}
t∈R
. éu?¿z
τ
=(u
τ
,v
τ
,η
τ
)∈B
τ
,
©)¯K(2.1)-(2.3))U(t,τ)z
τ
,k
U(t,τ)z
τ
= U
0
(t,τ)z
τ
+U
1
(t,τ)z
τ
,
DOI:10.12677/pm.2022.1271221119nØêÆ
°ÿ§à
Ù¥U
0
(t,τ)z
τ
= z
1
(t)…U
1
(t,τ)z
τ
= z
2
(t),=z= (u,u
t
,η
t
) = z
1
(t)+z
2
(t),z
1
(t)÷v





v
tt
+Av
tt
+Av+
Z
∞
0
µ
t
(s)Aξ
t
(s)ds+f
0
(v) = 0,
U
0
(τ,τ)z
τ
= z
τ
,
…
ξ
t
(s) =



v(t)−v(t−s)dr,s6t−τ,
ξ
τ
(s−t+τ)+v(t)−v
τ
,s>t−τ,
z
2
(t)÷v





w
tt
+Aw
tt
+Aw+
Z
∞
0
µ
t
(s)Aζ
t
(s)ds+f(u)−f
0
(v) = g,
U
1
(τ,τ)z
τ
= 0,
(3.36)
…
ζ
t
(s) =



w(t)−w(t−s),s6t−τ,
ζ
τ
(s−t+τ)+w(t)−w
τ
,s>t−τ,
Ù¥η
τ
= ξ
τ
+ζ
τ
.
Šâ½n3.4,Œ•
kU
0
(t,τ)z
τ
k
2
H
t
6Ce
−ε(t−τ)
,∀t>τ,(3.37)
¿…d(3.9)ª, Œ
sup
t>τ
Z
t+1
t
kv
tt
(t)k
2
1
dt6Q(R).(3.38)
Ún3.6b(1.2)-(1.4)ª±9^‡(H
1
)-(H
7
)¤á,g∈H,…z
τ
=(u
τ
,η
τ
)∈H
τ
,÷v
kz
τ
k
H
τ
6R.K
kU
1
(t,τ)z
τ
k
2
H
σ
t
6Q(R),∀t>τ.(3.39)
Ù¥0 <σ6
1
3
.
y²ò•§(3.36)¦±A
σ
w
t
,Œ
d
dt
N
σ
(t)+hu
tt
−v
tt
,A
σ
wi+2hζ
t
,w
t
(t)i
M
σ
t
=2hg−f
1
(u),A
σ
wi−2hf
0
(u)−f
0
(v),A
σ
wi,(3.40)
Ù¥N
σ
(t) = kw(t)k
2
1+σ
+kw
t
(t)k
2
1+σ
.
DOI:10.12677/pm.2022.1271221120nØêÆ
°ÿ§à
dÚn3.5,½n3.2 ±9Sobolev i\,
2|hg−f
1
(u),A
σ
w
t
i|6C(kgk+kuk)kA
σ
w
t
k6
ε
1
2
kw
t
k
2
1+σ
+
Q(R)
ε
1
,(3.41)
2|hf
0
(u)−f
0
(v),A
σ
w
t
i|6C(1+kuk
p−1
L
3(p−1)
2
+kvk
p−1
L
3(p−1)
2
)kwk
L
18
kA
σ
w
t
k
L
18
5
6Q(R)(kwk
2
1+σ
kw
t
k
2
1+σ
)
6
ε
1
2
kw
t
k
2
1+σ
+
Q(R)
ε
1
kwk
2
1+σ
6
ε
1
2
(kwk
2
1+σ
+kw
t
k
2
1+σ
)+
Q(R)
ε
1
,(3.42)
hu
tt
−v
tt
,A
σ
w
t
i6ε
1
kw
t
(t)k
2
1+σ
+
Q(R)
ε
1
(ku
tt
k
2
1
+kv
tt
k
2
1
).(3.43)
Ù¥A^Øª
3(p−1)
2(p+1)
<1.
ò(3.41)-(3.43)ª“\(3.40) ª,k
d
dt
N
σ
(t)+2hζ
t
,w
t
(t)i
M
σ
t
6ε
1
(kw(t)k
2
1+σ
+kw
t
(t)k
2
1+σ
)+
Q(R)
ε
1
y
1
(t),
N
σ
(b)+2
Z
b
a
hζ
t
,w
t
i
M
σ
t
dt
6N
σ
(a)+ε
1
Z
b
a
(kwk
2
1+σ
+kw
t
k
2
1+σ
)dt+
Q(R)
ε
1
Z
b
a
y
1
(t)dt,(3.44)
Ù¥y
1
(t) = 1+ku
tt
k
2
1
+kv
tt
k
2
1
,…sup
t>τ
R
t+1
t
y
1
(r)dr6Q(R).

E
σ
(t) :=
1
2
kU
1
(t,τ)z
τ
k
2
H
σ
t
=
1
2
(kw(t)k
2
1+σ
+kw
t
(t)k
2
1+σ
+kζ
t
k
2
M
σ
t
),
¿|^Ún2.7,Œ
2E
σ
(b)−
Z
b
a
Z
∞
0
[∂
s
µ
t
(s)+∂
t
µ
t
(s)]kζ
t
(s)k
2
1+σ
dsdt
62E
σ
(a)+ε
1
Z
b
a
(kwk
2
1+σ
+kw
t
k
2
1+σ
)dt+
Q(R)
ε
1
Z
b
a
y
1
(t)dt.(3.45)

(p,p
t
,ϕ
t
) = (A
σ
2
w,A
σ
2
w
t
,A
σ
2
ζ
t
),γ(t) = g−f(u)+f
0
(v)−u
tt
+v
tt
,
DOI:10.12677/pm.2022.1271221121nØêÆ
°ÿ§à
K
Φ
0
(t) = Φ
σ
(t) = 2hw
t
(t),w(t)i
1+σ
,Ψ
0
(t) = Ψ
σ
(t) = −
2
κ(t)
Z
∞
0
µ
t
(s)hζ
t
(s),w
t
(t)i
1+σ
ds.
aqu½n3.3y², 
|Φ
σ
(t)|+|Ψ
σ
(t)|6CE
σ
(t).(3.46)
dÚn2.8(-w=
1
20
),Υ
Φ
σ
(b)+4Ψ
σ
(b)+
7
4
Z
b
a
kw(t)k
2
1+σ
dt+2
Z
b
a
kw
t
(t)k
2
1+σ
dt+
5
4
Z
b
a
kζ
t
k
2
M
σ
t
dt
6Φ
σ
(a)+4Ψ
σ
(a)−4M
Z
b
a
Z
∞
0
[∂
s
µ
t
(s)+∂
t
µ
t
(s)]kζ
t
(s)k
2
1+σ
dsdt
+C
Z
b
a
(κ(t)+1)kζ
t
k
2
M
σ
t
dt−2
Z
b
a
hγ(t),A
σ
w(t)idt
+8
Z
b
a
2
κ(t)
Z
∞
0
µ
t
(s)hγ(t),A
σ
ζ
t
(s)idsdt.(3.47)
d(3.41)-(3.43),ε
1
=
1
16
,k





2
Z
b
a
hγ(t),A
σ
w(t)idt





6
1
8
Z
b
a
kw(t)k
2
1+σ
dt+Q(R)
Z
b
a
y
1
(t)dt,(3.48)
¿…
hγ(t),A
σ
ζ
t
(s)i6
1
64
kw(t)k
2
1+σ
+Ckζ
t
(s)k
2
1+σ
+Q(R)y
1
(t),
8
Z
b
a
2
κ(t)
Z
∞
0
µ
t
(s)hγ(t),A
σ
ζ
t
(s)idsdt
6
1
4
Z
b
a
kw(t)k
2
1+σ
dt+C
Z
b
a
κ(t)kζ
t
k
2
M
σ
t
dt+Q(R)
Z
b
a
y
1
(t)dt.(3.49)
ò(3.48)-(3.49)ª“\(3.47) ª,Œ
Φ
σ
(b)+4Ψ
σ
(b)+
5
2
Z
b
a
E
σ
(t)dt+
1
8
Z
b
a
(kw(t)k
2
1+σ
+kw
t
(t)k
2
1+σ
)dt
6Φ
σ
(a)+Ψ
σ
(a)+C
Z
b
a
κ(t)kζ
t
k
2
M
σ
t
dt+Q(R)
Z
b
a
y
1
(t)dt
−4M
Z
b
a
Z
∞
0
[∂
s
µ
t
(s)+∂
t
µ
t
(s)]kζ
t
(s)k
2
1+σ
dsdt.(3.50)
DOI:10.12677/pm.2022.1271221122nØêÆ
°ÿ§à

Υ
σ
(t) = N
σ
(t)+2ε[Φ
σ
(t)+4Ψ
σ
(t)].
d(3.46)ª•, éu¿©ε>0, k
3
2
E
σ
(t) 6Υ
σ
(t) 6
5
2
E
σ
(t).(3.51)
ε
1
=
ε
4
,Œ
Υ
σ
(b)+2ε
Z
b
a
Υ
1
(t)dt+P(t) 6Υ
σ
(a)+
Z
b
a
q
2
(t)dt,(3.52)
Ù¥
P(t) = −(1−8εM)
Z
b
a
Z
∞
0
[∂
s
µ
t
(s)+∂
t
µ
t
(s)]kζ
t
(s)k
2
1+σ
dsdt−εC
Z
b
a
κ(t)kζ
t
k
2
M
σ
t
dt
>[δ(1−8εM)−εC]
Z
b
a
κ(t)kζ
t
k
2
M
σ
t
dt>0,
¿…éuvε>0,k
sup
t>τ
Z
t+1
t
q
2
(r)dr= sup
t>τ
Z
t+1
t

2εQ(R)y
1
(r)+
Q(R)
ε
y
1
(r)

dr6
Q(R)
ε
.
|^Ún1.2±9(3.51) ª,Œ•
E
σ
(t) 6Q(R),∀t>τ.
Ïd,(3.39)ª¤á.
½n3.7e(1.2)-(1.4)ª±9^‡(H
1
)-(H
7
)¤á,g∈H,…z
τ
=(u
τ
,η
τ
)∈H
τ
,÷v
kz
τ
k
H
τ
6R.L§U(t,τ)Pkžm•6ÛáÚfA={A
t
}
t∈R
.d,áÚf´ØC,=,
U(t,τ)A
τ
= A
t
,∀t>τ.
y²½n3.3L²U(t,τ)kžm•6áÚ8B={B
t
}
t∈R
.½n3.6L²,é?¿r>
p
2Q(R),8xB= {B
σ
t
(r)}
t∈R
´.£áÚ,Ù¥B
σ
t
(r) = {ξ∈H
σ
t
|kξk
H
σ
t
6r}.
τ→−∞ž,k
dist
H
t
(U(t,τ)B
τ
,B
σ
t
(r)) 6sup
z
τ
∈B
τ
dist
H
t
(U
0
(t,τ)z
τ
+U
1
(t,τ)z
τ
,B
σ
t
(r))
6sup
z
τ
∈B
τ
kU
0
(t,τ)z
τ
k
H
t
6Ce
−
ε
2
(t−τ)
→0.
éuz‡t∈R,3˜mH
t
þ•3;8C
t
⊂B
σ
t
(r),¦8ÜC= {C
t
}
t∈R
´.£áÚ.Ïd,
dÚn2.5 •,U(t,τ)kÛáÚfA= {A
t
}
t∈R
.dL§ëY5±9Ún2.6,Œ•A´ØC.
DOI:10.12677/pm.2022.1271221123nØêÆ
°ÿ§à
Ä7‘8
I[g,‰ÆÄ7(1OÒ:11961059;12061062)"
ë•©z
[1]Cavalcanti,M.M.,Cavalcanti,V.andFerreira,J.(2001)ExistenceandUniformDecayforaNon-Linear
ViscoelasticEquationwithStrongDamping.MathematicalMethodsintheAppliedSciences,24,1043-1053.
https://doi.org/10.1002/mma.250
[2]Dafermos,C.M.(1970)AsymptoticStabilityinViscoelasticity.ArchiveforRationalMechanicsAnalysis,
37,297-308.https://doi.org/10.1007/BF00251609
[3]Liu,W.(2009)UniformDecayofSolutionsforaQuasilinearSystemofViscoelasticEquations.Nonlinear
Analysis,71,2257-2267.https://doi.org/10.1016/j.na.2009.01.060
[4]Qin,Y.M.,Zhang,J.P.andSun,L.L.(2013)UpperSemicontinuityofPullbackAttractorsforaNon-
AutonomousViscoelasticEquation.AppliedMathematicsandComputation,223,362-376.
https://doi.org/10.1016/j.amc.2013.08.034
[5]Qin,Y.,Feng,B.andZhang,M.(2014)UniformAttractorsforaNon-AutonomousViscoelasticEquation
withaPastHistory.NonlinearAnalysisTheoryMethodsApplications,101,1-15.
https://doi.org/10.1016/j.na.2014.01.006
[6]Aracjo,R.O.,Ma,T.F.andQin,Y.M.(2013)Long-TimeBehaviorofaQuasilinearViscoelasticEquation
withPastHistory.JournalofDifferentialEquations,254,4066-4087.
https://doi.org/10.1016/j.jde.2013.02.010
[7]Messaoudi,S.A.(2008)GeneralDecayofSolutionsofaViscoelasticEquation.ArabianJournalforScience
andEngineering,36,1457-1467.https://doi.org/10.1016/j.jmaa.2007.11.048
[8]Conti,M.,Danese,V.,Giorgi,C.andPata,V.(2018)AModelofViscoelasticitywithTime-Dependent
MemoryKernels.AmericanJournal ofMathematical,140,349-389.https://doi.org/10.1353/ajm.2018.0008
[9]Conti,M.,Danese,V.andPata,V.(2018)ViscoelasticitywithTime-DependentMemoryKernels,PartII:
AsymptoticbehaviorofSolutions.AmericanJournalofMathematical,140,1687-1729.
https://doi.org/10.1353/ajm.2018.0049
[10]Pata,V.andSquassina,M.(2005)OntheStronglyDampedWaveEquation.CommunicationsinMathe-
maticalPhysics,253,511-533.https://doi.org/10.1007/s00220-004-1233-1
[11]Yang,L.andWang,X.(2017)ExistenceofAttractorsfortheNon-AutonomousBergerEquationwith
NonlinearDamping.ElectronicJournalofDifferentialEquations,2017,1-14.
[12]Conti,M.,Pata,V.andTeman,R.(2013)AttractorsfortheProcessesonTime-DependentSpaces.Appli-
cationstoWaveEquations.JournalofDifferentialEquations,255,1254-1277.
https://doi.org/10.1016/j.jde.2013.05.013
[13]Meng,F.J.,Wu,J.andZhao,C.X.(2019)Time-DependentGlobalAttractorforExtensibleBergerEqua-
tion.JournalofMathematicalAnalysisandApplications,469,1045-1069.
https://doi.org/10.1016/j.jmaa.2018.09.050
[14]Conti,M.andPata,V.(2014)AsymptoticStructureoftheAttractorforProcessesonTime-Dependent
Spaces.NonlinearAnalysis:RealWorldApplications,19,1-10.
https://doi.org/10.1016/j.nonrwa.2014.02.002
DOI:10.12677/pm.2022.1271221124nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.